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The increasing number of treatment options for patients with metastatic carcinomas has created an accompanying need for methods
to determine if the tumor will be responsive to the intended therapy and to monitor its effectiveness. Ideally, these methods would
be noninvasive and provide quantitative real-time analysis of tumor activity in a variety of carcinomas. Assessment of circulating
tumor cells shed into the blood during metastasis may satisfy this need. Here we review the CellSearch technology used for the

detection of circulating tumor cells and discuss potential future directions for improvements.

1. Introduction

In 1869, Thomas Ashworth described the microscopic obser-
vation of circulating tumor cells (CTC) in the blood of a
man with metastatic cancer. He concluded that the CT'C must
have passed through the circulatory system to arrive at the
vein from which the blood was collected [1]. The critical
role that circulating tumor cells play in the metastatic spread
of carcinomas has been demonstrated more than 100 years
later [2]. Only recently technology has become available with
the requisite sensitivity and reproducibility to explore the
diagnostic potential of CTC [3].

Via a rigorous clinical testing program, CellSearch is the
only system validated for CTC detection to date [4-10]. The
device is cleared by the FDA for the monitoring of patients
with metastatic breast, colorectal, and prostate cancer and
clinical utility has also been demonstrated in metastatic small
and non-small cell lung cancer [11, 12], stomach cancer [13],
pancreas cancer [14], ovarian cancer [15], and bladder cancer
[16-18].

For the enumeration of CTC, the CellSearch reagent
kit uses ferrofluids labeled with the epithelial cell adhesion
molecule (EpCAM), a DNA dye to stain nuclei and antibodies
to target CD45 and cytokeratin 8, 18, and 19. The enrichment
of endothelial and melanoma cells was enabled by replacing
EpCAM ferrofluids with CD146 ferrofluids in the CellSearch

system. Replacement of cytokeratin antibodies with CD105
allowed the enumeration of endothelial cells and studies
showed an increase in endothelial cells in metastatic cancer
and cardiovascular diseases [19-21]. Replacement of cytok-
eratin antibodies with antibodies to high molecular weight
melanoma antigen allowed the enumeration of melanoma
cells and their presence is associated with a poor prognosis
[22].

The potential to assess the presence of treatment targets in
CTC such as Bcl-2 [23], Her-2 [24, 25], AR [26], and IGFR1
[27] at both the DNA and protein level by the CellSearch
system has spurred the interest in this field as it holds the
promise of a “real time liquid biopsy”

2. Cancer and the Formation of Metastasis

In the USA, 1.7 million people are expected to be diagnosed
with cancer and 0.6 million people are expected to die from
cancer [28]. At present, cancer is the second leading cause
of mortality in USA and Europe [28, 29]. Although the 5-
year relative survival rate for all cancers is improving (49%
in 1975-1977 and 68% in 2002-2008), the number of people
diagnosed with cancer is expected to increase due to the
increase in age of the overall population. The improvement in
survival reflects both progress in diagnosing certain cancers
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at an earlier stage and improvements in treatment. The
costs associated with these improvements are however also
increasing and will have an enormous economic impact in
the time to come.

Death of cancer patients is rarely caused by the primary
tumor and can be contributed in most cases to metastases
at distant sites. Understanding the metastatic process is
therefore of utmost importance to get more insight into
the prognosis of patients and to identify potential ways
to prevent tumors to form metastases. Figure 1 illustrates
the evolution of cancer. At the early stages of tumor cell
formation, diversity of the tumor cells already occurs and
some will gain a greater ability than other cells to expand
(tumor stem cells). At the time a tumor reaches ~100 ym in
diameter, its need for nutrients increases. This is supplied
through neovascularization, which permits the tumor to
grow. At this time, cells from the tumor can enter the blood
either directly or through the lymphatic system. Although the
majority of these cells will succumb, some will survive and
either passively or actively penetrate the endothelial cell layer
at different sites in the body, forming distant metastasis that
ultimately will kill the patient.

