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Chapter 1 

Introduction 

1. In situ studies in heterogeneous catalysis

The performance of a catalyst in a chemical reaction can be evaluated based on the 
quantities of the converted reactants or of the reaction products, as well as on product 
selectivities. A clear correlation between the activity of the catalyst and its (surface) 
structure is key for catalyst development in heterogeneous catalysis. In heterogeneous 
catalysis, reactants are converted on the surface of the catalyst, in particular on specific 
locations called “active sites”. The nature of the active site can be influenced by its 
environment since catalysts undergo various physical and chemical changes under the 
reaction conditions. Therefore, understanding the structure of the active sites under 
realistic reaction conditions is essential for understanding the reaction sequences that 
take place. Traditionally, correlation of the catalyst activity with its structure is 
established based on the evaluation of the properties of catalyst before (fresh) and after 
(used) the reaction. This approach gives indirect information about the active site, 
whereas characterization of the catalyst during the reaction, called “in situ” (Latin for 
“on site”), provides direct information about the state of the active site and the structure 
of the surface species. The simultaneous measurement of the catalytic activity and 
selectivity is additional information that can be used to unravel the catalytic reaction 
sequence. Generally, this approach is called “operando” (Latin for “working”). 

Several reviews have been published in the last two decades emphasizing the 
importance of in situ and operando studies for catalyst design [1, 2]. The development of 
new analytical techniques, in particular, spectroscopic approaches has allowed one to 
gain fundamental information about catalyst structures in the working state. Most of the 
in situ techniques have been reviewed extensively in recent years [3-7]. 

2. Characterization methods

A number of analytical techniques are available for catalyst characterization. The 
main principle utilized in all techniques is a comparison of the signal sent to the sample 
with the signal received from the sample. Therefore, clear understanding of the 
interaction of the radiation with the sample is essential. In general, analytical techniques 
can be classified based on the types of excitation (photons, electrons, ions, 
electromagnetic field, heat, neutrals; inward arrows in Figure 1) or by type of radiation 
gathered (outward arrows in Figure 1).  
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Figure 1. Diagram representing most of characterization techniques based on type of excitation (inward arrow) and 
obtained information (outward arrow). Reproduced from ref. [8]. 

Some of the most common characterization techniques used in heterogeneous 
catalysis are summarized in Table 1 together with some examples of the information 
gathered from the techniques. They involve techniques that allow identification of the 
reaction intermediates (FTIR, NMR, UV-Vis) or state of the catalyst under controlled 
environments (XRD, Raman, XPS, XAS, TPO/TPR, TEM, SEM). Most of the current 
techniques require special conditions in order to collect information (e.g., high vacuum 
in TEM, SEM, STEM) and/or to increase the signal to noise ratio. Several recent 
developments allow operation at close to ambient gas pressures (XPS, environmental-
SEM). 

Information collected from the surface of the catalyst can also contain information 
about the reactant, products or intermediates. Data analysis in this case becomes a 
challenging task, since surface species have to be distinguished from the bulk species. 
Additionally some of the species may have no role in the reaction, called “spectator 
species”, thus they need to be excluded from the reaction pathways of interest. Another 
aspect of in situ investigation is its applicability at conditions realistic to catalysis, e.g., 
higher temperatures and pressures. Since most of the reactions are performed at 
temperatures higher than room temperature and pressures higher than atmospheric 
pressure, performing in situ studies requires heating of the samples and/or creating 
high pressure of the reactants/solvents. This can be particularly difficult to realize in 
spectroscopic cells. Heat transfer, mass transfer, and hydrodynamics of the flow have to 
be investigated and adjusted in order to ensure the proper reaction conditions. 

High temperatures and pressures can also influence the signal strength or create 
distortions in phenomena utilized in the spectroscopic method. Broadening of the signal, 
baseline shift, etc. are examples of such changes. Thermal stability and chemical 
resistance of the materials used in building spectroscopic cells are also important 
aspects in the development. 
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Table 1. Common characterization tools used in catalysis [8, 9]. 

