Evaporation of A Liquid Nitrogen Droplet in

Superheated Immiscible Liquids

Neville Rebelo, Huayong Zhao*, Francois Nadal, Colin Garner

Wolfson School of Mechanical, Electrical and Manufacturing Engineering
Loughborough University, United Kingdom, LE11 3TU

Email: H.Zhao2@Iboro.ac.uk

Loughborough

Evaporation of Nitrogen Droplets in Superheated Immiscible Liquid : :
7 University

Page 1
Cryogenic Heat and Mass Transfer (CHMT 2019)


mailto:H.Zhao2@lboro.ac.uk

Outline

O O O O

Background and Motivation
Experimental Methodology
Results

Conclusion and future work

Evaporation of Nitrogen Droplets in Superheated Immiscible Liquid
Cryogenic Heat and Mass Transfer (CHMT 2019)

Page 2

Loughborough
7 University



Cryogenic Energy System

Motivation : more sustainable and clean energy system for transportation

Chemical - Mechanical

Gasoline/Diesel : 42-46 MJ/kg
Liquified Natural Gas : 50 MJ/kg

Heat —» Mechanical
Liquid nitrogen (77K — 300K): 0.74 MJ/kg

Electrical » Mechanical Advantage : 1. zero-emission ; 2. efficient in
Lithium-ion battery: 0.32-1.07 MJ/kg  recovering low-grade heat or refrigeration ;

Loughborough
9 University

Page 3 Evaporation of Nitrogen Droplets in Superheated Immiscible Liquid
Cryogenic Heat and Mass Transfer (CHMT 2019)



Liquid nitrogen system — heat and mass transfer

Approach 1: Indirect Injection

Separator

LiN Tank
-196°C

Heat
Exchanger SRR R

Technical requirement : effective
systematic thermal management
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Approach 2 : Direct Injection

H. Clarke et. al (2010)

Technical requirement :

Fast evaporation process
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Experimental Methodology - Setup
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Experimental Methodology — post-processing

{ ' -
¥ . .
J a) Front view b) Side view
Edge detection Ellipse 3D
ST detection P reconstruction

20

100
0

Randomized e T
Sobel / Canny filters Hough Transform Alpha Shape Fitting  * w3

Measured : Virop, Vbubbier Adarop & Apubbie

PgAVbubbiehsg
At-Adrop

: : . 3xV :
= Derived parameter : Equivalent radius r = %, heat flux Q =

Main assumption:
1. Smooth ellipsoid with aspect ratio close to unity (Bo <4 & Re < 9)

2. Increase in the sensible heat in the vapour layer << latent heat during evaporation
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Results —

Tbulk — 294 K
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Fig. Bubble volume (V}) growth for a nitrogen droplet in (a)
Propanol; (b) methanol; (c) Pentane; (d) hexane
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The initial droplet size (vo)
has the dominant effect —
larger droplet lead to more
rapid growth

Other fluid properties, e.g.
viscosity and surface
tension could have minor
but noticeable effect
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Results — Scaling analysis

Assume 1) diffusion-controlled evaporation

104; SEEmeTa e nEeE EEmEmnaaa of the droplet and negligible droplet heating:
10% rc% — r02 —at D?-law
10%¢ O wmethanot I Where 1y - radius of the droplet at time ¢;
A Hexane | isthe initial radius;
101? <& Pentane
g o propanol | Further assume 2) quasi-steady vapour phase;
100 - 4x white-294k 5 3) vapour phase behaves as ideal gas;
: Grey —303 K .
L Black - 313 K 4) vapour pressure and temperature are uniform
107 5) Negligible effect of vapour confinement
10 103 102 107" 10°
T
—1 dVy 1
. . = — = Eqg. (1
Fig. Rescaled experimental data based on Eq. (1) Yo dt I q. (1)
3 p4RT at
. : : Where k = = T ==

Eq. (1) with k' = 4k fits experimental 2 Mp,Pq 5
data well, except for the pentane data — 2k o[ 4 Cp(Tb—Td)]

Pacp hrg

1 - N. Rebelo et al., Evaporation of liquid nitrogen droplets in superheated immiscible liquids, Int. J. Heat Mass Trans., 143, 2019
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Simplified 1D Model

T 1.
ap
I;" | o 2.
,' 3,
\_ | A
Fig. Geometrical configuration used for the model 4.
Each time step (6t):
2 dT 47tr021q
VT =0 - T(r) > q=k,— —»dn=—42-dt
dr hngNz
_p 420, _ PpMn, _4mp Ry 1%

Ryp/ Tp

2 2
= dR, = [:;ndn+ (P +%);—Zdrd]/[(Pl +2) %

Rb(t + St) = Rb(t) + de;Td(t + 5t) = Td(t) + drd
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Other main assumptions:

Negligible droplet heating
Inviscid vapour phase

Quasi-steady temperature profile at each time step

(Pe = %% € [0.2,1.1] so not fully justified)

Negligible convection

20] (Rp 17
— ) o—dr o 0

Ry “Ta T(r) t (ms)

Fig. Pressure due to inertial (P;),

viscous (P,) and capillary (F;)
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Results —

Model vs Experiments

Evaporation of Nitrogen Droplets in Superheated Immiscible Liquid
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Results — Heat flux during evaporation
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_ Pbhygavy

b Ap dt

Normalised using the
droplet surface area:

Ga~25W cm™2

Pool boiling:
gs~ 6.5 W cm™?
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Key Conclusions

1.  Evaporation rate of liquid nitrogen droplets in an immiscible superheated
liquid can be scaled well by the D?- law. The effect of droplet confinement and
mobility requires a higher coefficient (4x) compared to the classic quasi-steady
state isothermal diffusive evaporation process.

2.  Correction for the effect of droplet confinement and mobility can be made by
a simplified 1D quasi-steady state model with an ‘effective thermal
conductivity’ keee = 1.6k,

3. The assumption of quasi-steady state is not fully justified and further
improvement of the model will require a transient multi-dimensional model,
which could be difficult to implement in practical application.

4. The evaporation rate of the liquid nitrogen droplet in a superheated fluid is
limited by the insulation vapour layer. More efficient practical application will
require ways to destabilize the vapour layer.
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Results — Effect of Bulk Liquid Temperature

LN, droplet evaporating in Propanol
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LN, droplet evaporating in methanol

* Higher growth rate in hotter bulk liquid, but the initial droplet size can still be
important, or sometimes dominant, for the growth rate
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