

Thermodynamic analysis of simple Linde-Hampson hydrogen liquefaction systems with G-M cryocoolers

H.M. LIM ^{1,2}, S.Y. KIM ³, G.W. KIM ², G.H. RHEE ², S.W. KARNG ^{1,*}

¹ Korea Institute of Science and Technology, Republic of Korea
² University of Seoul, Republic of Korea
³ Hylium Industries, INC., Republic of Korea

*Corresponding author, email : libra@kist.re.kr

1. Hydrogen Economy in Korea

- ✓ According to 2030 milestones in the transportation sector by Hydrogen Council (2017), 0.63 million cars will be powered by hydrogen in Korea, 2030 (MOTIE, Korea).
- ✓ The economical point of hydrogen energy supplied by liquid is over 500kg/day of station's capacity and over 0.1 million cars were used in Korea (MOLIT, Korea).

2. Small-scale hydrogen liquefaction

<Typical L-H system> <Modified L-H system>

- Small-scale hydrogen liquefaction considering depreciation and break-even point of the liquefaction plants in the early hydrogen market within 2025.
- ✓ The modified cycle was designed by applying G-M cryocoolers to improve the ordinary Linde-Hampson cycle.
- ✓ The target of liquefaction quantity : 100 kg/day

Korea Inst ence and Tech

	Typical L-H	Modified L-H	Remarks
Mass flow rate GH2 (kg/h)	50	30	@ 9 MPa
Liquefaction LH2 (kg/day)	110.5	114.8	
Consumption LN2 (kg/day)	1240	1134	
Comp, Power (kW)	208	125	
Cryocooler Power (kW)	-	29.5	Cryocoolers, Datasheet
Total Cost (USD/day)	1,025	803	KEPCO, KPRC

- ✓ The modified Linde-Hampson system can produce an amount of LH2 at low costs comparable to existing systems. The costs were based on the KEPCO, KPRC data.
- ✓ The mass flow rate of hydrogen can be reduced in the modified Linde-Hampson cycle with the 1st cryocooler before the expansion. So that, the compressing power consumption was decreased.
- The inherently low exergy efficiency of the J-T valve could be overcome by a small amount of auxiliary cooling of cryocooler.

3. Results

S. Krasae, J.S. Stang, P. Neksa, Development of large-scale hydrogen liquefaction processes from 1898 to 2009, Int J Hydrogen Energy, 35 (2010), pp. 4524-4533

- ✓ The electric energy consumption (32.3 kWh/kgLH2) of the lowest case for the modified Linde-Hampson system is calculated at half the theoretical pre-cooled Linde-Hampson system.
- ✓ The modified Linde-Hampson system is the available choice of the investment of hydrogen infrastructure for the early hydrogen market at Korea, although it is not high efficiency system.