

Heat and mass transfer analysis for the design of the cryogenic system for the HL-LHC IT String

G. Rolando, O. Duran Lucas, A. Wanninger, O. Pirotte, M. Sisti and A. Perin

CERN, Technology Department, Cryogenics Group

CHMT 2019 November 5th, 2019

Outline

The HL-LHC & IT String projects

- Objectives
- Operation modes
- The cryogenic distribution system

Cryogenic operation modes

- Cool down
- Quench

Conclusions

Cryogenics for the HL-LHC project

The Inner Triplet String project

- 60 m long string of magnets
- He II bath at 1.3 bar and 1.8 K
- Average mass -> 2000 kg/m
- LHe content -> 27 l/m
- Heat load to magnets -> 1.3 kW

IT String assembly in SM18 (CERN's main cryogenic test facility)

> HL-LHC IT STRING The validation of the collective behavior

of the system components

SM18 2020-2022

(M. Bajko)

Operation modes

- Cool down in max 15 days using existing SM18 cryogenic infrastructure
 - 1. From 300 K to 4.5 K
 - 2. Magnet filling by condensation
 - 3. From 4.5 K to 1.8 K
- Steady state operation
- Current ramping of the magnets
- Maximum heat load test (removal of 500 W)
- Magnet quench
- Quench recovery in max 12 hours to limit the duration of the test program
- Warm Up
 - 1. Magnet empting
 - 2. From 5 K to 300 K

CHMT2019 November 5th,2019

6 / 20

G. Rolando TE-CRG

Cryogenic Distribution System – Part 1

Cryogenic Distribution System – Part 2

Cool down from 300 K to 1.8 K

LN₂ pre-cooling is used for the cool down of the LHC. Is LN2 pre-cooling required to meet the IT String target cool down time of 15 days?

Cool down from 300 K to 4.5 K

Cold box refrigeration power between 300 K and 4.5 K without LN₂ pre-cooling (U. Wagner)

Helium	Cold box	
supply temperature	power	
[K]	[kW]	
300	16.6	
285	12.2	
70	11.7	
20	6	
4.5	4	

Cool down from 300 K to 4.5 K

- Cool down time from 300 K to 4.5 K is 8.5 days, without LN2 pre-cooling
- Max temperature difference between GHe flow and cold mass is 23 K
 - important for Nb₃Sn magnets!

Magnet filling by condensation

- GHe in cryostat is liquefied by pumping, while the cryostat is filled
- Cryostat volume is 1.5 m³
- Available LHe mass flow is 25 g/s
- Available pumping capacity is 18 g/s at 30 mbar

Optimization of magnet filling

- Magnet filling requires 2 h
- Optimal flow repartition is 5 g/s for pumping and 20 g/s for filling
- Optimal mass flow repartition is independent from initial LHe level in cryostat

Cool down from 4.5 K to 1.8 K

Available pumping speed reduces from 18 g/s at 30 mbar in bayonet HX to 6 g/s at 10 mbar

- Cool down time from 4.5 K to 1.8 K is 2.1 hours
- Filling LHe mass flow required during cool down to 1.8 K is 6.6 g/s
- Overall LHe mass flow during cool down from 4.5 K to 1.8 K is lower than cold box liquefaction capacity of 25 g/s

Overall cool down time of HL-LHC IT String from 300 K to 1.8 K is well below 15 days

How much helium will be expelled from the cryostat? What is the temperature of the helium? Will there be any liquid to boost the quench recovery?

The HL-LHC IT String quench program

A **magnet quench** is the transition from the superconducting to the normal conducting state. The energy stored in the magnetic field is dissipated into the cables and released into the cold mass.

Quench test program

Name	Current	Energy [MJ]	Number
Low	0.1 x J _{nominal}	0.4	69
Medium	0.4 x J _{nominal}	6.3	51
High	0.75 x J _{nominal}	22.0	51
Nominal	Inominal	39.1	20

The **quench relief system** includes all the components necessary to accommodate the quench energy in the cryogenic system without exceeding the design parameters of the system.

Buffer volumes are integrated into the cryogenic system to accommodate the quench energy:

- cold buffers maintained at cryogenic temperatures during operation;
- > warm buffers at ambient temperature.

The **cold quench buffer** is used to recuperate cold He during a quench to **speed up quench recovery** by boosting the cold box.

Heat flow during a quench

- Input for quench analysis is the heat deposited into the cold mass and helium
- No data available for HL-LHC magnets. Deposited heat load obtained by re-scaling LHC data
- Nb₃Sn HL-LHC inner triplet magnets
 - "Dry magnets" -> no He entering through pores into the SC cable and in contact with the strands
 - Coils impregnated with insulating epoxy resin -> lower heat transfer area and higher (x10) thermal resistance
 - Higher (x1.33) temperature increase in SC cable following a quench

LHC heat load following a quench

HL-LHC heat load following a quench

G. Rolando TE-CRG

1D-thermohydraulic dynamic model - EcosimPro

CRYOLIB is a EcosimPro library developed at CERN of cryogenic components for thermodydraulic network systems.

