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Abstract 
 

Detection of tumor metastases in the lymphatic system is essential for accurate staging of 
malignancies. Commercially available superparagmagnetic nanoparticles (SPIOs) 
accumulate in normal lymph tissue after injection at a tumor site, whereas less or no 
accumulation takes place in metastatic nodes, thus enabling lymphatic staging using MRI. 
We verify for the first time the potential of SPIOs, such as Endorem® as a novel 
photoacoustic (PA) contrast agent in biological tissue.We injected five Wistar rats 
subcutaneously with variable amounts of EndoremW and scanned the resected lymph nodes 
using a tomographic PA setup. Findings were compared using histology, vibrating sample 
magnetometry (VSM) and 14 T MR-imaging. Our PA setup was able to detect the iron 
oxide accumulations in all the nodes containing the nanoparticles. The distribution inside 
the nodes corresponded with both MRI and histological findings. VSM revealed that iron 
quantities inside the nodes varied between 51±4 and 11±1 µg. Nodes without SPIO 
enhancement did not show up in any of the PA scans. Iron oxide nanoparticles (Endorem®) 
can be used as a PA contrast agent for lymph node analysis and a distinction can be made 
between nodes with and nodes without the agent. This opens up possibilities for intra-
operative nodal staging for patients undergoing nodal resections for metastatic 
malignancies. 
 

Introduction 
Photoacoustic (PA) imaging is a hybrid imaging modality, whose ability to provide 
functional imaging based on physiological parameters has resulted in widespread 
acceptance in biomedical research applications ranging from tumor detection to cerebral 
hemodynamic analysis [1]. PA imaging relies on the detection of acoustic waves produced 
by the thermoelastic expansion of tissue following absorption of short pulsed illumination.  



 
The method combines the excellent absorption contrast achieved in optical techniques with 
the high spatial resolution of ultrasound imaging [2]. Since biological chromophores like 
melanin and hemoglobin are strong optical absorbers, PA imaging provides the possibility 
for non-invasive imaging of these chromophores in vivo. The strong PA response of these 
chromophores enables the detection of melanoma cells [3, 4]  and melanoma metastases [5, 
6] or visualization of the vasculature associated with breast carcinoma [7] without the 
addition of extrinsic contrast. However, biological processes that lack an intrinsic 
chromophore related to a disease state, including many malignancies, would require the 
addition of extrinsic contrast for its detection. PA imaging, owing to its lack of ionizing 
radiation and fast imaging performance, could develop into an additional medical imaging 
method once a specific and biocompatible PA contrast agent was available.  
 
Research into PA extrinsic contrast strategies has been going on for several years in both in 
vitro and in vivo models [8]. Research is focused predominantly on the use of nanoparticles 
including gold nanorods, gold nanoshells and carbon nanotubes [9-12]. Yang et al. showed 
that gold nanocages can be used to map sentinel lymph nodes [13] and enhance the optical 
absorption in the cerebral cortex of mice [14], while De La Zerda demonstrated that tumors 
in mice can be enhanced and imaged in vivo using antigen coupled single-walled carbon 
nanotubes [15]. These newly developed particles show great potential to enhance contrast 
with regard to several pathological problems, including cancer. However almost all of these 
contrast agents are still in the experimental stage, and few clinical studies have been 
initialized in recent years. At this point, it is as yet uncertain if these particles will obtain 
clearance by the Food and Drugs Administration (FDA) and the European Medicines 
Agency (EMA) in the near future. Recent studies with gold nano shells [16, 17] have led to 
the initiation of a clinical trial using gold nano shells as photo-induced hyperthermia agents 
for cancer therapy in patients with oropharyngeal malignancies; however it may take 
several years to acquire all of the results.  
 
A PA contrast agent that has already been clinically established would require a less 
extensive follow-up, facilitating a fast implementation in the clinic. With respect to 
extrinsic contrast enhancement, magnetic resonance imaging (MRI) is one of the areas that 
have seen major developments in the recent years. In 1989, Weissleder et al. [18] used 
dextran-coated superparamagnetic iron oxide (SPIO) nanoparticles for nodal contrast 
enhancement in MRI. After subcutaneous administration of 20 mmol/kg SPIO in the 
footpad of healthy and tumor-bearing rats, it was shown that non-metastatic nodes appeared 
dark in MR images while the metastatic nodes appeared iso- or hyperintense. This image 
contrast difference is based on the selective uptake of the nanosized particles in non-
metastatic nodes by the process of phagocytosis by macrophages [19]. After subcutaneous 
injection, SPIOs are cleared by draining lymphatic vessels and transported to the regional 
lymph nodes where they are phagocytosed by nodal macrophages in a scavenger receptor-