Technique Excitation type 
(wavelength) Information gathered 

X-Ray Fluorescence (XRF) 

Photons (0.01 nm – 10 nm) 

Elemental composition 

X-Ray Diffraction (XRD) 
long range structural order (XRD) 

short range structural order (X-ray 
absorption fine structure) 

X-Ray Photoelectron 
Spectroscopy (XPS) 

Elemental composition, oxidation 
state 

X-Ray Absorption (XAS) (EXAFS, 
XANES) 

Coordination environment and 
oxidation state of metals and metal 
ions 

UV-Vis Spectroscopy 
Photons (UV: 10 nm – 
380 nm), (visible: 380 – 
700 nm) 

Electronic d-d and charge transfer 
transitions of transition metal ions 

Infrared (IR) Spectroscopy 
Photons (700 nm – 1 mm) 

Vibrational spectra of reaction 
mixtures and adsorbed molecules 

Raman Spectroscopy Vibrational spectra of metal oxides 
and organic deposits, such as coke 

Electron Energy Loss 
Spectroscopy (EELS) Electrons 

Lattice vibrations, vibrational modes 
of adsorbed species, electronic 
transitions 

Transmission/Scanning/Scanning 
Tunneling Electron Microscopy 
(TEM / SEM / STM) 

Electrons (<1 Å) Surface structure, size and shape of 
supported particles 

Thermal Gravimetric Analysis 
(TGA) Heat 

Oxidation temperatures of carbon 
deposits, coke, desorption of adsorbed 
molecules 

Temperature Programmed 
Oxidation / Reduction / 
Desorption (TPO / TPR / TPD) 

Heat 
Oxidation/reduction temperatures of 
metals, coke, desorption of adsorbed 
molecules 

Nuclear Magnetic Resonance 
(NMR) Electromagnetic Field 

(frequency 400-700 MHz / 
 0.5 – 1 m) 

Identification of molecular structure 
formed via chemical shift values Solid State MAS NMR (Magic 

angle spinning) 

3. Infrared Spectroscopy

IR spectroscopy is a versatile technique applied in surface characterization of the 
catalyst (surface hydroxyls, Brönsted, Lewis acid - base sites). A general selection rule of 
IR spectroscopy is a change of dipole moment during the excitation. This distinguishes 
Infrared from Raman spectroscopy, where the selection rule requires the change in 
molecular polarizability during the vibration. One of the common applications of IR 
spectroscopy is a characterization of surface properties based on interaction with probe 
molecules (CO, NO, pyridine, etc.). The correlation between the frequency of IR bands of 
probe molecule with the strength of the bond to the surface was first reported by 
Eischens and collaborators [10]. In their work, different frequencies for CO adsorbed on 
Cu, Pt, Ni and Pd metal particles dispersed on high surface area Cab-o-sil support were 
observed. Later, a theoretical explanation was given by Blyholder and coworkers [11], 
suggesting different extents of the bonding of CO (through the electron lone pair of the 
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carbon atom) to the metal -donation from the d orbitals of the metal to the 
carbon-oxygen antibonding orbital. 

The introduction of Fourier-Transform infrared spectrometer utilizing a Michelson 
interferometer allowed higher signal to noise ratio and shorter scanning times. Several 
designs are available for FTIR spectroscopy based on the nature of the analyzed sample. 
Schematic drawings of the most common configurations are shown in Figure 2.  

Transmission IR is one of the most commonly used techniques, where the sample 
is pressed into a self-supporting wafer or pellet and exposed to the gases of interest. In 
this case, IR light is shone on a flat area of the pellet. (Figure 2a). In situ high 
temperature gas phase studies can be performed by heating a sample in a controlled gas 
environment. However, transmission FTIR setups still suffer from limitations such as (i) 
sample pellet has to be sufficiently thin to allow collection of sufficient transmitted IR 
intensity, (ii) catalyst has to be sturdy enough to allow production of self-supporting 
wafer, (iii) mass transport issues may exist in the cell. 

Figure 2. Common setups used for the characterization of catalytic samples using infrared absorption spectroscopy. 
Top, left: transmission (TIR) mode, top, right: diffuse reflectance (DRIFTS) mode, bottom, right: reflection–absorption 
(RAIRS) mode. Reproduced from ref. [12]. 

