Evaporation of A Liquid Nitrogen Droplet in Superheated Immiscible Liquids

<u>Neville Rebelo</u>, Huayong Zhao*, Francois Nadal, Colin Garner

Wolfson School of Mechanical, Electrical and Manufacturing Engineering

Loughborough University, United Kingdom, LE11 3TU

Email: H.Zhao2@lboro.ac.uk

Outline

- Background and Motivation
- Experimental Methodology
- **Results**
- Conclusion and future work

Cryogenic Energy System

Motivation : more sustainable and clean energy system for transportation

Chemical → Mechanical Gasoline/Diesel : 42-46 MJ/kg Liquified Natural Gas : 50 MJ/kg

Electrical \rightarrow **Mechanical** Lithium-ion battery: 0.32-1.07 MJ/kg Heat \rightarrow Mechanical Liquid nitrogen (77K – 300K): 0.74 MJ/kg

Advantage : 1. zero-emission ; 2. efficient in recovering low-grade heat or refrigeration ;

Liquid nitrogen system – heat and mass transfer

Approach 1: Indirect Injection

Approach 2 : Direct Injection

H. Clarke et. al (2010)

Technical requirement : effective systematic thermal management

Technical requirement :

Fast evaporation process

How?

Experimental Methodology - Setup

N. Rebelo et al., Evaporation of liquid nitrogen droplets in superheated immiscible liquids, Int. J. Heat Mass Trans., 143, 2019

Experimental Methodology – post-processing

<u>Measured</u> : *V*_{drop}, *V*_{bubble}, *A*_{drop} & *A*_{bubble}

 $\Rightarrow \underline{\text{Derived parameter}} : \text{Equivalent radius } r = \frac{3 \times V}{A}, \text{ heat flux } \dot{Q} = \frac{\rho_g \Delta V_{bubble} h_{fg}}{\Delta t.A_{drop}}$

Main assumption:

- 1. Smooth ellipsoid with aspect ratio close to unity (Bo \leq 4 & $Re \leq$ 9)
- 2. Increase in the sensible heat in the vapour layer << latent heat during evaporation

Results – $T_{bulk} = 294 K$

- The initial droplet size (v₀) has the dominant effect – larger droplet lead to more rapid growth
- Other fluid properties, e.g.
 viscosity and surface
 tension could have minor
 but noticeable effect

Fig. Bubble volume (V_b) growth for a nitrogen droplet in (a) Propanol; (b) methanol; (c) Pentane; (d) hexane

Results – Scaling analysis

Fig. Rescaled experimental data based on Eq. (1)

Eq. (1) with $\kappa' = 4\kappa$ fits experimental data well, except for the pentane data

Assume 1) diffusion-controlled evaporation of the droplet and negligible droplet heating:

$$r_d^2 = r_0^2 - \alpha t \qquad D^2 \text{-law}$$

Where r_d - radius of the droplet at time t; r_0 is the initial radius;

Further assume 2) quasi-steady vapour phase;
3) vapour phase behaves as ideal gas;
4) vapour pressure and temperature are uniform
5) Negligible effect of vapour confinement

$$\Rightarrow v_o^{-1} \frac{dV_b}{d\tau} = \kappa; \qquad \qquad \text{Eq. (1)}^1$$

Where
$$\kappa = \frac{3}{2} \frac{\rho_d R \bar{T}}{M_{N_2} P_a}$$
; $\tau = \frac{\alpha t}{r_o^2}$;
 $\alpha = \frac{2k_b}{\rho_d c_p} \ln \left[1 + \frac{c_p (T_b - T_d)}{h_{fg}} \right]$

1 - N. Rebelo et al., Evaporation of liquid nitrogen droplets in superheated immiscible liquids, Int. J. Heat Mass Trans., 143, 2019

Simplified 1D Model

Fig. Geometrical configuration used for the model

Other main assumptions:

- 1. Negligible droplet heating
- 2. Inviscid vapour phase
- 3. Quasi-steady temperature profile at each time step (Pe = $\frac{R_0}{D} \frac{dR_b}{dt} \in [0.2, 1.1]$ so not fully justified)
- 4. Negligible convection

Fig. Pressure due to inertial (P_i) , viscous (P_v) and capillary (P_s)

Results – Model vs Experiments

Page 10

Results – Heat flux during evaporation

$$q_b = \frac{\rho_b h_{fg}}{A_b} \frac{dV_b}{dt}$$

Normalised using the droplet surface area:

 $\overline{q_d}$ ~25 W cm⁻²

Pool boiling: $\bar{q_s} \sim 6.5 \text{ W cm}^{-2}$

Key Conclusions

- 1. Evaporation rate of liquid nitrogen droplets in an immiscible superheated liquid can be scaled well by the D^2 law. The effect of droplet confinement and mobility requires a higher coefficient (4κ) compared to the classic quasi-steady state isothermal diffusive evaporation process.
- 2. Correction for the effect of droplet confinement and mobility can be made by a simplified 1D quasi-steady state model with an 'effective thermal conductivity' $k_{\rm eff} = 1.6k_b$
- 3. The assumption of quasi-steady state is not fully justified and further improvement of the model will require a transient multi-dimensional model, which could be difficult to implement in practical application.
- 4. The evaporation rate of the liquid nitrogen droplet in a superheated fluid is limited by the insulation vapour layer. More efficient practical application will require ways to destabilize the vapour layer.

Results – Effect of Bulk Liquid Temperature

• Higher growth rate in hotter bulk liquid, but the initial droplet size can still be important, or sometimes dominant, for the growth rate