Cancers have preferences for certain tissues to form
metastasis. The mechanisms and antigens expressed on their
cell surface and the ligands on the capillaries of that specific
tissue are still poorly understood. As time passes, the diversity
of tumor cells increases, making the treatment more difficult.
Moreover, the diversity further increases under the influence
of therapy as tumor cells become resistant to therapy. Today,
the potential sensitivity of a tumor is assessed on tumor cells
taken at the time of surgery. In cases that the tumor has
not been completely irradiated from the body tumor cells,
tumor cells will remain dormant or will expand. At the time
the tumor cells have formed a detectable metastasis, the cells
may no longer have the same sensitivity to therapies as at
the time of surgery. This makes it again necessary to obtain a
tumor biopsy and assess the best treatment options. However,
biopsies are difficult, if not impossible, to take from metastatic
sites. The ability to isolate tumor cells from the blood provides
a unique opportunity for a “real time liquid biopsy” Of
course, detection of cancer before dissemination has taken
place is preferred. However, to make this possible, a leap in
technology development is required. It has been modeled that
tumors are very small at the moment of dissemination, and
traditional imaging techniques need to be improved to detect
these small tumors [30]. Also, to detect CTC in such early
disease conditions, sensitivity of these tests will need to be
improved significantly [30].

3. Identification of CTC by
the CellSearch System

The CellSearch system (Janssen Diagnostics, LLC; Raritan,
NJ) consists of the CellTracks Autoprep, CellTracks Magnest,
CellSearch Epithelial Cell Kit, and the CellTracks Analyzer II.
The reagent kit used for the enumeration of CTC (CellSearch
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FIGURE 1: The evolution of cancer. After initial formation of
cancer cells, growth of the tumor attracts blood vessels to supply
oxygen and nutrients. Cancer cells then spread via these vessels
forming metastases at distant sites. Mutations in DNA result in
a heterogeneous population of cancer cells, with the potential of
an increase in resistance against medicine. Patient care is depicted
during the time of this evolution.

Epithelial Cell Kit) contains ferrofluids labeled with EpCAM
to select for cells of epithelial origin, the staining reagents
4’ 2-diamidino-2-phenylindole, dihydrochloride (DAPI) for
a nuclear stain, CD45-allophycocyan (CD45-APC) to label
leukocytes, cytokeratin 8, 18 Phycoerythrin, and cytokeratin
19 Phycoerythrin (CK-PE) to label cells of epithelial origin,
and buffers to enhance cell capture and permeabilize and
fix the cells [31, 32]. Samples that will be processed up to
96 hours after collection are drawn into 10 mL evacuated
blood draw tubes (Janssen Diagnostics, LLC; Raritan, NJ) and
maintained at room temperature.

To obtain viable CTC or investigate the expression of
RNA in CTC, blood should be collected in EDTA and
preferably processed within 24 hours. For these experiments
the CellSearch Profile Kit (Janssen Diagnostics, LLC; Raritan,
NJ) should be used. In this kit epithelial derived cells are
enriched by the use of ferrofluids labeled with antibodies
targeting the EpCAM antigen. After processing with the
CellTracks Autoprep, a cell suspension is obtained including
the CTC and ~5000 residual leukocytes. This number will
increase with the age of the blood samples. These samples
can be used to investigate the mRNA expression of CTC or
analyzed at the single cell level after staining and sorting by,
for example, flow cytometry [33, 34].

The CellTracks Autoprep immunomagnetically enriches
cells expressing EpCAM from 7.5 mL of blood and fluores-
cently labels the enriched cells with DAPI, CD45-APC, and
CK-PE. The resuspended cells are deposited in the cartridge
that is positioned in the CellTracks Magnest. This semi-
automated fluorescence-based microscopy system acquires
images using a 10X NAO0.45 objective with filters for DAPI,
PE, APC, and FITC (not used) to cover the complete surface
area of the analysis chamber. A computer identifies objects
staining with DAPI and PE in the same location and generates
images for the DAPI, PE, APC, and FITC filters. Figure 2
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FIGURE 2: CellSearch thumbnail gallery. The software of the
CellSearch CellTracks displays thumbnails of all objects that are
positive for both DAPI and CK. Events 337, 340, and 341 show a
CTC: positive for DAPI and PE and negative for CD45. Note the
weak CD45-staining of several white blood cells in events 340 and
341.