Diffuse Reflectance FTIR (DRIFT) spectroscopy, on the other hand, allows analysis 
of powder samples without the need for any particular sample preparation compared to 
transmission FTIR. In this case powder sample can be loosely placed in a basket and 
irradiated by IR beam (Figure 2b), while scattered light is collected using high area 
parabolic mirror. DRIFTS allows use of catalysts that are not easily pressed into pellets, 
moreover, the band intensities are several times higher than in transmission FTIR. 
However, reproducibility of DRIFTS is poor due to variations in scattering coefficients 
with cell geometry and sample loading procedure, which also complicate quantification 
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of the intensities. Additionally, only the top layer of the sample is probed, which can be 
an issue in high temperature studies due to temperature gradients across the bed. 

Reflection-Absorption Infrared spectroscopy (RAIRS) is another type of FTIR 
where the beam is bounced from a flat reflective surface before collection (Figure 2c). 
RAIRS is widely used for characterization of low surface are samples. Low IR absorption 
intensities are typically obtained, however polarization modulation can improve signal 
to noise ratios. 

Attenuated Total Reflectance Infrared spectroscopy, the central theme of this 
thesis, is another widely used technique for the characterization of powders and metal 
films. In the following sections, the working principle, advantages and drawbacks will be 
outlined. However, firstly one of the key application areas for the future, in situ studies 
of reactions in aqueous phase is introduced. 

4. Aqueous Phase Reforming (APR)

Many of the liquid phase reactions e.g., deoxygenation, hydrogenation, steam 
reforming occur in aqueous medium. One such case is Aqueous Phase Reforming (APR), 
which is analogous to the Steam Reforming (SR) process. In this case water is a reaction 
medium as well as a reactant. Industrial SR was developed for production of syngas (CO 
+ H2) from methane using water as an oxidant. This reaction is strongly endothermic 
and is carried out at temperatures above 750 °C and pressures below 25 bar, where 
water is present in the gas phase. In contrast, APR is carried out at milder temperatures 
(150 - 350 °C, 10 - 250 bar) and water is kept in liquid phase by applying pressure [13-
15]. The phase diagram of water given in Figure 3 shows the pressures required to keep 
water in liquid phase at elevated temperatures.  

APR is typically used for valorization of waste aqueous streams containing 5 - 20% 
of organic compounds [16]. Such streams can come from food industry, paper 
production, biomass processing etc. In APR, these organic compounds can further be 
converted to hydrogen or alkanes without the need for evaporation of large amounts of 
water. Hydrogen produced in APR can be used in hydrogenation of bio-oil produced in 
biomass pyrolysis [17-20]. It was reported in literature, that bio-oil is poor in quality 
compared to crude oil due to its acidity and high oxygen content [21-23]. Thus, 
hydrogen from APR can be used in hydro-deoxygenation reactions of bio-oil lowering 
the acidity and removing oxygen in form of water. Scheme 1 illustrates a sustainable 
approach in using biomass for the production of fuels. 

Additionally, the conditions of APR favor the Water Gas Shift (WGS) reaction 
(Equation 1), which maximizes the hydrogen production from the carbon monoxide 
and water [14, 24].  

CO + H2O  CO2 + H2 (Eq. 1) 
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Figure 3. Phase diagram of water. 

Scheme 1. APR in a biomass processing scheme. 

The reaction equation (Equation 2) describes APR with WGS in the case of 
ethylene glycol, which is one of the most studied oxygenates: 

C2O2H6 + 2H2O  2CO2 + 5H2 (Eq. 2) 
Since H2, CO and CO2 are formed as products of APR, consecutive methanation or 

Fischer-Tropsch reactions that consume hydrogen resulting in production of alkanes can 
negatively affect hydrogen yields [14]. Thus, selectivity towards hydrogen vs. alkanes 
has to be considered while developing efficient catalysts for APR targeted at hydrogen 
production. 
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Model compounds for APR reported in literature include methanol, ethanol, 
ethylene glycol, glycerol, sorbitol and acetic acid [18, 25-32]. Other compounds such as 
levoglucosan, hydroxyacetone (acetol), which are present in aqueous phase of bio-oil in 
significant quantities, are less studied. Thus, broadening the pool of model compounds 
for APR is a next step in the direction of converting the real aqueous phase obtained 
from biomass. 