mediated endocytosis pathway [20, 21]. In MRI, locations containing SPIOs then show 
upas areas of reduced signal intensity because of the magnetic susceptibility of the 
particles. If metastases cause disturbances in node flow or displace nodal macrophages, the 
uptake of SPIOs inside the node is decreased and the node will contain lessiron oxide 
appearing iso- or hyperintense. Most importantly, the inhomogeneities in the MRI contrast 
patterns within the node are shown to correlate with the locations of metastatic deposits, 
enabling staging on the outlook of the SPIO distribution within a node. The oncologist’s 
decision to use neoadjuvant therapy or the surgeon’s decision to perform nodal dissection is 
influenced by the presence or absence of lymphatic metastases and therefore the use of 
SPIOs to improve pre-operative nodal staging has been extensively researched. Coated iron 
oxide nanoparticles have been found to contain a satisfactory safety profile for human 
applications [22] and, as a result, several iron oxide dispersions have been cleared for 
clinical use. Preoperative nodal staging for different malignancies is known to benefit from 
the use of these dispersions [23-26]. 
 
Our work regarding the detection of melanoma metastases in resected human lymph nodes 
proved that metastases could be visualized using PA imaging [5, 6]. However, while 
melanoma metastases contain melanin, a strong optical absorber, other malignancies spread 
across the lymphatic system without such an intrinsic chromophore. The fact that SPIOs 
could function as nodal staging agents, possess large optical cross-sections [27] and proved 
to be photoacoustically detectable in phantoms [28], prompted us to study these particles. 
We investigated the PA contrast potential of iron oxide nanoparticles using an animal 
model to explore the possibilities of detecting the accumulated nodal deposits of these 
particles after subcutaneous injection. The detection of these deposits could allow for 
resected lymph nodes to be photoacoustically scanned for metastatic involvement in the 
operation theatre, saving time and possibly preventing the recall of a patient for an 
additional operation, a concept also explored by other optical techniques like optical 
coherence Tomography [29] and Raman spectroscopy [30]. 
 

Materials and Methods 
 

 Iron Oxide Nanoparticles 
We used the commercially available SPIO agent Endorem® (Guerbet, Villepinte, France) 
(Fig. 2A), comprising iron oxide nanoparticles (11.2 mg/ml) dispersed in water. The 
particles are composed of several iron oxide cores (diameter 4–6 nm) embedded inside a 
dextran coating [31]. Particles have an estimated hydrodynamic size of 80–150nm [32]. 
Dilutions were prepared using sterile phosphate buffered saline (PBS). 
 

Animals 
A rodent model was implemented to mimic the human lymphatic situation. The animal 
research protocol was approved by the animal ethics committee of the University Medical 



Center Utrecht. Five mature female Wistar rats, weighing approximately 250–300 g were 
housed at the animal facility of the University of Twente and fed according to normal 
procedures, including grouped housing, nesting material and free access to food and water. 
Swelling of the lymph nodes, required to obtain a nodal volume that could be easily 
resected and imaged, was achieved by a subcutaneous injection of 0.1 ml of incomplete 
Freund adjuvant (IFA) [33] inside both footpads of the hind legs. IFA is composed of a 
water in oil emulsion and functions as immunopotentiator to achieve macrophage activation 
and immune cell multiplication, leading to an increase in lymph node size. In addition, in a 
future clinical situation nodes are likely to show tumor induced reactive lymphadenopathy 
which, according to Klerkx et al. [34], can be mimicked using IFA. The use of IFA will 
therefore result in an immune response that more closely resembles the lymphatic system in 
oncology patients.   
 
After 7 days, a significant increase in size was achieved and the animals were 
subcutaneously injected with 0.1 ml of the SPIO contrast agent in one or both footpads of 
the hind legs. The animals were euthanized by cervical dislocation 24 h after injection and 
the popliteal lymph nodes of both legs were excised. Once excised, all lymph nodes were 
photographed and placed inside a PBS solution. PBS prevented swelling of the tissue owing 
to water inflow and ensured proper PA imaging of the nodal volume over time. Weissleder 
et al. [18] subcutaneously injected approximately 3.2 mg iron oxide in their initial study in 
rats to verify the potential of the nanoparticle agent. In order to find out if PA detection of 
the nodes could be done with smaller SPIO concentrations, we also administered several 
dilutions of the Endorem® stock solution. The five animals were subcutaneously injected in 
the following way:  
 
1. In one animal no contrast agent was injected (control). 
2. In two animals undiluted (1.12mg iron oxide) Endorem® was injected in the left footpad. 
3. In one animal both footpads were injected with a 2x dilution (0.56mg iron oxide). 
4. In one animal both footpads were injected with a 4x dilution (0.28mg iron oxide). 
 