shows a typical display of the fluorescent images that passed
the threshold set by the computer program. A reviewer selects
the CTC defined as nucleated DAPI+ cells, lacking CD45
and expressing CK-PE from the gallery of objects, which
are tabulated by the computer. After processing 7.5mL of
blood from healthy donors, the median number of objects
that need to be scored is ~50. In blood samples from cancer
patients, the number of objects can be quite large. In general
these are not all CTC, but can mostly be contributed to
the presence of CTC fragments [35, 36]. Presence of these
CTC fragments is also related to poor outcome [36]. The
heterogeneity in morphology is partly caused by the large
diversity in the viability or apoptotic stage of the CTC. This
makes it difficult to set criteria of what accounts as a CTC.
Differences in assigning objects as CTC are the largest error
currently in the system, and extensive training is required to
keep the variations in assigning objects as CTC to a minimum
[37, 38]. Recently, we developed a CTC detection algorithm
that counts CTC in images recorded by the CellSearch system
[39]. This algorithm used survival data of metastatic prostate
cancer patients to arrive at a definition that optimally strati-
fied the patients into groups with favorable and unfavorable
survival. It was not developed to copy human reviewers
that assign events, but it eliminates reviewer variability. In
addition, it is fast and decreases the cost of the CTC assay
by eliminating the time a reviewer spends on reviewing the
images. Also, quantitative information can be derived about
the objects counted as CTC, such as morphological features
or quantitative expression of antigens expressed on the CTC
[24, 40].

4. Frequency of CTC Detected by
the CellSearch System

The number of cells with features that are consistent with
those of CTC detected with the CellSearch system in 7.5 mL
of blood from healthy donors or patients with nonmalignant
diseases is remarkably low [3]. Lowering the stringency of the
criteria to assign cells or objects increases the number of CTC
detected in both controls and patients [36, 39]. The limited
number of controls tested and less strict criteria to assign
objects as CTC are an important reason for the high number
of CTCreported by new technologies for detection of CTC. In
fact, our earlier work used flow cytometry as the platform to
analyze the immunomagnetically enriched samples and the
number of CTC detected in both controls and patients was
clearly higher. This can be contributed to the less stringent
criteria, such as a no-cell morphology criterion [41, 42].

Many new studies have reported the frequency of CTC
detected by the CellSearch system, since the original report
on the frequency of CTC detected with the CellSearch
system in controls and patients with a variety of carcinomas
[3]. Table 1 provides a summary of the frequency of CTC
at various thresholds reported in these studies in several
carcinomas, healthy donors, and patients with nonmalignant
diseases. If CTC are to be used for the assessment of treatment
targets to choose the most appropriate therapy, sufficient
number of CTC will need to be available for detailed analysis.
The heterogeneity of the tumor cells forces one to examine
multiple individual cells and a minimum 0f10-100 cells seems
reasonable [25, 26, 43-45]. Table 1, however, shows that the
number of patients (n) with sufficient number of CTC in
75 mL of blood for this purpose is very low. Therefore, the
number of CTC in larger volumes of blood was estimated by
fitting the frequency distribution of CTC present in 75 mL
of blood [46]. Figure 3 shows the frequency distribution of
CTC detected in Z5mL of blood by the CellSearch system
in patients with metastatic breast cancer (stair plot green
line), metastatic colorectal cancer (stair plot blue line), and
metastatic prostate cancer (stair plot red line). The solid
lines show the best fit for this distribution and the dotted
line is the 95% confidence level around this distribution.
This figure shows that a 100-fold increase in blood volume
is needed to detect CTC in all patients. All the blood will
need to be analyzed to obtain sufficient number of CTC for
characterization and guidance of therapy.

5. Relation between Presence of
CTC and Survival

The presence of CTC is associated with a relative poor
prognosis. This was demonstrated in prospective multicenter
studies in metastatic colorectal cancer [8], prostate cancer
[10], and breast cancer [4]. A discrimination between patients
with favorable CTC (<3 for colorectal cancer or <5 for breast
and prostate cancer) and unfavorable CTC (=3 or >5) was
made in the original papers reporting the results of these
studies. In practice, a further discrimination in patients with
unfavorable CTC can be made when the actual peripheral
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FIGURE 3: Frequency of CTC in metastatic colorectal prostate and
breast cancer. Frequency was measured in 7Z5mL of blood (right
half of the figure) and predicted in larger blood volumes (left half
of the figure). Extrapolation of number of CTC was performed
by a log-logistic function (solid line) including 95% confidence
interval (dashed lines) and fitted through the empirical cumulative
distribution functions (stair plots) for metastatic breast, colon, and
prostate cancer. The fitted curve shows the blood volume that is
needed (75L) to detect the presence of CTC in all patients (100%
probability) in a metastatic setting, using the CellSearch approach.
Adapted figure from [46].

blood tumor load is considered. This is illustrated by the
Kaplan Meier plots in Figure 4. Blood is drawn before
starting a new line of therapy and patients are divided into
categories with 0 CTC, 1-4 CTC, 5-24 CTC, and >25 CTC.
The difference in survival curves becomes larger after the first
cycles of therapy, as the CTC in those patients benefitting
from therapy are eliminated. A guide for the interpretation
of changes in CTC is described in detail elsewhere [67].
Altogether, it is clear that all CTC will need to be eliminated
for a treatment to be truly effective and prolong survival of
the patient.