Noble metals supported on oxides have been reported as catalysts for APR [24, 33-
39]. Pt, Ru, Rh, Ni and their bimetallic combinations are active in C-C cleavage forming 
adsorbed C1 species. These C1 species undergo steam reforming and subsequent WGS 
reaction to maximize hydrogen yields and minimize formation of alkanes. Metal oxides 
such as alumina, silica are the most used supports due to their ability to activate water 
creating surface hydroxyl groups [28, 29, 31, 40-42]. Thus, catalysts used in APR exhibit 
bifunctional properties favoring both reforming and WGS reactions. However, catalyst 
deactivation and stability of the catalyst supports under APR conditions are important 
issues that need to be addressed. A typical APR catalyst, Pt/Al2O3, has been reported to 
deactivate in hot compressed water medium due to support transformation, subsequent 
surface area collapse, Pt blockage and Pt sintering [17]. Hydration of alumina and 
formation of boehmite (AlO(OH)) has been reported under these conditions [31, 43, 44]. 
In this respect the use of hydrothermally stable supports for catalyst preparation such 
as zirconia or boehmite is a promising solution. Alternatively, carbon-based materials, 
such as activated/mesoporous carbon, carbon nanotubes (CNT) can also be used due to 
their chemical stability. Ru/CNT catalyst was reported as an efficient catalyst for APR of 
ethylene glycol [34].  

Coking is a typical problem during steam reforming using Ni catalyst. In industry 
coking is minimized by operation at higher temperatures and high steam to carbon 
ratios (~3). In APR coking is also a severe problem. Side reactions that can take place on 
the support can lead to deposition of coke and deactivation of the catalyst. For example, 
acidity of the support can catalyze dehydration reactions resulting in the formation of 
unsaturated components. They can further oligomerize/polymerize into aromatics, 
which are precursors of coke. Thus, selection of the support with low acidity can 
suppress coke formation. Aldol condensation reaction of aldehydes and ketones can also 
lead to coke, for example aldol condensation of acetone was reported as a side reaction 
in steam reforming of acetone on Pt/ZrO2 catalyst [45]. Thus, understanding the 
reaction sequences that lead to condensation/oligomerization of the reactant or 
intermediate products on the surface of the catalyst, and correlation of the surface 
properties to the nature of coke precursors, can help in designing an active catalyst that 
is stable against deactivation. 
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5. In situ spectroscopic techniques in aqueous environments 

Due to growing number of reactions performed in aqueous environments, such as 
the APR reaction described in section 4, the applicability of spectroscopic techniques, 
initially developed for gas-solid interfaces, has to be revised and improvements for 
liquid phase operation have to be considered. The recent review by Shi et al. [46] 
addresses these issues and summarizes the latest advances in in situ spectroscopic tools 
for aqueous environments with examples of vibrational techniques (FTIR, Raman), X-ray 
techniques (XAS, XPS, XRD), resonance techniques (MAS NMR, EPR), electron excitation, 
UV-Vis spectroscopy and imaging techniques (SEM, TEM, STM, AFM).  

 

Figure 4. In situ characterization techniques applicable to aqueous phase catalytic systems along with their typical 
spatial resolutions. Abbreviations used in the figure: IR: infrared spectroscopy; ATR-IR: attenuated total reflectance 
infrared spectroscopy; SERS: surface enhanced Raman scattering; TERS: tip-enhanced Raman scattering; SHINERS: 
shell-isolated nanoparticle enhanced Raman scattering; SFG: sum frequency generation; UV-vis: ultraviolet-visible 
spectroscopy; XRD: X-ray diffraction; NMR: nuclear magnetic resonance; TEM: transmission electron microscopy; 
STEM: scanning transmission electron microscopy; TXM: transmission X-ray microscopy; FM: fluorescence 

-ray fluorescence; XPS: X-ray photoelectron spectroscopy; ToF-SIMS: time-of-flight 
secondary ion mass spectrometry. Reproduced from ref. [46]. 

