NUMERICAL INVESTIGATION OF NON-ISOTHERMAL AXIAL SLOSHING OF LIQUID METHANE

N. WEBER, M.E. DREYER

niklas.weber@zarm.uni-bremen.de

04.11.2019 CHMT 2019

CENTER OF APPLIED SPACE TECHNOLOGY AND MICROGRAVITY

Introduction

- Cryogenics as rocket fuel
 - Phase change and liquid position of importance
- Main engine cut off leads to a step reduction of accelaration
- Axial sloshing might occur
 - Numerical simulations to investigate
 - Validate against experiments
 (Kulev et al., Cryogenics 62 48-59, 2014)

Experimental Setup

- Reorientation of liquid is observed
- 4.7 s of compensated gravity
- Glass cylinder is partially filled with liquid methane
- Pipes and tank filled with gaseous methane
- Pressure, temperature & video are recorded

Experimental Setup

Radius	Fill height	P_0	$T_{sat}\left(P_{0} ight)$
$26.2\mathrm{mm}$	$42\mathrm{mm}$	$47771.5\mathrm{Pa}$	$103.26\mathrm{K}$

- Heaters at top and bottom
 - Bulk liquid heated to saturation condition
 - Axial temperature gradient in wall

Experimental Results

- Reorientation from: high Bo \Rightarrow low Bo
- Damped oscillation of center point
 - Exact absolute position unclear
 - Frequency
 measurable
- Wetting of wall

Experimental Results

Wall temperature decreases after contact with liquid methane

Experimental Results

Increase of vapour pressure

Numerical Tools

- In-house development of OpenFOAM VoF multiphase solver
- Extended by:
 - Weakly compressible treatment of gas phase
 - Phase change model
 - Conjugated heat transfer model

Numerical Setup

- Wedge mesh
- Solid & fluid region
- Conjugated heat transfer
- Linear temperature gradient in vapour and wall
- Fluid at rest
- Rise at wall from prev.
 simulation
- Connecting volume modelled on top of glass

Page 11 CHMT 2019

Wall rise overshoots equilibrium

Page 12 CHMT 2019

Liquid film at wall is formed

time: 0.01 s Numerical Results

 Heat transfer wall from wall to liquid observable

۸Y

 Film is influential for thermal condition of wall

Heat transfer from the wall to the fluid gets overestimated

Page 15 CHMT 2019

- Condensation and evaporation occur
- Evaporation at wall
- Condensation in center
 - Rising pressure subcools bulk

۸Y

Evaporation outweighs condensation

- Pressure is overestimated
- Evaporation likely overestimated

Phase change most significant influence on pressure

Interface position corresponds to phase change

Conclusion

- Observed phenomena could be reproduced
- Numerical data agrees with experimental data
- Interface position strongly linked to heat and mass transfer in liquid and vapour

Thank you for your attention!

This work is funded by the German Aerospace Center (DLR e.V.) under grant number 50 RL 1920.

Numerical Tools – Governing Equations

Conservation of mass:

$$\begin{aligned} \frac{\partial \alpha}{\partial t} &+ \frac{\partial \alpha u_j}{\partial x_j} = \frac{S_l}{\rho_l} \\ (1-\alpha) \frac{1}{\beta_2} \frac{\partial p}{\partial t} - (1-\alpha) \frac{\beta_1}{\beta_2} \frac{\partial T}{\partial t} + \frac{\partial \rho_v \left(1-\alpha\right)}{\partial t} + \frac{\partial \rho_v \left(1-\alpha\right) u_j}{\partial x_j} = S_v \end{aligned}$$

- Conservation of momentum: $\frac{\partial \rho u_i}{\partial t} + \frac{\partial \rho u_i u_j}{\partial x_i} = \mu \nabla^2 \mathbf{u} - \frac{\partial p}{\partial x_i} + \rho g_i + f_{\sigma,i}$
- Conservation of energy:

$$\rho\left(\frac{\partial h}{\partial t} + u_j\frac{\partial h}{\partial x_j}\right) = -\left(\nabla\cdot\mathbf{q}\right) + \left(\frac{\partial p}{\partial t} + u_j\frac{\partial p}{\partial x_j}\right) + S_{pc}$$

Gradient based phase change model

Energy balance

 $\dot{m}h_{\rm lv} = q_{\rm l\to int} + q_{\rm v\to int},$

 $\frac{\text{Heat fluxes}}{q_{1 \to \text{int}} = k_1 \nabla_{\text{int},1} T}$ $q_{v \to \text{int}} = k_v \nabla_{\text{int},v} T$

Temperature gradient (interface)

$$\nabla_{\rm int,l} T = \sum_{i} w_i \frac{T_i - T_{\rm sat}}{d_i}$$

$$w_i = \frac{\cos \alpha_i}{\sum_j \cos \alpha_j} \qquad \cos \alpha_i = \frac{(\mathbf{x}_i - \mathbf{x}_{int}) \cdot \mathbf{n}_{int}}{\left| (\mathbf{x}_i - \mathbf{x}_{int}) \right|}$$

Interface temperature:

- dispersion force negligible
- influence of curvature on local sat. cond. negligible

$$\rightarrow T_{\rm int} = T_{\rm sat} \left(p_0 \right)$$

Page 24 CHMT

Conjugate Heat Transfer: Validation

Page 25 CHMT