
Axial Sloshing of Liquid Hydrogen
at low Bond Numbers

with Different Wall Superheat

Michael E. Dreyer

with Peter Friese, Malte Koppe,
Niklas Weber, Sergey Zhemchuzhin

Department of Fluid Mechanics (DFM)
Faculty of Production Engineering

- Mechanical Engineering and Process Engineering -
University of Bremen

ZARM, Am Fallturm 2, 28359 Bremen
michael.dreyer@zarm.uni-bremen.de

Bremen — October 25, 2019



Introduction Reorientation and sloshing

Axial sloshing at low Bond numbers is initiated by a step reduction of the
gravitational (or any other) acceleration to very low values. The Bond
number compares the hydrostatic pressure with the capillary pressure, or
the characteristic length Lc of the container with the capillary length LL or
Laplace length:

Bo =
(ρL − ρG) acL

2
c

σ
=

L2
c

L2
L

(1)

The free surface oscillates around its final equilibrium shape after a
reorientation from the high Bo shape to a constant curvature shape. The
oscillation may also be triggered by disturbances in an otherwise fully
compensated gravity environment. The boundary condition is the
microscopic contact angle θmic which is zero for liquid hydrogen in contact
with Pyrex glass (and other solid as well).

The static interface for Bo → 0 has a hemispherical shape, with the radius
of the container as the sphere radius. A liquid film at the wall exists which
will be discussed later.
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Introduction Reorientation and sloshing

(a) Initial (b) Capillary wave (c) 1st minimum (d) 1st maximum

(e) Initial (f) Capillary wave (g) 1st minimum (h) 1st maximum

Figure 1: R = 26.2 mm top row, R = 20.15 mm bottom row. Show video!

Michael E. Dreyer (University of Bremen) Axial Sloshing with Hot Walls October 25, 2019 3 / 60



Introduction Reorientation and sloshing
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dimensions

Figure 2: (a) Cryostat, (b) Experiment setup: R = 26.2 mm, wall thickness
2.6 mm, (c) R = 20.15 mm, wall thickness 2.2 mm
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Introduction Reorientation and sloshing

Some basics facts about axial sloshing:

1. Bounded free surface oscillations are basic problems of fluid
mechanics. No analytical solutions are available for viscous liquids
which are perfectly wetting, such as cryogenic liquids.

2. Analytical solutions are based on potential flow assumptions (inviscid,
irrotational), small amplitudes, and contact angles 0.2π ≤ θ ≤ 0.8π
(see Bauer and Eidel 19901).

3. Sloshing of any kind has early been investigated by NASA and other
space faring nations. Axial sloshing may occur at the end of thrust
and the beginning of a ballistic phase (see Siegert et al. 19642).

4. Sloshing is a test problem for the validation of computational fluid
dynamics (CFD) tools.

1Bauer H. F. and Eidel W. (1990), Linear liquid oscillations in a cylindrical container
under zero gravity, Appl. Microgravity Tech. II 4, 212-220.

2Siegert C. E., Petrash D. A., and Otto E. W., Time response of liquid-vapor
interface after entering weightlessness, NASA TN D-2458
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Sloshing fundamentals Initial and final surface

The free surface contour is described
by η(r , t). We assume cylindrical
symmetry. The wall point is at

η(R, 0) = HL + LL

[
2 (1− sin θ)

]1/2

(2)
with the Laplace length

LL =

(
σ

ρLgE

)1/2

(3)

Assuming a constant volume of
liquid (no correction for the meniscus
or the film), the low Bo contour has
a hemispherical shape with the
coordinates η(0,∞) = HL − R/3 and
η(R,∞) = HL + 2R/3 for θ = 0.

r

z

HL

R

η(r ,∞)

η(r , 0)