6. Challenges in CTC Identification

The potential of CTC detection and characterization has
stimulated the interest of many investigators to develop
new CTC platforms [68-81]. The challenge in identifying
CTC lies in the detection of these rare cells in blood. In
metastatic cancer patients, approximately 1 CTC per mL
blood will be surrounded by approximately 5 - 10° white
blood cells and 5 - 10° red blood cells [3, 46]. Differences in
the approaches taken to enrich and detect CTC have been
reviewed extensively elsewhere [82-85].

One of the approaches we are currently evaluating is
filtration of blood to detect CTC that have a relatively
large size and stiffness compared to blood cells [86, 87]. In
the optimization of this approach, we envisioned the ideal
filter for CTC enrichment to be constructed of a stiff, flat
material that is impervious to blood cells. To effectively pass
blood collected in CellSave tubes, at least 100,000 regularly
spaced 5um pores with a low porosity are needed [71,

88]. To determine whether CTC have escaped the EpCAM
immunomagnetic detection in CellSearch, we constructed
a device that collects the blood discarded by the system
after immunomagnetic selection of EpCAM+ cells [87, 89].
This blood, lacking EpCAM+ cells, is then passed through a
36 mm? microsieve with 111,800 5 um pores. The cells on the
filter are immunostained to distinguish CTC from non-CTC
and examined by fluorescent microscopy. Figure 5 shows an
example of a microsieve; the upper panel shows a bright-
field image of a section of a microsieve and the lower panel
shows an overlay of fluorescent images of the nucleic acid
dye DRAQS5 (blue), CD45-Brilliant Violet staining (red), and
cytokeratin-PE staining (green). In the image, a CTC of alung
cancer patient is visible among many other cells. The figure
also shows that not all nuclei stain with CD45 or cytokeratin.
Currently, efforts are ongoing to identify the tissue of origin
of these nonidentified cells on the microsieve. Either these
cells could still be leukocytes that lost the CD45 antigen
or the fluorophore Brilliant Violet does not emit sufficient
light to be detected, or the cell is damaged and lost its
cytoplasmic membrane. Other alternative explanations may
be that these cells are not of hematopoietic lineage, such as
endothelial cells, or that these are CTC that do not express the
cytokeratins that are recognized by the Cl11 clone used to stain
the cytokeratins. This lack of cytokeratin expression could
be a result of the epithelial-mesenchymal transition (EMT)
process [90].

Besides cytokeratins, EpCAM expression is used in the
majority of CTC enrichment methods based on antibody-
capture [91, 92]. Yet EMT could downregulate this protein
and other epithelial proteins, leading to a subpopulation of
CTC that will be missed during enrichment or detection.
CTC that are partially in EMT can coexpress mesenchymal
proteins, like vimentin, N-cadherin, and O-cadherin [93, 94].
The CellSearch system only uses a limited panel of cytok-
eratins for detection and changes in cytokeratin expression
during EMT can therefore influence the CTC detection. An
expanded panel of cytokeratins is of interest for complete
detection and is applied in our search for EpCAM— cells
after filtration of the CellSearch waste. To find EpCAM- CTC
subpopulations, novel antibodies are of increasing interest to
be analyzed as an additional feasible selection marker. CTC
populations with expression or lack of expression of epithelial
and mesenchymal proteins characterize the complexity and
heterogeneity of CTC. The major challenge in addressing
these problems is that it is unknown whether CTC are present
in the blood sample. If they are present, their heterogeneity
of unknown extent is encountered. It requests an increasing
diversity in CTC detection and characterization in current
and future methods.

7. Assessment of Treatment Targets in CTC

As described earlier, identification of CTC in the CellSearch
system uses EpCAM expression for immunomagnetic selec-
tion and subsequently DNA, CK, and CD45 staining for iden-
tification of the enriched cells. Less strict qualifications for
CTC definitions, omitting, for instance, the DNA+ or CD45—
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FIGURE 4: Kaplan-Meier plots of samples from metastatic breast (a), colon (b), and prostate (c) cancer patients with 0, 1-4, 5-24, and >25
CTC at the start of therapy. The number of patients at risk is listed at every time point of measurement.

