Identifying Circulating Tumor Cells (CTCs) by Image Analysis

Leonie Zeune¹², Christoph Brune¹, Stephan van Gils¹, Guus van Dalum², Leon Terstappen²
¹Applied Analysis and ²Medical Cell Biophysics Group, MIRA, University of Twente

Introduction

The Cancer-ID consortium aims to validate blood-based biomarkers for cancer.

- cells dissociate from primary tumor and invade blood circulation
- rare cell events, challenging to detect
- CTC count has prognostic value for survival outcome
- no overall CTC definition exists yet

Automatic Data Processing

Development of an automated, platform-independent identification algorithm.

- sensitivities in data: noise, contrast, background artifacts...
- reliable and efficient segmentation forms basis for further processing

Active-contour segmentation energy:

\[J(c_1, c_2, C) = \int_{\Omega_{\text{in}}} |f(x) - c_1|^2 \, dx + \int_{\Omega_{\text{out}}} |f(x) - c_2|^2 \, dx + \alpha \cdot \text{Length}(C) \]

Results

Improved Segmentation:

- increased threshold & decreased \(\alpha \)
- improved robustness (esp. against noise)
- \(\alpha \) determines segmentation scale

Automated Classification:

- kNN, SVM, PCA

Conclusion / Outlook

- Validation
 - Segmentation: manually segmented cells from MCBP members
 - Classification: manually scored images from CANCER-ID partners

- Robustness
 - improve background artifacts robustness

- Automatic Parameter Choice
 - relation to scale space approaches?

- Advanced Classification Methods