Figure 3: Initial η(r , 0) and final
η(r ,∞) interface contour
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Sloshing fundamentals Wall and center coordinate
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Figure 4: Surface elevation η(r = R, t) (top left) and η(r = 0, t) (bottom) for a
test with R = 26.2 mm (A05: p = 95 005 Pa, Tsat = 20.056 K)
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Sloshing fundamentals Thermophysical properties and dimensionless numbers

Table 1: Thermophysical properties of para-hydrogen p-H2 at normal boiling point
(NBP) conditions p = 101.325 kPa, saturation temperature is Tsat = 20.27 K.
Critical temperature is Tcrit = 32.94 K, and Tsat/Tcrit = 0.62.

liquid gas Pyrex

ρ kg m−3 70.83 1.34 2214
µ 10−6 Pa s 13.50 1.00
ν 10−6 m2 s−1 0.19 0.74

σ 10−3 N m−1 1.91

λ 10−3 W m−1 K−1 100.6 16.7 150.0
cp kJ kg−1 K−1 9.73 12.03 30.60
DT 10−6 m2 s−1 0.15 1.10 2.21

(4LGh) kJ kg−1 446.07

Ka = 1114, Oh(Lc = R = 26.2 mm) = 2× 10−4
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Sloshing fundamentals Thermophysical properties and dimensionless numbers

The Laplace length is

LL = 1.68 mm (15)

The meniscus height at the wall is

η(R, 0) = 2.37 mm (16)

With the step reduction of the Bo
number, the pressure in the wall
region drives the leading edge
upwards. Scaling velocity vc1 is

vc1(
√

2LL) = 108 mm s−1 (17)

We observed leading edge velocities
of (75± 5) mm s−1 for isothermal
experiments, and (50± 5) mm s−1

for superheated walls (t < 0.1 s).

The process is driven by inertia and
leaves a film on the wall. We could
not observe the film in our
experiments, but all numerical
calculations show the film which is
several millimeters thick.
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Sloshing fundamentals Initial wall rise
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Figure 6: Surface elevation η(r = R, t) from a numerical calulation (case A05)
with 100 µm mesh resolution. The leading edge overshoots the final wall height
by far.
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Sloshing fundamentals Modal analysis

Modal analysis under zero gravity for a 90° contact angle predicts (see
Ibrahim 2005, p. 7645) the dispersion relation

ω2
mn =

σ

ρLR3
ε3

mn tanh

(
εmn

HL

R

)
=

σ

ρL
k3

01 tanh (k01HL) (26)

The eigenvalues εmn are the n-th zero points of the derivative of the Bessel
function of first kind and order m. The first axial slosh mode has m = 0
waves around the circumference (symmetric) and n = 1 wave along the
diameter. The liquid height is denoted with HL. The tanh goes to unity
for large arguments, therefor the bottom influence vanishes for a liquid
depth ratio of

HL

R
≥ 0.5 (27)

for the (0,1) mode. The eigenvalue is ε01 = 3.832, and the wave number
is k01R = 3.832. With this, the wavelenght is λ01 = 1.64R.

5Ibrahim R., Liquid Sloshing Dynamics, Cambridge University Press, United
Kingdom, 2005
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Sloshing fundamentals First axial mode

Figure 8: Natural frequencies as a function of contact angle, here ϑ0, from
Ibrahim 2005, p. 767, original data from Bauer and Eidel 1990. The
non-dimensional value for mode (0,1) is ω∗

01(ϑ0/π = 0.5) = 7.36.
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Sloshing fundamentals Reproduction and extrapolation
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Figure 9: Reproduction from Bauer and Eidel 1990 using WebPlotDigitizer and an
extrapolation a polynomial of degree six, giving ω∗

01(0) = 3.
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Sloshing fundamentals Reproduction and extrapolation

No data is available for a contact angle θ = 0. Our guess from an
extrapolation with a polynomial of degree six is ω∗

01 = 3. We will see later
that this fits to our experiments. The corresponding value for the
eigenvalue is ε01 = 2.1.