Figure 4 provides a list of in situ spectroscopic and microscopic techniques that 
are applicable to aqueous environments along with their typical spatial resolutions. As 
shown in the figure, most of the techniques provide information about the state of the 
catalyst (its morphology, shape or oxidation state), however only few of the techniques 
provide information about the reaction adsorbates and reaction sequences. FTIR 
spectroscopy, in particular, ATR-IR spectroscopy, has the ability to provide this 
information.  
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6. ATR-IR spectroscopy as a tool for liquid (aqueous) phase in situ studies

Many studies have used FTIR at the gas/solid interface, using transmission IR or 
DRIFTS as discussed in the previous sections. However, the application of FTIR 
spectroscopy at the liquid/solid interface especially aqueous phase/solid interface 
requires an alternative approach in order to minimize absorption interference of IR light 
with water. Attenuated Total Reflection Infrared Spectroscopy (ATR-IR) allows one to 
overcome this and is an ideal tool to study reactions in the aqueous phase. In ATR-IR 
light is guided inside the optical element (typically ZnSe trapezoidal prism) due to 
multiple internal reflections, and reflected light is then collected by detector. A sample is 
deposited on the external surface of the element and the evanescent wave, generated at 
the reflection points between the element and the sample, penetrates into the sample 
(Figure 5). Thus, the benefit of ATR-IR spectroscopy is that it can be used not only for 
powders and thin films, but also for solids in the presence of highly absorbing liquids, 
e.g., water.

Figure 5. Principle of ATR-IR spectroscopy. 

Several reviews have been published in the last decade [3, 46-50] summarizing the 
details of the ATR-IR technique and its applications in different reactions e.g., inorganic 
ions sorption on metal oy-hydroxides [50], nitrite/nitrate hydrogenation on Pd/Al2O3 [6, 
51], hydrogenation of ethyl pyruvate in supercritical ethane over Pt/Al2O3 [49], selective 
oxidation of benzyl alcohol over Pd/Al2O3 [49], Knoevenagel condensation between 
benzaldehyde and ethyl cyanoacetate on aminopropyl-modified silica [3]. 

The ATR-IR cell designs vary depending on the shape of the optical element and 
the conditions of the reaction of interest. Flat flow-through cells are mostly used due to 
the simplicity in sample preparation, availability and price of the cells. Alternatively, 
ATR-IR cells with cylindrical optical elements are also available. In this case, the whole 
surface area of the element is used for reflections improving signal to noise ratio. 
Immerse ATR probes are also reported for batch type operations. In this case, the optical 
element is placed on the tip of the probe immersed in to the stirred tank reactor 

10 



 General introduction 
 

providing information about the liquid composition. Extensive reviews on ATR-IR cell 
designs are available with details of the cell geometries and applications [3, 47, 52]. 
Further details of the ATR-IR spectroscopy and the design of the cylindrical “Tunnel” cell 
are provided in Chapter 2. 

Scope and outline of the thesis 

The aim of the work described in this thesis relate to the development of an in situ 
spectroscopic tool that is applicable for studies at the solid - liquid interface at the 
conditions of aqueous phase reforming reaction. The ATR-IR spectroscopy was chosen 
for this purpose based on its applicability to aqueous solutions as reported in literature. 
However, the conditions of APR reaction brought additional constraints for operation at 
high temperature/pressure aqueous conditions in the ATR-IR cell.  

The details of the in situ ATR-IR cell and the experimental setup are given in 
Chapter 2. The optical and hydrodynamic aspects of the ATR-IR cell are also discussed 
together with the catalyst immobilization method. 

In Chapter 3 the performance of the Pt/Al2O3 catalyst in APR of ethylene glycol is 
discussed, with the results showing catalyst deactivation caused by support 
transformation and coverage of Pt particles with boehmite. The ATR-IR cell was used to 
confirm formation of boehmite and show its stability in hydrothermal conditions. The 
performance Pt/AlO(OH) catalyst was further studied, resulting in more stable and 
active catalyst compared to Pt/Al2O3. 

