Single Cell in a WGA Cup: Open-well whole genome amplification

Yoosun Yang¹, Hoon Suk Rho¹, Michiel Stevens¹, Arjan GJ Tibbe¹, Han Gardeniers² and Leon WMM Terstappen¹

1. Medical Cell BioPhysics Group, MIRA Institute, University of Twente, The Netherlands
2. Mesoscale Chemical Systems Group, MESA+ Institute for Nanotechnology, University of Twente, The Netherlands
3. VyCAP B.V., The Netherlands

Introduction

Genetic characterization of Circulating Tumor Cells (CTC) offers the opportunity for a “real time liquid biopsy” [1, 2]. Heterogeneity and rarity of CTC command the need for individual cell characterization. Following an enrichment procedure of CTC from blood, the identification, isolation and manipulation of single cells for further analysis without cell loss remains challenging. Here, we present a microfluidic device with open-well structures in which cells can be identified, isolated, lysed and the nucleic acids amplified following filtration. On-chip amplification will be a powerful tool to improve genetic analysis of single cells by making use of the smaller reagent volume, automation and parallel reactions of microfluidic devices [3].

Open-well Microfluidic Device

Pneumatic Valve

Device Design

Self-sorting Microwell

Microwell Plate Design

Single Cell Seeding

![Fluorescence Image of Cells in Microwells](image)

Single Cell Isolation

1. Filtrate thousands of cells through self-sorting microwell.
2. Scan self-sorting microwell plate under a fluorescence microscope.
3. Punch the bottom of microwells with cells into the reaction chamber.
4. Process isolated cell in the reaction chamber.

![Punching](image)

Peristaltic Pumping

Loading reagents to reaction chambers using peristaltic pumping

Design

Sequence

![Pumping rate: 2.5 nl/sec (10 Hz)](image)

Whole Genome Amplification on a Chip

Isolate single cells of interest

Load proteinase K,~150 nl

Lysis

60°C, 1 h / 95°C, 10 min

Load WGA mixture,~275 nl

Amplification

30°C, 16 h

Collect amplified-DNA out

Conclusions

We developed a novel microfluidic device for whole genome amplification of single cell isolated by self-sorting microwell plate.

References