qualification, increase the frequency of objects counted as
CTC in patients and controls [46]. EpCAM+ CK+ CTC can
be differentiated into intact CTC, CTC fragments, and CTC
microparticles. The presence of all these is associated with a
relatively short survival in castrate resistant prostate cancer
[36]. However, intact CTC containing DNA can provide
more information, as they are receptive to molecular and

phenotypic characterization. RNA or DNA from CTC can
offer a representation of the genetic composition of the
tumor and may be especially useful when a tumor biopsy
is unavailable. Cell sorting of CTC after CellSearch analysis
showed that almost 45% of the exomes in single CTC could be
sequenced and whole genome amplification allows for variant
calling in single CTC [34].
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FIGURE 5: Cells from CellSearch Waste immunostained on a
microsieve. Blood from a lung cancer patient was used for a
CellSearch assay. After immunomagnetic selection, part of the
sample was discarded by the system and used for filtration on a
microsieve with 5 ym pores. Bright-field image of the sieve is shown
in (a). (b) shows the sieve with filtered sample. Cells were stained for
nucleus (blue), cytokeratin CI1 (green), and CD45 (red). Fat arrow
points to a CTC, positive in CK. Small arrows point to the absent
staining of cells, showing the difficulty of accounting for all cells
on the sieve. Image taken on a fluorescence microscope with a 10x
(0.45NA) objective.

For breast cancer patients, status of the membrane protein
Her-2 may guide their therapy and is of great value for
personalized treatment. Usually, tumor biopsies taken at the
time of surgery are analysed for their Her-2 status, but
may not be representative for the tumor at the time of
metastasis. CTC may circumvent this problem and allow real-
time determination of the Her-2 status of the tumor. It can be
subjective to determine whether or not a protein like Her-
2 is expressed and at what level. Tools will be needed to
quantify the actual expression levels to reliably investigate
the relation to the response of therapy targeting the Her-
2 receptor. Figure 6 shows an example of an approach to
quantify Her-2 expression on CTC. An automated algorithm
is used to identify CTC and provides a numerical value to
the level of Her-2 expression on CTC. It is quite obvious that
the accuracy of Her-2 expression and the ability to assess its
heterogeneity will improve with the number of CTC that are
detected. Feasibility for assessment of treatment targets on
CTC has been demonstrated for a variety of treatment targets
at the protein and genetic level. This supports the notion that
CTC indeed can be used to guide personalized therapy in the
future, provided that CTC indeed can be isolated from the
patient [23, 25-27, 34, 39, 45].

FIGURE 6: Example of five CTC from five different patients. Flu-
orescence of CTC Her-2 expression (right column) is quantified
by the number in upper right corner. A higher positive number
represents a higher Her-2 expression, whereas a negative number
(bottom picture) represents no Her-2 expression on that CTC. The
scale bar is applied to all images. Adapted figure from [24].

8. Outlook

Treatment of cancer is evolving from chemotherapy towards
a more personalized approach, with drugs that recognize
specific targets. To define the presence of specific targets, an
analysis of the tumor is required at the start of therapy. CTC
are likely representatives of the tumor to be treated and can
therefore be used as a liquid biopsy. However, sufficient num-
bers of CTC are required to obtain a representative picture. To
arrive at a sufficient number of CTC, a new approach is being
explored by the European Consortium “CTC Therapeutic
Apheresis” (http://www.utwente.nl/tnw/ctctrap/). The con-
cept of this approach is presented in Figure 7. The CTCTrap
combines immunocapture and size-based separation of CTC
from their hematopoietic background. A large volume of
blood is transported through a matrix and then reintroduced
in the body, while CTC are captured in the matrix. After
elution, CTC can be individually isolated for further char-
acterization. This can, for example, assess the likelihood that
certain therapies will be effective. The CTCTrap is expected
to deliver a complete platform to capture, enumerate, and
characterize CTC. Detection of all CTC in blood will change
the current methods of diagnosis and treatment for patients
with known and unknown metastatic disease.



FIGURE 7: Schematic representation of the CTCTrap. Blood from a
patient (a) is passed through a functionalized 3D matrix (b). The
porous matrix can withstand up to 5L of blood flow. In this matrix
are one or more specific antibodies present for CTC capture. A
continuous blood flow without cells of interest is circled back to the
patient (c). Retained cells are eluted from the matrix (d) and will be
filtered through 1-5 ym pores to reduce hematopoietic background
(e). Cells retained on the filter can be used for immunofluorescent
staining to discriminate CTC from non-CTC (f) and subsequently
be used for isolation of single CTC for additional molecular
characterization, like protein, RNA, and DNA analysis (g).
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