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Cryogenics for the HL-LHC project

“CRAB" CAVITIES
8 superconducting “crab”™
cavities for each of the ATLAS
and CMS experiments to tilt the,
beams before collision:

CIVIL ENGINEERING
2 new caverns and two new 300-metre
service galleries, two new large shafts;
10 new technical buildings on surface in P1 and P5

BENDING MAGNETS

2 pairs of shorter and more
powerful dipole bending magnets
to free up space for the new

(ATLAS and CMS) collimators.

FOCUSING MAGNETS
12 more powerful quadrupole magnets
for each of the ATLAS and CMS
experiments, designed to increase the
concentration of the beams before
collisions.

CRYOGENICS

2 new large 1.9 K helium refrigerators
for HL-LHC near ATLAS and CMS

COLLIMATORS

15 to 20 new collimators and 60 replacement
collimators to reinforce machine protection.

SUPERCONDUCTING LINKS
Electrical transmission lines based on a
high-temperature superconductor to carry
current to the magnets from the new service
galleries to the LHC tunnel.

(A. Perin)
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The Inner Triplet String project

60 m long string of magnets
He Il bath at 1.3 bar and 1.8 K
Average mass -> 2000 kg/m
LHe content -> 27 I/m

Heat load to magnets -> 1.3 kW

SM18 2020-2022

CHMT2019
November 5t,2019

IT String assembly in SM18
(CERN’s main cryogenic test facility)

HL-LHCIT STRING
The validation of the

collective behavior

of the svstem components
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Operation modes

Cool down in max 15 days using existing SM18 cryogenic infrastructure
1. From 300 Kto4.5K
2. Magnet filling by condensation
3. From45Kto 18K

= Steady state operation

= Current ramping of the magnets

» Maximum heat load test (removal of 500 W)

= Magnet quench

= Quench recovery in max 12 hours to limit the duration of the test program

= Warm Up
1. Magnet empting
2. From 5 Kto 300 K

CHMT2019 G. Rolando
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IT String components

Thermal shield and
beam screen circuits
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Cryogenic Distribution System — Part 1

Line B — low pressure pumping

Line C — SC He supply 4.5 K LHe inlet flow sub-
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Cryogenic Distribution System — Part 2
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Cool down from 300 K to 1.8 K

LN, pre-cooling is used for the cool down of the LHC.
Is LN2 pre-cooling required to meet the IT String target cool down
time of 15 days?

C{RW CHMT2019 G. Rolando
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Cool down from 300 Kto 4.5 K

HL-LHC IT String SQXL Operation Modes - Magnet cool down 300 - 93 K
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Cool down from 300 Kto 4.5 K

Temperature during cool down

350

300

e Cold mass

g 250
Q
5 200 * GHe
2
o
2 150
€
()
= 100

50

0

0 50 100 150 200 250

Time (h
me () (O. Duran Lucas)

= Cool down time from 300 K to 4.5 K is 8.5 days, without LN2 pre-cooling

= Max temperature difference between GHe flow and cold mass is 23 K

» important for Nb;Sn magnets!
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Magnet filling by condensation

GHe in cryostat is liquefied by pumping, while the cryostat is filled

Cryostat volume is 1.5 m3

Available LHe mass flow is 25 g/s

Available pumping capacity is 18 g/s at 30 mbar

MGHe =
] - ==
p = 1.3 bar .
1. Initial state [ T=45k H~< MgGHe
i p=1.3bar GHe
- T=45K .
mpumping > p=30mbar:T=20K 3——)- mpumping
2. Condensing & filling — Milling

C{RW CHMT2019 G. Rolando

TE-CRG

X  November 5", 2019



Optimization of magnet filling
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= Magnet filling requires 2 h
=  Optimal flow repartition is 5 g/s for pumping and 20 g/s for filling

= Optimal mass flow repartition is independent from initial LHe level in cryostat
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Cool down from4.5Kto 1.8 K

Available pumping speed reduces from 18 g/s at 30 mbar in bayonet HX to 6 g/s at 10 mbar

i
Mpumoing > > M -
T Bl T
p=1.3bar

T=18K < mrefilling

» Cool down time from 4.5K to 1.8 Kis 2.1 hours
= Filling LHe mass flow required during cool down to 1.8 K'is 6.6 g/s
» Overall LHe mass flow during cool down from 4.5 K to 1.8 K is lower than cold box liquefaction

capacity of 25 g/s

Overall cool down time of HL-LHC IT String from 300 K to 1.8 K is
well below 15 days
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Quench

How much helium will be expelled from the cryostat?
What is the temperature of the helium?
Will there be any liquid to boost the quench recovery?

C{RW CHMT2019 G. Rolando
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The HL-LHC IT String quench program

A magnet quench is the transition from the superconducting to the normal conducting state.
The energy stored in the magnetic field is dissipated into the cables and released into the cold mass.

Quench test program

Name Current Energy [MJ] [ Number

Low 0.1 % Lngpins) 0.4 69
Medim | 0.4 % Lo 6.3 51
High 0.75 % Liomina 220 51
Nominal Loominal 381 20

The quench relief system includes all the components necessary to accommodate the quench
energy in the cryogenic system without exceeding the design parameters of the system.

Buffer volumes are integrated into the cryogenic system to accommodate the quench energy:
» cold buffers maintained at cryogenic temperatures during operation;
» warm buffers at ambient temperature.

The cold quench buffer is used to recuperate cold He during a quench to speed up quench
recovery by boosting the cold box.
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Heat flow during a quench

= Input for quench analysis is the heat
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1D-thermohydraulic dynamic model - EcosimPro

CRYOLIB is a EcosimPro library developed at CERN of cryogenic components for thermodydraulic
network systems.

