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Cryogenics as rocket fuel

Phase change and liquid 
position of importance

Main engine cut off leads to a 
step reduction of accelaration

Axial sloshing might occur

Numerical simulations to 
investigate

Validate against experiments
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Introduction
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(Kulev et al., Cryogenics 62 48-59, 2014)



Reorientation of liquid is 
observed

4.7 s of compensated 
gravity

Glass cylinder is partially 
filled with liquid methane

Pipes and tank filled with 
gaseous methane

Pressure, temperature & 
video are recorded
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Experimental Setup
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Heaters at top and 
bottom

Bulk liquid heated to 
saturation condition

Axial temperature 
gradient in wall
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Experimental Setup
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Reorientation from:

high Bo low Bo

Damped oscillation 
of center point

Exact absolute 
position unclear

Frequency 
measurable

Wetting of wall
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Experimental Results
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Wall temperature decreases after 
contact with liquid methane
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Experimental Results
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Increase of vapour pressure
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Experimental Results
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In-house development of OpenFOAM VoF
multiphase solver 

Extended by:

Weakly compressible treatment of gas phase

Phase change model

Conjugated heat transfer model
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Numerical Tools
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Wedge mesh

Solid & fluid region

Conjugated heat transfer 

Linear temperature gradient 
in vapour and wall

Fluid at rest

Rise at wall from prev. 
simulation

Connecting volume modelled 
on top of glass
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Numerical Setup
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Damped oscillation 

of interface reproduced
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Numerical Results
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Numerical Results
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Experiment Numeric

Frequency 4.689 Hz 4.217 Hz



Wall rise overshoots equilibrium
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Numerical Results
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Liquid film at wall is formed
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Numerical Results
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Heat transfer wall from 
wall to liquid observable

Film is influential for 
thermal condition of 
wall
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Numerical Results
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Heat transfer from the wall to the fluid 
gets overestimated
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Numerical Results
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Condensation and 
evaporation occur

Evaporation at 
wall

Condensation in 
center

Rising pressure 
subcools bulk

Page 16

Numerical Results
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Evaporation outweighs condensation
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Numerical Results
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Pressure is overestimated 

Evaporation likely overestimated
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Numerical Results

CHMT 2019



Phase change most significant influence on 
pressure
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Numerical Results
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Interface position corresponds to phase 
change
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Numerical Results
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Observed phenomena could be reproduced

Numerical data agrees with experimental data

Interface position strongly linked to heat and 
mass transfer in liquid and vapour
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Conclusion
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Thank you for your attention!

This work is funded by the German Aerospace Center (DLR 
e.V.) under grant number 50 RL 1920.
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Conservation of mass:
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Numerical Tools – Governing Equations
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Conservation of momentum:

Conservation of energy:



Page 24

Gradient based phase change model

CHMT

Energy balance

Heat fluxes

Temperature gradient (interface)
Interface temperature:

dispersion force negligible

influence of curvature on local
sat. cond. negligible


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Conjugate Heat Transfer: Validation
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Fluid Mesh Solid Mesh

Dirichlet condition:

Neumann condition:
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