The term ε01/R can be seen as a wavenumber k01. The wavelength can
be computed from

k01 =
2π

λ01
(28)

to
λ01 =

π

ε01
2R = 3.0R (29)

with a wavelength π/2.1 = 1.5 times the diameter; The smaller the
contact angle (for θ < π/2), the larger the wavelength. We emphasize
here, that the wavelength, and therefor the natural frequency depends on
the contact angle.
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Results Temperature gradient

(a) R = 26.2 mm, isotherm (b) R = 20.15 mm, 80.7 K m−1

Figure 10: Temperature gradient along the wall in z direction (in m). z = 0 is the
position of the sensor Twif
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Results Wall and center coordinate

Figure 11: Isothermal: (Top) Wall line progression for R = 20.15 mm. (Bottom)
Center point progression for R = 20.15 mm (red) and for R = 26.2 mm (black).
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Results Center coordinate

Figure 12: Center point progression of two isothermal experiments with
R = 26.2 mm (black) and R = 20.15 mm (red). z∗c = zc/R and set to initial
liquid height, t∗ = t/tc2.
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Results Wall temperature

(a) Experiment I, 1 (b) Experiment II, 7

Figure 4.4: Wall temperature progression after initial rise for both experiment geometries with twet for every sensor. Some of the temperature
signals are crossing. This is caused by weak (Twv4, I ) or partly detached (Twv1, Twv2, II ) bonded joints and does not necessarily correspond
to the wall temperature. The stair steps in the temperature progression are discretization steps by the analog-digital converter.

14

(a) R = 26.2 mm, 80.7 K m−1(a) Experiment I, 1 (b) Experiment II, 7

Figure 4.4: Wall temperature progression after initial rise for both experiment geometries with twet for every sensor. Some of the temperature
signals are crossing. This is caused by weak (Twv4, I ) or partly detached (Twv1, Twv2, II ) bonded joints and does not necessarily correspond
to the wall temperature. The stair steps in the temperature progression are discretization steps by the analog-digital converter.

14

(b) R = 20.15 mm, 101.4 K m−1

Figure 13: Wall temperature versus time. The crosses mark the arrival of the
contact line at the position of the respective sensors. The delay time is due to
temperature diffusion through the solid.
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Results Oscillation half periods

We need a few definitions before we
continue: time and velocity scales

tc2 =

(
ρLR

3

σ

)1/2

(30)

vc2 =

(
σ

ρLR

)1/2

=
R

tc2
(31)

natural frequency and half period

ω =
π

P
= 2πf (32)

dimensionless form

P∗ =
P

tc2
ω∗ = tc2ω (33)

r

z

HL

R

η(r ,∞)

η(r , 0)

Figure 14: Initial η(r , 0) and final
η(r ,∞) interface contour
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Results Oscillation half periods

Figure 5.3: Axial sloshing frequency of both setups with additional data by Schmitt and Dreyer [17] and Kulev et al. [9, 8]. The left diagram
primarily shows the new data presented in this paper, whereas the right side compares this data with literature values. A higher initial wall
temperature gradient leads to shorter half-periods.

the system is not settled, the sloshing amplitude is not
small and the assumptions of potential flow theory are
violated.

The dimensionless half-periods of experiments II, 1 and
II, 7 are plotted over the half-period count in Figure 5.4.
The dashed line at P ∗ = 1.03 indicates the half-period in
a settled system with an ideal wetting liquid according to
Bauer and Eidel [3]. The odd half-period numbers which
indicate the center point downstrokes, are below the ex-
trapolation, while the upstrokes are above. The first half-
periods show a strong deviation from the extrapolation,
but with a higher count the difference becomes smaller.
Even the last half-periods shows a deviation, so the sys-
tem does not settle completely within the experiment time
of 4.7 s.