» Cryostat: single volume (1.5 m3 Helium and 84.2 tons metal) with heat source

= Quench relief valve (QRV): Kv 30, opens at 17 bar, fully open at 20 bar

= Line D: two pipe components with a total volume of about 2 m3 and total length of 90 m
= Cold buffer: different volumes (optional)

= Control valve to warm buffer (CV_WB): opening at 13 bar

= Recovery line: > 100 m non-insulated pipe (atmospheric heating)

=  Warm buffer: 80 m3 single volume

‘ QRV_Opening
o0

®—o[Emre

CV_WB_Opening

RecowerylLine

EYY3

. WarmQuenchBuffer
Cryostat (A. Wanninger)
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Dynamic quench simulation results
The cryogenic system following a 39.1 MJ quench:
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Conclusions

Heat and mass transfer analysis for the design of the Proximity Cryogenics for the IT String:

= Cool down

= Quench analyses

= Quench recovery strategy

=  Warm quench buffer minimum temperature following a quench

=  Warm-up time and heater power
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Cryogenic parameters

] Nominal Operational | Maximum
Line l;:: Pressure Temperature | Flow Rate
[bar] [K] [2/s]
B | DN100O | 0.010-0.016 4.5 24
C DN40 4 4.6 25
D DNa3 1.3 20 5800
Es DN25 19 50 23
Ex DN25 15 50 23
Fu DN25 18 75 23

CE/RW CHMT2019
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N 7%

Cool down from 300 Kto 4.5 K

Cool down time from 300 K to 4.5 K
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Conclusions:

Cool down time from 300 K to 45 K is 8.5
days

Max temperature difference between GHe
flow and cold mass is 23 K — important for
Nb;Sn magnets!

No need of LN, pre-cooling
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10,00

M a n et fi I I i n 9,00 Condensing
g g 800 Refilling

7,00
. . . . = 6'00
= GHe in cryostat is liquefied by = 5,00
pumping, while the cryostat is filled E 4o
= Cryostat volume is 1.5 m3 00
2,00
» Available LHe mass flow is 25 g/s 1,00

= Available pumping capacity is 18 g/s A . o 5 20

at 30 mbar

Pumping mass flow (g/s)

Vcryostat * Psat GHe @ 1.3 bar * L@ 1.3 bar ° (1 - %cryostat initial filling)

tliquefaction -

mpumping : L@ 30 mbar * (1 - %flash)

Vcryostat * Psat LHe @ 1.3 bar * L@ 1.3 bar — Minitial LHe in cryostat — Minitial GHe in cryostat

Lrilling =
g .
Megilling

Conclusions:

= Magnet filling requires 2 h
= Optimal flow repartition is 5 g/s for pumping and 20 g/s for filling
= Optimal mass flow repartition is independent from initial LHe level in cryostat

CHMT2019 G. Rolando
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Cool down from4.5Kto 1.8 K

Available pumping speed reduces from 18 g/s at 30 mbar in bayonet HX to 6 g/s at 10 mbar

Mpye * AHye a5k —1.9k + Meotd mass * AHssask —19k

Leool down = .
mpumping : L@ pressure bayonet HX * (1 - %flash)

Conclusions:
= Cool down time from 4.5K to 1.8 Kis 2.1 hours
» Filling LHe mass flow required during cool down to 1.8 K'is 6.6 g/s

» Overall LHe mass flow during cool down from 4.5 K to 1.8 K is lower than cold box liquefaction
capacity of 25 g/s

Overall cool down time of HL-LHC IT String from 300 K to 1.9K is
well below 15 days
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Thermohydraulic dynamic model — Initial conditions
and component details

=  System components:

= Cryostat: single volume with heat source and thick stainless-steel wall to represent heat
capacity of metal cold mass, initially at 1.3 bar and 1.9 K.

= Quench relief valve: Kv30, opens at 17 bar, fully open at 20 bar.

= Header D: two pipe components (SQXL (string cryogenic transfer line): 50 m, DN 200; PCS
(Proximity cryogenic system): 40 m, DN65), initially at 1.3 bar and 20 K.

= Cold buffer: different volumes (only if required), initially at 1.3 bar and 20 K.
= Control valve to warm buffer (CV_WB): opening at 13 bar.

= Recovery line: > 100 m DN 150 non-insulated pipe exposed to natural convection and
condensation of ambient air (atmospheric heating).

= Warm buffer: 80 m3 single volume with carbon-steel wall, initially at 1 bar and -10 °C
(minimum regularly occurring temperature).
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Cold vs warm quench buffer

Quench recovery by pumping on bayonet heat exchangers is not possible in 12 hours
» Cryostat and line D must be depressurised after quench

All inner triplet magnets quench simultaneously (as opposed to LHC dipole magnets)

» Only small amounts of liquid expelled from cryostat, which is mostly evaporated within line D
» Large cold buffer to retrieve cold Helium not useful

Cryostat outlet SQXL outlet
1
| :

/ )

—
L

=
o
v}

)

2
Jte}
(9]

Wapour quality (-)
[=]
[l=]

[=]
[=2]
o

Vapour quality

=
=
]

=4
=}

o :
oo

et
[+4]

T T T T T 1 I T
0 5 10 15 20 25 30 0 5
TIME (s)

T T T T 1

10 15 20 25 30
TIME (s)

|

2 m3 of line D act as cold buffer volume

No interest in a cold quench buffer
Existing 80 m3 carbon-steel warm buffer is sufficient
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