

Low-vibration and drift miniature cryogenic stage for Cryo-EM applications

- Over 600 employees
- System supplier R&D Production
- 5 locations (Enschede (HQ), Best, Delft, Groningen, Munster)
- ISO 9001 & ISO 13485
- World-wide client portfolio

Competences include:

- **Mechatronics**
 - Mechanics
 - Software
 - Electronics
- Thermal management
 - Including cryogenics
- Optics

DEMCON kryoz

- Modelling: FEM / LEM /CFD
 - Thermal, flow, structural & electromagnetism
- **Prototyping and Production**

Example projects High tech – Medical - Industrial

Philips / QSIL

Océ

Lumileds

FEI

Finapres

D.O.R.C.

Content

- Little bit of application background
- SEM/FM/FIB process
- Cryocooler design and analyses
- First verification measurement, work in progress

Cryo EM – Structural Biology Cryogenic Electron Microscopy Background

- Structural analyses of bio-samples (proteins) using EM
- Cryogenic fixation of the samples
 - stopping all motion and metabolic activity and preserving the internal structure by freezing all fluid phases solid

"Cryo-EM has quickly become one of the most important techniques used by structural biologists today to obtain molecular-scale 3D information about protein structures."

Prof. Sir Mark Welland, director of the Nanoscience Centre

Workflow simplification Current Workflow

Many steps – Many risks – Low(er) Yield

Workflow simplification New Workflow

Less steps – Less risks – Higher Yield

Combined Cryo SEM/FM/FIB Visualization, Localization & Machining

All under cryogenic conditions!

Combined Cryo SEM/FM/FIB Demand for zero vibration/drift cryocooler

Main cold-stage requirements:

- Drift < 3 nm min-1</p>
- Vibration < 1nm p2p @ 200Hz</p>
- 6 DOF
- $T_{sample} \le 108$ Kelvin @ $P_{net} = 5$ mW
- Very low volume budget

Combined Cryo SEM/FM/FIB

Demcon kryoz micro cryocooling technology

- Typical outer dimensions: 60 x 9 x 0,72 mm
- Typical cooling area dimensions: 9 x 10 mm
- Max net cooling power: ≈ 200 mW
- Min. temperature : ≈ 75 K

DEMCON kryoz

Gas supply from pressure bottle

Combined Cryo SEM/FM/FIB Cold-stage design

Combined Cryo SEM/FM/FIB Cold-stage integration and first measurements

Combined Cryo SEM/FM/FIB Cold-stage integration and first measurements

Thermal Cold-stage verification measurements

DEMCON kryoz

Thermal Cold-stage verification measurements

Mechanical Cold-stage verification measurements

• Currently in progress....

Questions?

For more information please contact Pieter Lerou, PhD pieter.lerou@demcon.nl +31 (0)88 – 115 20 00

Cryogenic Heat and Mass Transfer Conference – Universiteit Twente – 5 November 2019