The first half-period is approximately 0.65, the sec-
ond 1.5, regardless of the initial wall temperature gradi-
ent. Half-periods 3 and 4 of the isothermal experiment
II, 1 take 0.7 and 1.28, respectively. In the superheated
experiment, these half-periods take approximately 0.1 less
time. The half-periods 5 to 8 show no major differences
between the superheated and the isothermal experiment.
The last half-period 8 takes 0.06 longer for the isothermal
experiment.

The odd half-periods (downstrokes) and their consec-
utive even half-periods (upstrokes) for the actual and the
hydrogen experiments by Schmitt and Dreyer [17] are plot-
ted against the initial wall temperature gradient in Fig-
ures 5.5. In this case, experiments with a temperature
gradient Γ∗ > 0.3 were excluded due to instantaneous nu-
cleate boiling when the liquid spreads over the wall. A

Figure 5.4: Dimensionless half-periods of the isothermal experiment
II, 1 compared to II, 7 with an initial wall temperature gradient of
Γ∗ = 100.9. The deviation in the first two half-periods is small, the
largest deviation is in half-periods 3 and 4. The dashed line indicates
the half-period in a settled state P ∗∞ = 1.03 according to Bauer and
Eidel [3].

17

Figure 15: Dimensionless sloshing half period for two different diameters and
three different fluids (Hydrogen, Argon, Methane). Data [17] from Schmitt and
Dreyer 20156, data [8] from Kulev et al. 20147. Γ∗ is the dimensionless linear wall
temperature gradient.

6Schmitt, S. and Dreyer, M. Cryogenics 72(1), 2015
7Kulev et al., Cryogenics 62, 2014
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Results Oscillation frequency

Figure 16: Dimensionless natural frequency for two different diameters and three
different fluids (Para-Hydrogen8, Argon, Methane9). The x-axis scale is
(4T/4z)∗0 = [T (z = HL + R)]/Tsat at (t = 0).

8Schmitt and Dreyer, Cryogenics 72, 2015
9Kulev et al., Cryogenics 62, 2014
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Results Summary

We summarize our findings so far:

1. The wall superheat does not remain constant during the course of the
test (5 s).

2. The temperature change of the wall can be used to compute the heat
flux, and with some further assumptions the evaporative mass flux.

3. We have set up a single sided model based on the heat conduction in
the wall, applying appropriate boundary conditions at the inner wall
(Dirichlet) and the outer wall (Neumann, no gradient, adiabatic).

We follow the hypothesis that the change in frequency is caused by a
change of the apparent contact angle θapp which is affected by the
evaporative mass flux. I will outline the single-side model to calculate the
wall heat flux and the resulting evaporative mass flux10.

10Friese/Hopfinger/Dreyer, Exp. Thermal Fluid Sci 106, 2019
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Single-sided model Assumptions

Single-sided model

1. Slice the container wall into horizontal discs (here 0.5 mm), adiabatic
in z-direction

2. Solve
∂2TS

∂r2
− 1

DTS

∂TS

∂t
= 0 (34)

and assume 2D instead of 2D rot (wall thickness to radius ratio small
1/10)

3. The inner wall temperature drops from its initial value to the
saturation temperature of the fluid when the liquid meniscus reaches
the respective layer.

4. The outer wall is treated as adiabatic too.

5. The thermophysical properties of the solid are considered as
temperature dependent.

6. Compute the temperature distribution in the solid TS(r , z , t)11

11Baehr/Stephan, Waerme- und Stoffuebertragung, 2013, 2.3.3. Der einseitig
unendlich ausgedehnte Koerper
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Single-sided model Comparison of temperature time series

=t z
z z

u
( )j

j
wet

w,0

L,w (6.3)

The boundary conditions for each particular layer zj read

=
=

T
r

0
r R

S

o (6.4)

= =T r R t t T( , )S i wet sat,0 (6.5)

Both, thermal diffusivity and specific heat capacity are treated
temperature dependent. The thermal diffusivity a T( )S is approximated
by an exponential fit. The specific heat capacity c T( )S is interpolated
using a cubic spline interpolation with one node per Kelvin. The density
is fixed at = 2214 kg/mS

3, all solid thermal properties are based on
data by Eckels [10].

