THALES

Heat transfer (inside) Cryocoolers and its impact

TONNY BENSCHOP THALES CRYOGENICS BV – EINDHOVEN

WORK PERFORMED IN DIFFERENT PROJECTS BY DIFFERENT ENGINEERING TEAMS

CHMT WORKSHOP 04/05-11-2019

www.thalesgroup.com

THALES GROUP INTERNAL

© THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS. THIS INFORMATION CARRIER CONTAINS PROPRIETARY INFORMATION WHICH SHALL NOT BE USED, REPRODUCED OR DISCLOSED TO THIRD PARTIES WITHOUT PRIOR WRITTEN AUTHORIZATION BY THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS, AS APPLICABLE

Contents

Types of Thales Cryogenics coolers and used technologies

Internal heat transfer

- > Impact of regenerator optimization
- > Impact of heat transfer coefficient cold gas / wall

Some case studies

Conclusions

THALES

Used technologies by Thales Cryogenics

Courtesy of Ray Radebaugh

THALES

3

Main products perimeter

6000 gr, 9000mW @ 77K @ 200 Wac

THALES GROUP INTERNAL

THALES

Expected future market needs

We try to translate individual customer needs to cooler concepts that can be used for different customers and in different types of applications

Understanding of (Cryogenic) Heat and Mass transfer critical for utilization of cryocoolers

5

Cryocoolers technologies

Cooler families defined by mechanical solutions

Compressor (pressure wave generation)

 Linear compressors with contact seal bearings or flexure bearings

Cold finger (cold generation)

> Stirling cooler: Moving displacer

Main failure mode is displacer seal wear
Pulse-tube coolers: No moving parts in cold side of the cooler

- Higher reliability
- Lower induced vibrations
- Lower overall efficiency

Transfer of Electrical power > Cooling power

ROM values for standard Stirling cooler 6 W @ 77K / 293 K

Order of magnitude figures (Stirling cooler)	Watt
Input power	150
Pneumatic power	100
Flow losses split pipe	5
Transition to cooling power (77-293)	17
Impact heat transfer warm side (20K)	-0.84
Regenarator losses	-7.00
Thermal conduction along CF	-0.81
Impact heat transfer cold side (10K)	-1.60
Nett cooling power	6.69

Overall Efficiency ≈ 13% of Carnot

THALES

www.thalesgroup.com

© THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page

Cold finger / Loss of efficiency

Loss effects cold finger:

- Conduction losses (walls / regenerator)
- Flow losses (pressure drop)
- DT at cold and warm end DT
- Finite heat capacity regenerator

Example of $\approx 1 @ 77K$ Watt cooler:

Cooling power = Cold production – Losses (0.8 W = 3.7 W – 2.9 W)

Wire thickness = 1/10 of human hair 10 wires per mm

Optimization of regenerator material for 60K operation

Use of improved 60 K PT cooler

System concept of ECOSTRESS

Design based on standard 4W @ 77K PT cooler

- > 2 coolers to keep sensors below 65 K
- > 1 cooler used at 120K for shield cooling
- Improved performance @ 65 K required due to limited available power budget from ISS.

Distance between compressors and PT > 80 cm

System has been fully operational for one year. ECOSTRESS mission extended with one year

https://ecostress.jpl.nasa.gov/

© THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page

Pictures produced by ECOSTRESS

ECOSTRESS land surface temperature images of four European cities acquired in the early mornings of June 27 and 28, 2019,

THALES

12 © THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page

Impact of internal heat exchangers

		20	°C	77	7K				
	Pwr	77K	87K	20°C	30°C	dQe/dTe	9	dQe/dTa	mb
0240	≈150W	7.695	9.186	7.695	7.367	0.149	1.9%	-0.033	-0.439
9540	≈ 75W	4.561	5.722	4.140	3.887	0.116	2.5%	-0.025	-0.619
0210	≈150W	3.515	4.694	3.515	3.085	0.118	3.4%	-0.043	-1.229
9310	≈ 75W	1.606	2.390	1.606	1.276	0.078	4.9%	-0.033	-2.059

Impact of heat transfer gas > wall of cold finger is critical. Especially for higher cooling powers.

13

Impact of outflow of regenerator on cooling power

Impact of extra convective gas flow on the top of the regenerator.

Idea:

> Use side holes at displacer to improve heat transfer gas inside cold finger to wall.

Effect:

- Better heat transfer coefficient leads to a better overall efficiency
- Significant improvement (20%) of cooling power (@ higher loads)

Cross section of typical Pulse Tube cold finger

Implementation of heat exchangers in PT coolers is "easier" due to mass flow through heat exchangers. Copper slit heat exchangers (EDM machining) are being used.

THALES

THALES GR

THALES

Some case study for system integration aspects

1) PT system for cooling on electron microscope

2) Simulation of dynamical behavior in applications

3) Thermal links in 2 stage space cooler

www.thalesgroup.com

© THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page

System requirement

- > Continuous active cooling of High purity X-ray germanium sensor to 110K
- > Full system directly connected to electron microscope structure (@ 500k magn.)
- > No visual distortion of image accepted
- > Availability 5 years of operation.

Technical choices made:

- > Reliability : Pulse tube technology + Flexure Bearing compressors
- > No vibrations: Pulse tube cold finger + AVR @ Compressor + Flex support comp.

> Efficiency:

- Direct mount of HPGe sensor at tip of cold finger
- Hermetically sealed high vacuum dewar system
- Forced air cooling supported by heat pipes and Peltier Cooler for Cold finger

System set-up PT cooler for electron microscope

Thermal management

Thermal simulations

Thermal conductions

© THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page

Thermal simulation of dynamical behavior cooler in application

Cooler fit data	Used Fit 9599		
Fit amb. Temp range	104000		
a1	0.80010		
a2	0.00194		
a3	-0.76462 0.00084 -34.67816		
a4			
a5			
a6	-0.03458		
a7	8.59736		
a8	9,98606		
a9	-7.98612		
Mass Cold Finger (kg)	0.0060		
Meas dome losses 23C	0		
Meas dome losses 71C	0		
Dome losses at Tamb	5		
Pmax	85.000		
Vmax_warm	15.800		
Vmax koud	15.800		
Slow start tijd	0		
Vmax	15.3		
Vmin	4.000		
R_dyn 293 K	3.00		
R_dyn at 77K	2.95		
slope	0.00		
Dyn impedance (Te)	2.95		
Tamb (°C)	68.1		
Te (K)	75.6		
Power (W)	38.0		

Uinput (V)

Qe (W)

Qe (W) corrected

Corr factor 1

Corr factor 2

9 parameters describe cooler performance as function of Te, Tamb and Vac

Used software THERMXL: www.esatan-tms.com

10.6

© THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page

Comparison of simulated and actual performance

THALES

30..50 K sensor system for ESA

Compressor not shown

ICC-19: Manufacturing and Testing of a Flight-Like Cryostat for 30-50K Two-Stage Pulse Tube Cooler, J Tanchon et.al

THALES

© THALES NEDERLAND B.V. AND/OR ITS SUPPLIERS Subject to restrictive legend on title page

22

Conclusions

- > Full understanding of heat and mass transfer is required for the design and optimization of cryocoolers 40 .. 150K.
- > Critical for correct system performance is:
 - Regenerator design
 - Combination of parts with low and high thermal conduction
 - Heat transfer gas > wall > interface plate (at cold finger)
 - Thermal interfacing to the overall system (cold and hot side)
- > Several case studies have been discusses, each with its own criticalities.

QUESTIONS

www.thalesgroup.com