UTFacultiesTNWClustersResearch groupsIMResearchDesign of Hybrid / Inorganic porous membrane

Design of Hybrid / Inorganic porous membrane

DESIGN OF HYBRID/INORGANIC POROUS MEMBRANES

Our research focusses on the controlled synthesis, development and understanding of novel hybrid, and inorganic porous membranes with specific microstructural, composition and morphologic properties. These membranes find application in the treatment of industrial effluents as well as in gas separation. Our work is divided in three main research lines, which refer to the different thematic areas investigated: 1. Surface modification, 2. Shaping of porous structures and 3. 2D/3D structures.

 

SURFACE MODIFICATION

 Organically-modified porous ceramic membrane finds applications in a young yet growing research field which aims to separate, recover, and purify solutions of organic solvents in the chemical and pharmaceutical industries. The inherent chemical and mechanical resistance of ceramics, coupled with a multitude of possible grafts, translates into three major benefits: long membrane lifetimes, suitability to harsh conditions, and the ability to be tailored to a large range of applications. Membranes with tunable MWCO in the range of 200-1000 Da as well as tunable solute/membrane interactions were developed in the last few years in the Inorganic membrane group. 

By exploring and expanding grafting chemistry and techniques available, like surface-initiated polymerization, we aim to improve the actual performance by designing the next generation of organically-modified porous ceramic membranes, composed of structured organic networked and poly(ionic liquid)s. In this perspective, the potential application of this membrane for gas separation will also be investigated.

For more information please contact: m.d.pizzoccaro@utwente.nla.j.a.winnubst@utwente.nl 

SHAPING OF POROUS STRUCTURES 

Microporous and mesoporous ceramic membranes are known to present high chemical, thermal, and mechanical stability, which makes them suitable for use in gas separation, and water/solvent treatment processes. By shaping the pore structure of these membranes, we aim to improve the performance of existing systems. 

Recently, a new type of mesoporous silica membrane with oriented pores was prepared in the group by using a Stöber solution pore growth approach. In this work, we have paid special attention to the study of the pore orientation through various microstructural analysis. An important aspect of our research here is the control of the porous structure shape during fabrication in order to obtain materials and devices with special, unique and reproducible properties. 

Our current research focuses on the development of periodic organosilica and silicon carbide nanofiltration membrane.

For more information please contact: m.d.pizzoccaro@utwente.nlm.w.j.luiten@utwente.nl




2D/3D NANOSTRUCTURES

Nano- or sub-nanometer apertures derived from intrinsic porous nanostructures of 2D or 3D materials allow for highly selective transport of liquids, gases, ions, and other species through membranes. In recent years, various 2D and 3D materials, including the graphene-family, exfoliated dichalcogenides and layered oxides, zeolites, and metal–organic framework (MOF) nanosheets have demonstrated to be promising building blocks for high performance membranes. In the group, we recently have developed defect-free high-silica CHA zeolite membranes with high selectivity for light gas separation (up to 180 for CO2/CH4). In addition, the possibility to transform microporous amorphous silica membranes into b-oriented silicalite-1 (MFI) zeolite layers via in-situ crystallisation was also demonstrated. 

Currently our interest is focused on the preparation of 2D nanomaterial membranes for desalination and nanofiltration applications. By functionalization of the material and the support, we aim to prepare stable membrane, working at low transmembrane pressure while combining a high flux and with rejection. This will create unique opportunities to manufacture tunable high flux/high selective membranes that can act as game-changers in membrane technology.

For more information please contact: m.d.pizzoccaro@utwente.nl   a.j.a.winnubst@utwente.nl  m.w.j.luiten@utwente.nl 


Scientific staff

Collaborators


Main Publications

  1. P. Karakiliç, X. Wang, F. Kapteijn, A. Nijmeijer and L. Winnubst, “Defect-free high-silica CHA zeolite membranes with high selectivity for light gas separation” J. Memb. Sci., 2019, 586, 34–43. https://doi.org/10.1016/j.memsci.2019.05.047
  2. M. A. Pizzoccaro-Zilamy, C. Huiskes, E. G. Keim, S. N. Sluijter, H. Van Veen, A. Nijmeijer, L. Winnubst and M. W. J. Luiten-Olieman, “New generation of mesoporous silica membranes prepared by a Stöber-solution pore-growth approach” ACS Appl. Mater. Interfaces, 2019, 11, 18528–18539. https://doi.org/10.1021/acsami.9b03526
  3. R. B. Merlet, M. Amirilargani, L. C. P. M. de Smet, E. J. R. Sudhölter, A. Nijmeijer and L. Winnubst, J. Memb. Sci., 2019, 572, 632–640. https://doi.org/10.1016/j.memsci.2018.11.058