= × + ×a T exp T( ) 13.16 10 m
s

· 0.1083
K

870.5 10 m
sS

6
2

9
2

(6.6)

The thermal properties are computed for each particular layer zj
with its initial temperature T z( )jS,0 and are fixed over time, regardless
the temperature change. The Fourier number Fo is the dimensionless
time in dependence of the actual position r and the thermal diffusivity
aS. is used as dimensionless temperature difference between the initial
temperature T0 and Tsat,0, applied at =r Ri. The position is given by r .

=Fo a t
r R( )

S

i
2 (6.7)

=
T T
T T

sat,0

0 sat,0 (6.8)

=r R r
R R

o

o i (6.9)

According to Baehr and Stephan [2], Eq. (6.10) is a solution of the
one-dimensional transient solid energy balance with a Dirichlet
boundary condition.

=
=

r C µ r µ( , Fo) cos( ) exp( Fo)
i

i i i
1

2

(6.10)

µi are the development coefficients and Ci the characteristic roots.

=µ i(2 1)
2i (6.11)

=
+

C
i

4 ( 1)
(2 1)i

i 1

(6.12)

For the outer wall =r Ro follows

= =
=

r C µ Fo( 0) exp( )
i

i i
1

2

(6.13)

The results of Eq. (6.13) at =z 77 mmf are compared to the sensor
readings of Twv5 in experiment I, 2 in Fig. 6.1. The time series shows a
good agreement in time, when the temperature drops after twet. The
initial temperature deviation is caused by the assumption of a linear
temperature gradient, as shown in Fig. 4.2. The data of the single sided
model shows a stronger decrease than the actual sensor data. This is a
result of the thermal coupling of the sensors, as mentioned in Section
3.2 which is sufficient for quasi-steady state situations but cannot
follow strong transients such as the temperature decrease of the wall
after being wetted by the liquid.

Eq. (6.10) was solved for each layer zj at 100 equidistant points ri in
radial direction, regardless the solid thickness, so the radial spacing
reads

=r R R
100

o i
(6.14)

A temporal discretization of =t 0.001 was chosen. The first ten
terms i1 10 of Eq. (6.10) were solved, obtaining residuals of

< 10 19.
The heat flux from the solid towards the inner part of the cylinder at

each particular layer zj (see Eq. (2.2b)) reads

=q
T
rj

j

R
S

i (6.15)

The liquid is initially at saturation temperature, and we assume that
it cannot be superheated. Therefore, the liquid film at the wall has no
thermal resistance, and the whole heat flux leads to evaporation on the

Fig. 5.6. Linear coefficients i of the linear least-squares fits of every particular
half-period over the initial wall temperature gradient. A high absolute value
indicates a strong dependence on the initial wall temperature.

Fig. 6.1. Comparison of the temperature readings ofTwv5 at =z 77 mmf and the
computed wall temperatures outside at the same elevation for experiment I,2.
In this case =t 1.05 swet . The point of temperature drop agrees, but the mea-
sured temperature decline is slower than the computed due to the thermal
coupling of the sensors.

P.S. Friese, et al. Experimental Thermal and Fluid Science 106 (2019) 100–118

114

Figure 17: Temperature reading of a sensor (solid) at 37 mm above the initial
liquid surface in comparison with the analytical solution (dash-dotted). The
leading edge reaches this height after 1.05 s. A contact resistance exits between
the sensor and the wall.
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Single-sided model Temperature distribution and wall heat flux

free liquid surface. This involves the latent heat of evaporation hV
which is in the range of =h 446.6 kJ/kgV at =T 20 K. This property is
treated temperature dependent and interpolated by a cubic spline with
one node per 1 K temperature difference (based on data by NIST [19]).
The phase change mass flux per unit area J reads

=J
q
hj

j

V (6.16)

The phase change mass per unit area mA is the evaporated liquid
mass in the interval t t[ , ]1 2 .

