# Impact characteristics of liquid nitrogen droplets

Michiel AJ van Limbeek,

Thomas Nes, Marcel ter Brake and Srinivas Vanapalli







# Spray cooling







## Frustrated Total Internal Reflection (FTIR)



Shirota, M., van Limbeek, M. A. J., Lohse, D., & Sun, C. (2017). Measuring thin films using quantitative frustrated total internal reflection (FTIR). *The European Physical Journal E*, 40(5), 54.

#### Impact dynamics: short timescales



Ethanol drop impacting at U=2m/s on a cold sapphire surface

Shirota, Minori, et al. "Dynamic Leidenfrost effect: relevant time and length scales." *Physical review letters* 116.6 (2016): 064501. 5

# Impact dynamics: heating

Liquid nitrogen on heated sapphire (smooth surface)

## Two types of measurements

• Single drop



• Drop stream



## **Experimental Set-up**



# Results



U=1.3 m/s T=82 K



$$R_{\rm s} = R_{\rm w}$$
 Contact boiling

Slowed down 500x

#### Results Increasing plate temperature

U=1.3 m/s T=92 K



region



Slowed down 500x

# Increasing plate temperature

#### U=1.3 m/s T=102 K



Results



Slowed down 500x



#### Results





# Rescaling

|                           | Nitrogen | Water | Water | Ethanol | FC84 | Acetone | Heptane | Heptane |
|---------------------------|----------|-------|-------|---------|------|---------|---------|---------|
|                           |          |       |       |         |      |         |         |         |
| $T_{sat}$ [K]             | 77       | 373   | 373   | 351     | 351  | 329     | 371     | 371     |
| $T_{tb}$ [K]              | 86       | 493   | 413   | 423     | 403  | 403     | 433     | 433     |
| <i>T</i> <sub>L</sub> [K] | 100      | 573   | 493   | 493     | 473  | 458     | 473     | 483     |
| $T_c$ [K]                 | 126      | 647   | 647   | 516     | 478  | 508     | 540     | 540     |
| $\Theta_{tb}$ [-]         | 0.11     | 0.12  | 0.12  | 0.14    | 0.15 | 0.11    | 0.07    | 0.09    |
|                           |          |       |       |         |      |         |         |         |

Exp Data from multiple referenced papers<sub>4</sub>

#### Impact timescale

How long does the drop take heat?
Impact timescale τ = D/U

Hot plate

• Contact time (non LF) drop sticks until evaporated





# Dominant heat transfer mechanism

 $\dot{Q}_{cond}/\dot{Q}_{evap}$ 

• 
$$\dot{Q}_{cond} \sim A_{wet} k_l \frac{T_{drop} - T_s}{\sqrt{\alpha_l t}}$$

• 
$$\dot{Q}_{evap} \sim L_{cl} \dot{Q}_{cl} \approx L_{cl} 0.2 (T_{drop} - T_s)$$
 [1]

$$\bullet \frac{\dot{Q}_{cond}}{\dot{Q}_{evap}} \sim \frac{A_{wet}}{L_{cl}} \frac{k_l}{0.2\sqrt{\alpha_l t}}$$

[1] S. Herbert, S. Fischer, T. Gambaryan-Roisman, and P. Stephan, Local heat transfer and phase change phenomena during single drop impingement on a hot surface, *IJHMT*, *vol.* 61, 2013

#### Area vs contact line



#### Dominant heat transfer mechanism



# Role of impact target: thermal properties

Is the target isothermal during the impact?

#### Thermal timescale

- 1D Heat equation  $\partial_t T = \alpha \partial_x^2 T$
- Heat flux across the vapour layer  $k_s \partial_x T = h(T T_{sat})$



$$\Theta = \exp\left(\frac{t}{\tau_{th}}\right) \operatorname{erfc}\left(\sqrt{t/\tau_{th}}\right)$$

where 
$$\Theta = \frac{T_{x=0} - T_{sat}}{T_0 - T_{sat}}$$
 and  $\tau_{th} = k_s \rho_s C_{p,s} h^{-2}$ 

## Thermal properties of impactor

- Thermal timescale  $k\rho C_p/h^2 \sim 0.1 \ {\rm s} \ll D/U$
- Isothermal behaviour



MAJ van Limbeek et al. *Vapour cooling of poorly conducting hot substrates increases the dynamic Leidenfrost temperature* Int J Heat&Mass Transfer 97 (2016): 101-109



J.W. Ekins *Experimental Techniques for Low-Temperature Measurements* Oxford University Press 2006<sup>23</sup>

# Droplet stream



# Droplet stream



# Results

U=1.6 m/s



Slowdown 5x



#### Results



#### Varying the velocity Zoom



# Thermal effect of plate changes $T_L$

# Solid properties

| Property                                                    | Sapphire 80K       | Sapphire 300K      | Glass 300K         | units             |
|-------------------------------------------------------------|--------------------|--------------------|--------------------|-------------------|
| Density $\rho_s$                                            | 4000               | 4000               | 2520               | kg/m <sup>3</sup> |
| Specific heat $C_{p,s}$                                     | 100                | 776                | 816                | kJ/kg K           |
| Thermal conductivity $k_s$                                  | 1000               | 32                 | 1                  | W/K m             |
| Thermal diffusivity $\alpha_s = \frac{k_s}{\rho_s c_{p,s}}$ | 1·10 <sup>-3</sup> | 1·10 <sup>-5</sup> | 4·10 <sup>-7</sup> | m²/s              |
| Thermal timescale $	au_{th}$                                | 100                | 15                 | 3                  | ms                |

# Delayed touchdown on glass



T=292°C U=3.8m/s



#### Glass Phase diagram



van Limbeek, Shirota, Sleutel, Prosperetti, Sun and Lohse, IJHMT 2016

# Surface cooling



#### Competition of two timescales

• Impact timescale  $\tau_{imp} =$ 

Drop diameter Impact veloeitlys

represents the contact or residence time of the drop near the surface

• Cooling effects become relevant when  $au_{th} \approx au_{imp}$ which is the case for a glass surface: 0.3 ms  $\approx$ 1 ms

# Micro droplet



T=265°C

T=305°C

U=10 m/s, slowed 20k

# Conclusion/Overview

- We studied the impact of liquid nitrogen drops and obtained the phase diagram for the dynamic Leidenfrost effect
- The high thermal conductivity of the sapphire impact target enables us to measure the temperature of the plate during spray cooling and relate it to the wetting behavior using FTIR imaging.
- A strong correlation between the cooling of the sapphire and the wetting behavior was observed.
- Conductive cooling is stronger than evaporation