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The CIRCUIT DESCRIPTION CODE explained 

1. Introduction 

The Circuit Description Code (CDC) is the symbolic representation of an equivalent circuit model. Using 
the CDC it is quite simple to instruct the modelling part of the program how to calculate the impedance or 
admittance (or any other dispersion representation) given a set of parameter values. The program ‘reads’ 
the CDC from left to right and interprets the symbols for what action to take. A clear description of this 
process, together with the relevant equations, is presented in [1]. 

Construction of the CDC is straightforward, but certain restrictions must be taken into account. Also one 
should realise that an equivalent circuit, and hence its ‘CDC’, is only a model. Reality may be more 
complex, eluding this simple description method. 

2. Definitions and construction procedure 

The circuit description code (CDC) is based on the assumption that every element of an equivalent circuit 
can be regarded as a black box, having two (and only two) terminals and a known transfer function (i.e. 
impedance or admittance function). Two types of elements are defined here, simple elements and 
complex elements: 

• A simple element is defined as an element with 
a (complex) transfer function, which cannot be 
separated further into independent parts, e.g. a 
resistance, capacitance, etc. Generally a simple 
element can be related to a single (macroscopic) 
physical process, for example the resistance of a 
material (R), the double layer capacitance (C) or 
a diffusion related process which is represented 
by a Warburg (W). 

• A complex element is defined as a two terminal 
box which internally is build up out of either a 
series or a parallel circuit containing simple 
and/or complex elements of a higher order. 
These two different types of complex elements 
are shown schematically in Fig. 1. 

From Fig. 1 it is obvious that there are two types of 
complex elements, i.e. parallel structure versus 
series structure internally. This is indicated in the 
CDC by the brackets enclosing the complex 
element. A parallel internal arrangement (Fig. 1A) is 
enclosed by a set of parenthesis: (RQC), while a 
series internal arrangement (Fig. 1B) is enclosed by 
a set of square brackets: e.g. [RQC]. The CDC-entry 
software automatically selects the proper bracket, 
hence in typing ‘[‘ and ‘(‘ are equivalent. The same 
holds for ‘]’ and ‘)’. 

The order of a complex element is defined here as the number of boxes in which the complex elements 
is contained, including its own box. 

B)A)

CDC: ( - - - - ) CDC: [ - - - - ]
 

 Figure 1. Schematic representation of two types of 
composite elements. A) With a parallel internal sub-
circuit (odd level, enclosed by parenthesis). B: With a 
series sub-circuit (even level, enclosed by square 
brackets). Solid lined boxes represent ’simple ele-
ments’, broken lined boxes composite elements. 

 
 Figure 2 Type of equivalent circuit that cannot be 

represented by the Circuit Description Code (CDC). 
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The essence of these definitions is that only equivalent circuits are considered which can be broken down 
into two-terminal complex elements of increasing order. Hence the circuit of Fig. 2 cannot be considered 
as it can not be broken down into complex circuits of increasing order without violating the two-terminal 
condition. Such a circuit would require a special transfer function. It will be considered in future software 
developments. 

The Circuit Description Code is the translation of an 
equivalent circuit into a representation that can be 
interpreted by the program. It has the form of a 
string of symbols in which each symbol (character) 
represents a specific type of element, e.g. R for 
resistance, C for capacitance, L for inductance, etc. 
A list of currently supported elements and their 
dispersion relations (transfer functions) is given in 
Table 1., see page 8. 

The simplest case is a series circuit of simple elements, e.g. a resistance, capacitance and inductance (Fig. 
3). The CDC is simply given by: 

 R C L  (1) 

All permutations of description (1) are of course 
equivalent. The circuit is quite different if the 
inductance is arranged in parallel to the capacitance 
(Fig. 4). According to the definitions above, the 
parallel part of the circuit can be regarded as a 
complex element (of order 1), as it can be enclosed 
by a box with two terminals, outlined by the dashed 
line in Fig.4. This complex element is signified in 
the CDC by a set of parenthesis: ’(’ and ’)’. In a 
schematic representation: 

 R (complex element)  (2) 

Here R, ’(’ and ’)’ are part of the CDC, ’complex element’ has to be replaced by a proper description of its 
contents: a simple parallel circuit of a capacitance and an inductance: CL. The CDC then becomes: 

 R ( C L ) (3) 

The left parenthesis is a reminder for the program 
that the response of a complex element has to be 
calculated first. The right parenthesis signifies that 
the response of the complex element has been 
evaluated and that it must be transformed and added 
to the lower level (sub-) circuit dispersion. Fig. 5 
shows an arbitrary equivalent circuit with a more 
complex structure. Establishing the CDC for this 
circuit can best be done as follows. First locate the 
series circuit which is at the zero or ground level. It 
is formed by R1 and what ever is enclosed by box-1 
(dashed outline) which represents a complex 
element of order 1. The following step is to examine 
box-1 using the recursive definition for the complex 
element. It contains a parallel circuit build up by R2 and a complex element of order 2 enclosed by box-2. 