=m J tdj
A

t

t
j

1

2

(6.17)

The computed time dependent temperature field and the re-
sulting heat flux q for experiment I, 2 as an example, is presented in
Fig. 6.2 at three particular time steps. The rising leading edge of the
meniscus causes a temperature decrease at the wall surface and
therefore a heat flux into the liquid. The heat flux has a peak at the
actual position of the leading edge, right after wetting. A higher

initial wall temperature gradient causes a higher peak heat flux into
the liquid.

The heat flux progression over time at the elevation =z R2 /3i is
presented in Fig. 6.3. There is a peak heat flux of =q 287.2 W/m2 at twet,
followed by a sharp decline to 39.2 W/m2 at the first minimum. A
logarithmic decrease follows down to = =q z R t( 2/3 , ) 1.3 W/mi min,3

2.
According to the experimental data, the sloshing half-periods de-

crease with a higher wall temperature. As stated by Stephan and
Hammer [32], the evaporation at the contact line area increases the
apparent contact angle. The extrapolation of the data from Bauer and
Eidel [3] implies shorter half-periods at higher contact angles. We
suppose that the evaporation at the wall causes an increased apparent
contact angle and therefore a decrease in the sloshing half-period.

In order to compare the evaporation mass per unit area during every
particular half-period, the characteristic elevation =z R2/3 i was
chosen. This is the steady state position of a perfectly wetting liquid
under microgravity, corresponding to Eq. (2.10). The evaporation mass
per unit area is computed for every half-period Pi according to Eq.
(6.17) for m half-periods downwards and n upwards.

= =m J z R t2
3

dP
A t

0 i1
min,1

(6.18a)

= =

=
+

+ ( )m J z R t

i m

d

for 1, 2, ...,( 1)
P
A

t
t 2

3 ii i
i

2 1 max,
min, 1

(6.18b)

= =

=
( )m J z R t

i n

d

for 1, 2, ...,
P
A

t
t 2

3 ii i
i

2 min,
max,

(6.18c)

A longer half-period as well as a higher heat flux leads to an
increased mass flux, and therefore to an increased evaporation
mass. Since the heat flux and the corresponding mass flux is com-
puted with the initial wall temperature distribution, this tempera-
ture has a direct influence on the evaporation mass during a par-
ticular half-period.

The phase change masses for every particular half-period mPi
A are

plotted over the half-period P in Fig. 6.4. Again, experiments with
> 0.3 are excluded due to the instant occurrence of nucleate

boiling.
The half-period =P 1.03 as shown in Eq. (2.15) is depicted as a

dashed line. The evaporation mass for the first half-period is up to
= ×m 83.0 10 kg/mP

A 6 2
1 . The phase change mass of the second half-

period is significantly higher with up to ×183.0 10 kg/m6 2. The heat
and mass flux decreases in a logarithmic scale, however mP

A
2 is larger

than mP
A
1 , since the flux starts only right after twet. The following half-

periods are given in Table 8.
According to Eq. (6.18c), a shorter half-period cuts the

Fig. 6.3. Heat flux from solid to liquid over time of experiment I, 2 at the
elevation =z R2 /3i . The initial peak at =t 0.48 swet is followed by a logarithmic
decline.

(a) t = 0.25 s (b) t = 0.5 s (c) t = 1.47 s

Fig. 6.2. Computed temperature distribution in the solid, the height dependent heat flux from solid to liquid and the temperature profile at =z R2 /3i for experiment
I,2 at particular time frames. The heat flux has its maximum at the leading edge of the meniscus and declines afterwards. The temperature at =z R2 /3i stays constant
until =t 0.47 swet .
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Figure 18: Temperature distribution, height dependent heat flux from the solid to
the liquid, and the temperature profile at z = 2R/3. The leading edge causes the
highest heat flux.
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Single-sided model Wall heat flux at fixed height

free liquid surface. This involves the latent heat of evaporation hV
which is in the range of =h 446.6 kJ/kgV at =T 20 K. This property is
treated temperature dependent and interpolated by a cubic spline with
one node per 1 K temperature difference (based on data by NIST [19]).
The phase change mass flux per unit area J reads

=J
q
hj

j

V (6.16)

The phase change mass per unit area mA is the evaporated liquid
mass in the interval t t[ , ]1 2 .