- Cryostat: single volume (1.5 m³ Helium and 84.2 tons metal) with heat source
- Quench relief valve (QRV): Kv 30, opens at 17 bar, fully open at 20 bar
- Line D: two pipe components with a total volume of about 2 m³ and total length of 90 m
- Cold buffer: different volumes (optional)
- Control valve to warm buffer (CV_WB): opening at 13 bar
- Recovery line: > 100 m non-insulated pipe (atmospheric heating)
- Warm buffer: 80 m³ single volume

Dynamic quench simulation results

The cryogenic system following a 39.1 MJ quench:

- Heat is transferred from the magnet coils to the magnet cold mass after the quench at t = 0 s
- At 17 bar in the cryostat, the quench valve opens and helium is relieved into line D
- At 13 bar in line D, helium is relieved into the warm buffer

Pressure in cryostat and buffers

Temperature in cryostat and line D

Conclusions

Heat and mass transfer analysis for the design of the Proximity Cryogenics for the IT String:

- Cool down
- Quench analyses
- Quench recovery strategy
- Warm quench buffer minimum temperature following a quench
- Warm-up time and heater power

Cryogenic parameters

Line	Pipe Size	Nominal Pressure [bar]	Operational Temperature [K]	Maximum Flow Rate [g/s]
В	DN100	0.010 - 0.016	4.5	24
С	DN40	4	4.6	25
D	DN65	1.3	20	5800
E	DN25	19	50	23
E'n	DN25	19	50	23
F.	DN25	18	75	23

Cool down from 300 K to 4.5 K

Cool down time from 300 K to 4.5 K

Temperature during cool down

Conclusions:

- Cool down time from 300 K to 4.5 K is 8.5 days
- Max temperature difference between GHe flow and cold mass is 23 K – important for Nb₃Sn magnets!
- No need of LN₂ pre-cooling

Magnet filling

- GHe in cryostat is liquefied by pumping, while the cryostat is filled
- Cryostat volume is 1.5 m³
- Available LHe mass flow is 25 g/s
- Available pumping capacity is 18 g/s at 30 mbar

$$\boldsymbol{t_{lique faction}} = \frac{V_{cryostat} \cdot \rho_{sat GHe @ 1.3 bar} \cdot L_{@ 1.3 bar} \cdot (1 - \%_{cryostat initial filling})}{\dot{m}_{pumping} \cdot L_{@ 30 mbar} \cdot (1 - \%_{flash})}$$

$$t_{filling} = \frac{V_{cryostat} \cdot \rho_{sat \ LHe \ @ \ 1.3 \ bar} \cdot L_{@ \ 1.3 \ bar} - m_{initial \ LHe \ in \ cryostat} - m_{initial \ GHe \ in \ cryostat}}{\dot{m}_{filling}}$$

Conclusions:

- Magnet filling requires 2 h
- Optimal flow repartition is 5 g/s for pumping and 20 g/s for filling
- Optimal mass flow repartition is independent from initial LHe level in cryostat

Cool down from 4.5 K to 1.8 K

Available pumping speed reduces from 18 g/s at 30 mbar in bayonet HX to 6 g/s at 10 mbar

$$\boldsymbol{t_{cool\,down}} = \frac{m_{He} \cdot \Delta H_{He\,4.5\,K\,-1.9\,K} + m_{cold\,mass} \cdot \Delta H_{SS\,4.5\,K\,-1.9\,K}}{\dot{m}_{pumping} \cdot L_{@\,pressure\,bayonet\,HX} \cdot (1 - \%_{flash})}$$

Conclusions:

- Cool down time from 4.5 K to 1.8 K is 2.1 hours
- Filling LHe mass flow required during cool down to 1.8 K is 6.6 g/s
- Overall LHe mass flow during cool down from 4.5 K to 1.8 K is lower than cold box liquefaction capacity of 25 g/s

Overall cool down time of HL-LHC IT String from 300 K to 1.9 K is well below 15 days

Thermohydraulic dynamic model – Initial conditions and component details

- System components:
 - **Cryostat**: single volume with heat source and thick stainless-steel wall to represent heat capacity of metal cold mass, initially at 1.3 bar and 1.9 K.
 - Quench relief valve: Kv30, opens at 17 bar, fully open at 20 bar.
 - Header D: two pipe components (SQXL (string cryogenic transfer line): 50 m, DN 200; PCS (Proximity cryogenic system): 40 m, DN65), initially at 1.3 bar and 20 K.
 - Cold buffer: different volumes (only if required), initially at 1.3 bar and 20 K.
 - Control valve to warm buffer (CV_WB): opening at 13 bar.
 - Recovery line: > 100 m DN 150 non-insulated pipe exposed to natural convection and condensation of ambient air (atmospheric heating).
 - Warm buffer: 80 m³ single volume with carbon-steel wall, initially at 1 bar and -10 °C (minimum regularly occurring temperature).

Cold vs warm quench buffer

- Quench recovery by pumping on bayonet heat exchangers is not possible in 12 hours
 - Cryostat and line D must be depressurised after quench
- All inner triplet magnets quench simultaneously (as opposed to LHC dipole magnets)
 - > Only small amounts of liquid expelled from cryostat, which is mostly evaporated within line D
 - Large cold buffer to retrieve cold Helium not useful

2 m³ of line D act as cold buffer volume

No interest in a cold quench buffer Existing 80 m³ carbon-steel warm buffer is sufficient