R C L

CDC: RCL
 

 Figure 3: Series circuit of a resistor, R, a capacitor, 
C, and an inductor, L. 

R

C

L

CDC: R(CL)
 

 Figure 4: Circuit of a resistor in series with a paral-
lel circuit of a capacitor and an inductor. 

R2

R1

W3

C5

R4

CE1

CE2 CE3

CDC: R1(R2[W3(R4C5)])
 

 Figure 5:  Arbitrary equivalent circuit. The rectan-
gles  (presented by the dashed lines) form the com-
plex elements (CEi) of order i. 
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The next step is to consider box-2. On its turn it consists of a series circuit formed by the Warburg 
element W3 and the complex element of box-3. This complex element of order 3 contains a parallel 
circuit of two simple elements, R4 and C5. Developing the CDC along these steps, one can write down the 
following sequence:  

 level-0: R1 (   box-1    ) 

 level-1: R1 ( R2 [   box-2  ] ) 

 level-2: R1 ( R2 [ W3 ( box-3 ) ] ) 

 level-3: R1 ( R2 [ W3 ( R4 C5 ) ] ) (4) 

The indices are only used here for illustrative purpose. The actual Circuit Description Code for the circuit 
of fig. 5 will be: 

 R ( R [ W ( R C ) ] ) (5) 

From the foregoing it will be clear that a complex 
element of odd order will have a parallel internal 
structure (fig. 1a), while a complex element of even 
order will have series internal structure (fig. 1b). 
Thus the ground level circuit (zero order) is a series 
circuit, even if it contains only one complex element 
(which is of order 1 and thus a parallel circuit). The 
CDC for the equivalent circuit of fig. 6 must then be 
written as: 

 ( R C L ) (6) 

In short, the CDC for a complex equivalent circuit 
can be obtained by locating the complex element(s) of order 1. Subsequently these complex elements are 
devided into alternating series/parallel arrangements of simple and complex elements of increasing order, 
until only simple elements remain. For a detailed description of how the CDC is interpreted by the 
program see [1]. 

3. Summary of circuit elements and their representations 

3.a Standard electrical elements: 

Besides the three well known dispersive elements R, C and L, the CDC can accomodate four diffusion 
related elements. These elements and the representation of their transfer functions will be discussed in 
some detail below. For most elements the parameters must be passed to the program in the admittance 
representation (ohm-1 or Siemens related). The two exceptions are the resistance R, which must be given 
in ohms, and the inductance L which must be given in Henri, thus both in the impedance representation. 

3.b Warburg element: 

A well known diffusional element is the Warburg (CDC symbol: W), also known as the semi-infinite 
transmission line. The dispersion relation follows from Fick’s second law for a (one dimensional) semi 
infinite diffusion problem. The general form is: 

 ]2/2/[)( 00 jYjYY +==  (7) 

R

C

L

CDC: (RCL)
 

 Figure 6: Parallel circuit of a resistor R, a capacitor 
C and an inductance L. 
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where Yo is the adjustable parameter containing the diffusion coefficient [2,3] and other parameters 
which depend on the characteristics of the electrochemical system. ω is the angular frequency: ω = 2πf. 

3.c Constant Phase Element: 

A very general diffusion related element is the Constant Phase Element or CPE [4-6], CDC symbol: Q. It 
is encountered frequently in solid state electrochemistry, however no general physical interpretation has 
been given yet. The CPE behaviour of interfaces has been ascribed to a fractal nature (special geometry 
of the roughness) of the interface [7-9].  As for bulk effects no direct derivation has been given, but a 
phenomenological approach by Jonscher [10] and Almond and West [11,12] looks promising. The 
admittance representation of the CPE is given by: 

 Y(ω) = Y0 (jω)n = Y0 ωn cos(nπ/2) + j Y0 ωn sin(nπ/2) (8)  

In fact this is a very general dispersion formula. For n=0 it represents a resistance with R = Y0
-1, for n = 1 

a capacitance with C = Y0, for n = 0.5 a Warburg and for n = -1 an inductance with L = Y0
-1. 