=m J tdj
A

t

t
j

1

2

(6.17)

The computed time dependent temperature field and the re-
sulting heat flux q for experiment I, 2 as an example, is presented in
Fig. 6.2 at three particular time steps. The rising leading edge of the
meniscus causes a temperature decrease at the wall surface and
therefore a heat flux into the liquid. The heat flux has a peak at the
actual position of the leading edge, right after wetting. A higher

initial wall temperature gradient causes a higher peak heat flux into
the liquid.

The heat flux progression over time at the elevation =z R2 /3i is
presented in Fig. 6.3. There is a peak heat flux of =q 287.2 W/m2 at twet,
followed by a sharp decline to 39.2 W/m2 at the first minimum. A
logarithmic decrease follows down to = =q z R t( 2/3 , ) 1.3 W/mi min,3

2.
According to the experimental data, the sloshing half-periods de-

crease with a higher wall temperature. As stated by Stephan and
Hammer [32], the evaporation at the contact line area increases the
apparent contact angle. The extrapolation of the data from Bauer and
Eidel [3] implies shorter half-periods at higher contact angles. We
suppose that the evaporation at the wall causes an increased apparent
contact angle and therefore a decrease in the sloshing half-period.

In order to compare the evaporation mass per unit area during every
particular half-period, the characteristic elevation =z R2/3 i was
chosen. This is the steady state position of a perfectly wetting liquid
under microgravity, corresponding to Eq. (2.10). The evaporation mass
per unit area is computed for every half-period Pi according to Eq.
(6.17) for m half-periods downwards and n upwards.

= =m J z R t2
3

dP
A t

0 i1
min,1

(6.18a)

= =

=
+

+ ( )m J z R t

i m

d

for 1, 2, ...,( 1)
P
A

t
t 2

3 ii i
i

2 1 max,
min, 1

(6.18b)

= =

=
( )m J z R t

i n

d

for 1, 2, ...,
P
A

t
t 2

3 ii i
i

2 min,
max,

(6.18c)

A longer half-period as well as a higher heat flux leads to an
increased mass flux, and therefore to an increased evaporation
mass. Since the heat flux and the corresponding mass flux is com-
puted with the initial wall temperature distribution, this tempera-
ture has a direct influence on the evaporation mass during a par-
ticular half-period.

The phase change masses for every particular half-period mPi
A are

plotted over the half-period P in Fig. 6.4. Again, experiments with
> 0.3 are excluded due to the instant occurrence of nucleate

boiling.
The half-period =P 1.03 as shown in Eq. (2.15) is depicted as a

dashed line. The evaporation mass for the first half-period is up to
= ×m 83.0 10 kg/mP

A 6 2
1 . The phase change mass of the second half-

period is significantly higher with up to ×183.0 10 kg/m6 2. The heat
and mass flux decreases in a logarithmic scale, however mP

A
2 is larger

than mP
A
1 , since the flux starts only right after twet. The following half-

periods are given in Table 8.
According to Eq. (6.18c), a shorter half-period cuts the

Fig. 6.3. Heat flux from solid to liquid over time of experiment I, 2 at the
elevation =z R2 /3i . The initial peak at =t 0.48 swet is followed by a logarithmic
decline.