The kinetics of alumina transformation into boehmite under hydrothermal 
conditions is discussed in Chapter 4, showing the applicability of ATR-IR spectroscopy 
for material chemistry studies. The results showed the delay of the transformation in the 
presence of Pt particles as well as oxygenates in the solution. 

The application of ATR-IR spectroscopy for the investigation of surface adsorbate 
species during APR reaction is shown in Chapter 5. In particular, APR of 
hydroxyacetone on Pt/AlO(OH) and Pt/ZrO2 catalysts is discussed showing the 
appearance of surface adsorbates on zirconia. Experimental evidence together with DFT 
calculations of IR spectra of possible products were used for peak assignments. Catalyst 
deactivation pathways are suggested based on the structures of the adsorbates. 

Finally, Chapter 6 summarizes the outcomes of the work and gives 
recommendations for future scientific investigations using the developed ATR-IR cell. 
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1.2 Total Internal Reflection

Figure 1 e.g
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1.3 ATR IR Cells
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2. Design of the ATR IR cell with a cylindrical IRE for high
temperature/pressure applications
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2.2 Optical settings
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Slurry deposition by
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2.5 Results of spray coating of catalysts on ZnSe IRE
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3.1 Modelling and simulation of the fluid dynamics in the ATR IR cell
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Diffusion
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3.2 Flow simulations
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3.3 Experimental validation of ATR IR cell with ZnSe IRE with and without
catalyst layer
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3.3.1 In situ ATR IR spectra of water at elevated temperatures
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3.3.2 In situ ATR IR spectra of glycerol solutions at elevated temperatures without
catalyst

Figure 15
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3.3.3 In situ ATR IR spectra of hydroxyacetone at RT and at elevated temperatures with
catalyst

Figure 17 in situ
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2. Experimental Section

2.1 Catalyst preparation

2.2 Catalyst characterization



2.3 Kinetic experiments
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2.4 ATR IR experiments
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3. Results and Discussion
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Figure 6a and b,
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Supplementary Information for Chapter 3 

Figure S1. ATR-IR spectra of Pt/ -Al2O3 in pure water (red dashed line) and in 0.2 mol L-1 EG in water (solid black 
line) at 200°C 40 bar. 
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2. Experimental

2.1 Catalyst preparation

2.2 Catalyst characterization

2.3 Catalyst immobilization

in situ



2.4 ATR IR spectra acquisition
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2.5 Temperature Programmed Oxidation

2.6 Raman spectroscopy

2.7 Solid state 1H and 27Al MAS NMR analysis
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3.2 Influence of temperature stepwise heating
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3.3 ATR IR spectra in presence of ethylene glycol
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3.4 Direct heating scheme
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3.5 Raman spectroscopy
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3.6 27Al MAS NMR spectroscopy
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3.8 Temperature programmed oxidation
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Supplementary Information for Chapter 4 

Calculations of penetration depth of IR radiation for all samples 

The penetration depth of evanescent wave during total internal reflection process 
is determined according to the Equation 1:  = ( (Eq. 1) 

where  – wavelength, – angle of incidence (45°), n1, n2 – refractive indices of ZnSe and 
porous sample, respectively. Since the samples are porous and the pores are filled with 
water, calculation of refractive index becomes more complex. It is known that enhanced 
porosity significantly decreases the refractive index of material [1]. Refractive index of a 
porous material is calculated according to the Equation 2:  = (1 ) +   (Eq. 2) 
where  – porosity, nc, nd – refractive indices of solid and water, respectively. 

Thickness of the layer was estimated based on sample weight and density of 
alumina assuming that the layer is uniform along the length of the IRE. 
Table S1. Calculated properties of the sample layers. 