3.d. Finite length diffusion elements, the FSW: 

There are two diffusion-related elements dealing with finite length diffusion. The first one describes 
diffusion through a medium where one boundary is blocking for the diffusing species, e.g. a (thin) mixed 
conducting electrode [2,3,13]. The result is a dispersion relation with a tangent-hyperbolic function (CDC 
symbol: T): 

 ]tanh[)( 0 jBjYY =  (9) 

where Y0 and B contain the diffusion coefficient and other system dependent parameters. Separating this 
formula into a real and an imaginary component, one obtains: 
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where z = B √2ω. For large values of z equations (9) and (10) can be approximated by the Warburg 
representation (eq. 6). For small values of z equation (10) reduces to the simple dispersion relation of a 
resistance in series with a capacitance (for clarity in the impedance representation): 

 Z(ω) = B / 3 Y0 - j / Y0 B ω  (11) 

This type of ‘finite length diffusion’ is often called the ‘Finite Space Warburg’ (or SFW), signifying the 
limited space for the intercalating ion. 

3.e. Finite length diffusion elements, the FLW: 

The second finite length diffusion element deals with the case where one boundary imposes a fixed 
concentration (or activity) for the diffusing species, thus it is permeable for the diffusing species. This 
type of dispersion relation is generally found in oxygen conducting electrodes, as well as in corrosion 
related diffusion [14,15]. The dispersion relation contains in the admittance representation a cotangent-
hyperbolic function (CDC-symbol: O): 

 ]coth[)( 0 jBjYY =  (12) 
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Separating equation (12) in a real and imaginary part yields: 
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which is closely related to equation (10). Again for large z we obtain the Warburg expression. For small 
values of z a parallel circuit of a capacitance and a resistance is obtained: 

 Y(ω) = Y0 / B + j Y0 B ω / 3 (14) 

As the diffusion takes place over a ‘finite length’ this element is also called the ‘Finite Length Warburg’, 
or FLW. 

 
3.f. Gerischer Impedance: 
 
The Gerischer impedance combines Faradaic diffusion with a ‘non Faradaic’ reaction.  This reaction 
takes place along the diffusion path and influences the concentration of at least one of the diffusing 
species (e.g. by forming electrochemically inactive complexes). The general admittance formula for 
the Gerischer dispersion is represented by: 

 )( 0 jKYY a +=  (15) 

where Ka is the net reaction rate. This equation can be split into a real and imaginary part: 
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with g = Ka/ω.  For the impedance representation one obtains: 
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with Z0 = (Y0)
-1. As for eq. (16) an alternative expression for eq. (18) can be given: 
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From eqs (17) and (19) it is obvious that for g<1 (high frequencies) these equations change to the 
Warburg or semi-infinite diffusion dispersion:  

 ( )2/2/)( 00 jYjYY +==  (20) 

For low frequencies the imaginary part disappears (=0) resulting in a dc-resistance with Rdc=Z0 Ka
-0.5.  

It is important to notice that the diffusion process is semi-infinite, yet because of the side reaction, the 
impedance reaches a finite dc value for ω→0. 
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For the representation of the Gerischer dispersion eq. (1) is used in the NLLSF-program.  The CDC-
symbol is ’G’.  The parameters needed (or fitted) by the program are Y0 (in ohm-1s0.5) and Ka (in s-1).  
An example of the Gerischer impedance is presented in fig. 7.  For display purposes the Gerischer 
impedance has been offset by a series resistance (CDC: RG).  Parameter values are: R=20 Ω, Y0=0.01 
S-1s0.5 and Ka=2 s-1.  Estimates for Y0 can easily be found by using the ’Find Line’ option in ’Data 
Cruncher’ for the high frequency (Warburg like) part.  The estimate for Ka can be obtained from the 
resistance value measured between the high frequency and the low frequency intercept, Rdc, with the 
real axis: 

 ( ) 2
0

−⋅= dca RYK  (21) 

For further reading on the Gerischer impedance see [16,17]. 
 