(a) t = 0.25 s (b) t = 0.5 s (c) t = 1.47 s

Fig. 6.2. Computed temperature distribution in the solid, the height dependent heat flux from solid to liquid and the temperature profile at =z R2 /3i for experiment
I,2 at particular time frames. The heat flux has its maximum at the leading edge of the meniscus and declines afterwards. The temperature at =z R2 /3i stays constant
until =t 0.47 swet .
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Figure 19: Wall heat flux versus time for z = 2R/3. The initial peak at 0.48 s is
followed by an exponential decline.
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Single-sided model Evaporative mass flux

Further assumptions:

1. The liquid is at saturation temperature and cannot be superheated.

2. The heat flux leads to evaporation only:

ṁ =
q̇

(4LGh)
(35)

3. The evaporated mass per unit area is

m =

∫ t2

t1

ṁ dt (36)

4. The time intervals are chosen from one extremum of the center point
to the next. Down in the center 5 corresponds to up at the wall
(advancing contact line), and up in the center 4 corresponds to down
at the wall (receding contact line).

5. The location for the analysis is at 2R/3 above the initial surface, thus
the locus of the final equilibrium contact line, if any.
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Single-sided model Evaporative mass flux

integration limits and therefore decreases the evaporation mass of
the half-period. Two competing parameters on the evaporation
masses mPi

A exist: the duration of the half-period and the evaporation
mass flux. If there is no influence of the evaporation mass on the half-
period, there would be a proportional dependence between Pi and
mPi

A. Except for the half-period P4, no clear trend is visible in Fig. 6.4
and the two parameters are balanced. A reciprocal dependence of the
evaporation mass on the half-period exists for P4. The shortest
durations show the highest evaporation masses. This half-period also
shows the highest dependence on the initial wall temperature gra-
dient .

It was shown that the wall cools down within a short time after
being wetted, and the heat flux into the liquid decreases by up to
three orders of magnitude within the experiment time of 4.7 s. The
single sided model gives the relation between the dynamic wall
temperature and liquid evaporation. The half-period which shows
the highest dependency on the initial wall temperature gradient,

also shows the highest dependency on the evaporation. This is an
evidence for the reciprocal influence of the evaporation on the
sloshing half-period time.

7. Conclusion and outlook

Fifteen experiments were conducted in total, six with a radius of
=R 26.20 mmi , nine with =R 20.15 mmi . The focus was to investigate

the influence of a superheated wall on the reorientation and axial
sloshing of the free liquid surface. Different wall temperature gradients
of up to = 101.4 K/m were applied prior to the microgravity phase of
4.7 s.

In contrast to previous observations of one co-author, a temperature
dependent initial rise velocity at the wall could be detected. A super-
heated wall inhibits the liquid rise and leads to lower velocities.

The mean axial sloshing half-period P̄ has been compared to lit-
erature and theoretical data. Good agreement with the extrapolated

Fig. 6.4. Evaporation masses mPi
A during the particular sloshing half-periods of all performed hydrogen experiments with < 0.3. The dashed line indicates the

duration for a settled ideal wetting liquid =P 1.03. Only for mP
A
4 there is a reciprocal dependence on the period duration. P4 also is the half-period with the highest

dependency on the initial wall temperature gradient .
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Figure 20: Evaporated mass per unit area for the first maximum to the second
minimum 5 (P3), and the second minimum to the second maximum 4 (P4).
The near wall region of the interface moves upwards for P3 (advancing) and
downwards for P4 receding.
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Single-sided model Results

1. The periods of the down strokes are always smaller (higher frequency)
than the periods of the upstrokes.

2. No clear dependence between the half period and the phase change
mass per unit area could be found.

3. The phase change masses are similar, but the time intervals are
different. This means that the phase change mass flux is higher for
the down strokes of the center point, or the upstrokes of the contact
line region.

4. We are not able to define a mass transfer interface in order to give
the evaporated mass. Numerical calculations are needed to resolve
this issue.

5. The pressure increase in the experiment is too small to compare
evaporation rates from the test with the model. This is true for
hydrogen only. Methane shows a clear correlation between the
direction of the contact line region motion and rate of pressure
increase12.

12Kulev et al., Cryogenics 62, 2014
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