Sample 
Sample 

loading, mg 

Depth of 
penetration, 

m 

Estimated layer 
thickness, m 

-Al2O3 11.8 0.82 3.0 
1,5% wt. Pt/ -Al2O3 10.0 0.82 2.6 

AlO(OH) 24.1 0.98 6.2 
H2O, no catalyst - 0.73 - 

ATR-IR spectra – complex infrared bands 

ATR-IR spectra of Pt/Al2O3 and Al2O3 samples in water contain not only peaks of 
water stretching and deformation vibrations (3200-3600 and 1640 cm-1, respectively), 
and stretching and deformation vibrations of AlO(OH) (3324, 3304, 1064 cm-1) 
(Figure 3), but also complex bands derived from IRE. This complex signal increases with 
temperature and disappears completely when IRE is cooled down to room temperature 
after experiment. The origin of this bands is not completely understood yet. Heating and 
cooling of the bare IRE in water results in similar behavior of these bands.  
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Figure S1. ATR-IR spectra of H2O on bare ZnSe at 25°C, 40bar and 150-225°C, 40 bar. 

Moreover, same phenomenon was observed when IRE was heated in n-dodecane 
(Figure S2). n-dodecane is a high boiling point liquid (214°C), thus no pressure is 
needed to keep it in a liquid state unlike water. Similarity of difference spectra on Figure 
S1 and S2 allows to conclude that these complex bands are not related to vibrational 
bands of liquid or solid material covering IR element. 

Figure S2. ATR-IR spectra of n-dodecane (n-C12H26) on bare ZnSe at 25°C, 1 bar and 170-200°C, 1 bar. 

We attribute these bands to effect of temperature on ZnSe material. Temperature 
generally effects refractive index of the optical material, which can cause distortions in 
total reflection phenomenon. Interestingly, phonon vibrations of ZnSe usually appear at 
frequencies well below 1000 cm-1 [2]. This phenomenon is yet to be understood. 
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3. Results

3.1 Catalyst characterization

Table 1

Table 1.

Sample
Pt
loading, wt.
%

BET surface
area, m2/g

Mean Pt particle size
(TEM), nm

Mean Pt particle size (H2

chemisorption), nm

3.2 In situ ATR IR results

3.2.1 ATR IR spectra of hydroxyacetone over bare ZnSe

Figure 1 in situ

Figure 1b



Figure 1. in situ

3.2.2 Hydroxyacetone adsorption on Pt/ZrO2 and Pt/AlO(OH)

Figure 2 in situ

Figure 1a

Figure 2. in situ
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Figure S1

Figure 2

Figure 3
Figures 2 and S1

Figure 3. in situ

Figure 3



Figure 3b

Figure 3b

Figure 4 a

Figure 4b

Figure 3b

Figure 4.

3.2.3 Initial adsorption of hydroxyacetone on Pt/ZrO2 and ZrO2

Figure 5 Figure
S2
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Figure 5

Figures S3 and S4

Figure S1

Figure 5. in situ

3.2.4 Reactivity of adsorbates during flushing with water: ZrO2 and Pt/ZrO2

Figure 6a

Figure 6b
Figure 6a



Figure 6 in situ
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Figure S9

3.3 Acidity of supports studied by pyridine IR and TPD NH3

Figure 7
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Figure 8.

3.4 Characterization of deactivated catalysts and supports

3.4.1 Elemental analysis of samples after ATR IR experiments

Table 2

Table 2.

Catalyst
Elemental composition, wt.%

  
   
  

   

3.4.2 Temperature programmed oxidation

Figure 9)
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Table 2

Figure 9.

4. Discussion

4.1 Hydroxyacetone appearance in the cell

Figure 5
Figure

10.

Figure 10.



Figure
10b

Figures 2, 3 and S1
Figure 11

Figure 11 in situ

Figure 3
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Figure 11

4.2 Hydroxyacetone washout with water

Figure 6a
Figure 5 Figure 10

Figure 12

Figure S11

Figure 12.

Figure 12

4.3 Adsorbed CO – water gas shift reaction

Figure 3b

Figure 3b
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Figure S12

4.4 Identification of adsorbed species

4.4.1 Enolization of hydroxyacetone

Figure 13
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Figure 13.
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4.4.2 Aldol condensation of hydroxyacetone

Figure 14

Figure 14.
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4.5 Nature of the support in aldol condensation

Figure 3a

Figure 8
Figure 7

Figure 14
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4.6 Deactivation of the catalysts due to coke formation

Figure 9

Table 2
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