 

 0 50 100
Zreal,   [�]  �

 0
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‘Gerischer’  , RG
Coth (FLW), RO

� �

 

 Figure 7: Example of the dispersion of a ‘Gerischer’ element. For clarity a series resistance of 20 Ω 
is added. Parameters: Y0= 0.01 S⋅s0.5, Ka = 2 s-1.  For comparison the dispersion of a FLW is 
added (Coth-function , open squares). Parameters: Y0= 0.01 S⋅s0.5, B = 0.7071 s0.5. At high 
frequencies the dispersion of both elements simplifies to a (identical) semi-infinite War-
burg response. Frequency range is 1 mHz to 100 kHz, 11 points/decade.  
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4. Examples of CDC’s 

In figure 8 the well-known Randles circuit is shown. 
The CDC for this circuit is given by: 

Ri ( Cdl [ Rct W ] ) (22) 

Where Ri is the ionic resistance of the electrolyte, 
Cdl is the double layer capacitance and Rct is the 
charge transfer resistance. The semi-infinite 
diffusion is represented by the Warburg (W). 

Figure 9 shows the equivalent circuit of a mixed, 
oxygen ion conducting ceramic with electrode 
dispersion. The electronic resistance, Rel, is placed 
directly between the electrodes.  The ionic 
conduction path includes the ionic (bulk) resistance 
and the grain boundary resistance. Frequency 
dispersion is introduced by the dielectric 
capacitance (bulk- or geometric capacitance) and the 
capacitance related to the grain boundary interface. 
The electrode dispersion depicts the reaction 
between the oxygen ions and the oxygen in the 
ambient at the electrode surface. This sub-circuit is 
quite a simplification of what generally is 
encountered. Cdl and Rct represent the double layer 
capacitance and the charge transfer resistance. Zdiff. represents the adsorption-diffusion related processes, 
here given as a Warburg impedance. The CDC for the circuit of fig. 9 is given by: 

( Rel [ ( Cdiel [ Rion ( Rgr.b. Cgr.b. ) ] ) ( Cdl [ Rct Wdiff. ] ) ] ) (23) 

The development of this CDC is presented in the graphical cartoon below (figure 10). 

The best route for developing the CDC is to start from the ‘terminals’ of the equivalent circuit. Next 
define the complex elements, starting with an internal parallel circuit (odd level). The next level of 
complex elements must have an internal series circuit (even level). 

W

Re’lyte

Cdl

Rct
Warburg

 
 Figure 8: Simplest form of a Randles type equiva-

lent circuit. CDC: R(C[RW]). Re’lyte is the ionic re-
sistance, Ri, of the electrolyte. 

W

Electronic

Ionic-bulk Grain boundary Electrode

Rct

Rel

Cdl

Zdiff.

Cdiel.

Cgr.b.Rion

Rgr.b.

 
 Figure 9:  Complex equivalent circuit for a mixed 

conducting oxide ceramic with reversible elec-
trodes. The CDC is: (R[(C[R(RC)])(C[RW])]). 

 

 
 Figure 10:  Schematic development of the CDC from figure 8. The CDC starts with a complex element 

‘(--)’, which is a combination of Rel in parallel with a series complex element ‘(R[ - - ]’. The series com-
plex element consists of two parallel type complex elements: (R[ ( - ) ( - ) ]). These complex elements are 
further developed. For the bulk response it consists of Cdiel. parallel to a series complex element, 
(R[(C[ - ]) (-) ] ), which can be resolved further into  Rion in series with the parallel combination of Cgr.b. 
and Rgr.b.: (R[(C[R(RC)]) (-) ] ). Finally the electrode response can be filled in, Cdl in parallel to a series 
complex element consisting of Rct and W: ( R [ ( C [ R ( R C ) ] ) ( C [ R W ] ) ] ). 
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Table 1. List of elements, corresponding symbols and dispersion relations. 

Dispersion relation Element 
description 

Symbol 
for 

CDC Admittance Impedance 

Parame
ters 

Resistance R 1 / R R R 

Capacitance C jωC -j / ωC C 

Inductance L -j / ωL jωL L 

Warburg W Y0√(jω) 1 / Y0√(jω) Y0 

CPE Q Y0(jω)n (jω)-n / Y0 Y0, n 

FSW* T Y0√(jω) Tanh[B√(jω)] Coth[B√(jω)]/Y0√(jω) Y0, B 

FLW† O Y0√(jω) Coth[B√(jω)] Tanh[B√(jω)]/Y0√(jω) Y0, B 

Gerischer G Y0√(k+jω) (k+jω)-½/Y0 Y0, k 

Fractal 
Gerischer‡ 

F Y0 (k+jω)α (k+jω)-α/Y0 Y0, k, α 
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* The FSW (Finite Space Warburg) element is the Tanh function in the admittance representation. 
† The FLW (Finite Length Warburg) element is the Coth function in the admittance representation. 
‡ The Fractal Gerischer is to be included in a future release. 


