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1. Problem Definition

Single liquid droplet in quiescent, infinite gaseous medium _
Assumptions:

Spherical droplet

Microgravity = symmetric

Local phase equilibrium at droplet surface
Thin phase transition zone

Soret/ Dufour effect neglected

Radiative heat transfer neglected
Incompressible liquid

Ideal gas mixture

Pure conduction within liquid (no convection)
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2. Governing Equations
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3. Modelling Procedure

Inputs

Derived Constants

Dimensionless Fluid

Properties:

MaEerFrr 5S¢ = U /T
_ 1w __ CpaTBp

Le = Cpooloo” Ja = L

Ya = CpA/CvA , €= My/Mp
Cor = CpA/Cpoo ’

Pr = Po/P1, Cr = CpA/Cl
Ar = Ao /4

Dimensionless Boundary
Conditions
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* Numerical model

* Finite element
method

e Spatial and temporal

discretisation
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4. Current Droplet Evaporation Understanding — Quasi-steady Solution & Liquid Phase

Transients

Droplet Cooling

Heating
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“Wet bulb” T = TQS
06+
d? Law
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Droplet

Cooling Heating
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Dimensionless surface temperature
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Liquid heating/ cooling introduces well known

0
Full Quasi-Stead Sy —=0
Q y (@) ot transients and deviations from d2 Law

Analytical solution;

d a?
F = —Zpr ln(l + BM) 1
Quasi-steady evaporation time Tos = 2p- In(1+Bpy)
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5. Can we take a Steady Gas Phase

for Granted?

Quasi-steady Dimensionless Temperature Profile
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Inputs:

Le = 1.26, Ja = 0.308
Y4 = 1.33, ¢ = 0.622,

cpr = 1.84, p = 0.0012,
¢, = 0.446,4, = 0.042
T,, = 0.785,8 = 0.993

Derived constants:
Br = 0.0063
By, = 0.0043
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Inputs:
Le = 1.02, Ja = 0.403
Ya =140, =0.88,

cpr = 1.03, p = 0.0014,

¢, =0.518,1, = 0.167
T,. = 3.88,8 = 0.233

Derived constants:
By = 1.162
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Inputs:
Le = 1.02, Ja = 1.06
Ya =140, =0.88,

cpr = 1.03, p = 0.0287,

¢, = 0.518,1, = 0.167
T, =2.60,5 =0.233

Derived constants:
Br =1.712
By = 1.702
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7. Characterising the Gas Phase Transients

Droplet radius? vs time, N2/Air @ 300K/20bar

Two transient regimes identified

‘Start of life’ Transient

‘End of life’ Transient

* Due to establishing the fields
around the droplet

» Effectis large if mass/energy
required to establish QS fields is
comparable to that available
within droplet

* Initial condition dependent

* Due to History Dependence of
evaporation process

* Early stages of evaporation cool
and partially saturate the region
around droplet

* |ts existence is independent of
initial conditions

Quantified by:
11 1

€soL =
11,08

Quantified by:

€poL =
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9. Case Study Example — LN, Evaporating in Air

For given Fluids, Pooﬁ - Py ﬁ Ja ﬁ T,, & — netincrease in transient effects

Tooﬁ - pr@ Ja — T, ﬁ — only small net effect on transients

24% deviation from d? Law
13% deviation from d? Law °
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10. Conclusions

1. A new fully transient droplet evaporation model has been developed.

I”

2. The model recovers d? law under “normal” conditions
3. The model predicts two transient effects which act in opposing directions;
a) Evaporation rate is increased during early stages of evaporation as surrounding gas field is established — this is
sensitive to initial conditions so experimental validation would be challenging
b) Evaporation rate is decreased during late stages of evaporation due to a region of low temperature and high
vapour concentration around the droplet (self-insulation).

4. The gas phase transient effects manifest under high p, , Ja , and T,,.

5. Fluids with low boiling points are more susceptible to simultaneously high p, and T,,.

6. For a given fluid combination, the transient effects manifest under high pressures.

7. Neglecting the gas phase transients can account for a ~¥20% error in evaporation rate predictions. Errors in excess

of this value can occur at even higher pressures towards the critical pressure, where the physical assumptions
become questionable.
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