A total of 10 lymph nodes were included in the study of which six were suspected of 
containing iron oxide nanoparticles (contrast nodes) and four were not (control nodes). 
 

PA imaging 
Resected nodes were placed inside a hollow transparent 3% Agar sample holder with an 
inner diameter of 25mm and wall thickness of 10 mm. The sample holder was placed in the 
center of a large water container where it was illuminated from the top. The detector was 
placed orthogonal to the light illumination and rotated around the object to acquire a 
tomographic measurement. While details of the instrument have been presented earlier [35], 
we describe here the essentials. The PA setup (Fig. 1) consists of a Q-switched Nd:YAG 
laser (Brilliant B, Quantel, France) with an optical parametric oscillator (Opotek, 700–
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containing a known amount of iron oxide. A standard deviation and average iron oxide 
amount were then calculated. 
 

Optical Property Estimation 
Based on the iron quantities measured within the nodes using vibrating sample 
magnetometry (VSM), we aimed to estimate the optical absorption coefficient µa (mm-1). 
To this end, interaction efficiencies (extinction, scattering and absorption) were estimated 
using Mie theory [36] for a core radius of 2.5 nm and a shell radius of 15 nm [31], with 
dielectric data for iron oxide and dextran from Schlegel et al. [27] and Butler and Cameron 
[37]. Results indicated that the scattering component of the extinction was small compared 
with the absorption component. Spectroscopy (UV-2401PC spectrophotometer, Shimadzu, 
Tokyo, Japan) on a diluted Endorem dispersion (0.56x10-6 g/mm3) was used to measure the 
extinction coefficient µext (mm-1) at 720nm and, by correlating the µext to the iron quantities 
within each node divided by the nodal volume, an estimation of the µext within each node 
was produced.  
 
The volume within each node was calculated using the MRI slice dimensions. In addition, 
the PA contrast of SPIO particles was compared with that of whole human blood by 
embedding the measured iron amounts inside a phantom. By taking the lowest and highest 
iron amounts measured within the nodes and dividing them by the nodal volume, an 
estimation of the SPIO concentration within the nodal tissue could be made. The estimated 
concentrations were diluted from the stock dispersion and injected into two nylon tubes (i.d. 
1 mm, o.d. 1.8 mm). These were embedded one-by-one, into a 2% agar phantom in which a 
similar tube containing unclotted whole human blood was placed, as depicted in Fig. 5(A). 
By measuring the average PA response of the tubes, the contrast between both could be 
quantified. 
 

Histology 
To verify the presence of SPIOs inside the lymphatic tissue, additional histological analysis 
of several nodes was performed using a Pearls Prussian Blue stain (Sigma-Aldrich, St 
Louis, MO, USA). The nodes were embedded in paraffin and cut into 5 mm slices. Special 
attention was paid to the orientation of the cutting surface, which was kept parallel to the 
imaging plane of both the PA as the MR image. After staining, the slices were imaged and 
photographed using a bright field optical microscope (Nikon E600, Tokyo, Japan). 
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of the contrast agent could still be verified at a quantity as low as 11±1 µg, indicating that, 
if the human situation showed less nodal uptake, it could still be possible to perform 
accurate nodal staging. The phantom measurements indicate that the amount of PA 
response of SPIO deposits mainly depends on the quantity in which it is present in the 
nodes and that at higher concentrations they produce more PA signal than human blood. 
However, as shown by our VSM measurements, the amount of iron obtained within the 
nodes is variable, so it remains unclear whether an in vivo approach could clearly visualize 
the characteristics of the absorption patterns mentioned [28]. The influence of other 
biological structures is limited in an ex vivo intra-operative staging setting, which therefore 
should be the first clinical application goal of the technique.  
 
Table 1. Lymph nodes sorted by number with their corresponding iron quantities and stimated 
absorption coefficients at 720nm 

  

Number Injected Iron (µg) Iron inside the 
node (µg) 

µa (mm-1) 

1 1120 27 ± 2 0.14 ± 0.01 
2 1120 51 ± 4 0.27 ± 0.02 
3 560 40 ± 3 0.21 ± 0.02 
4 560 49 ± 3 0.26 ± 0.02 
5 280 30 ± 2 0.15 ± 0.01 
6 280 11 ± 1 0.06 ± 0.01 

7-10 0 0 ± 1  ± 0 
 
The estimated absorption coefficients show that the optical absorption of the tissue is 
increased owing to the inclusion of the nanoparticles. The estimated amounts of absorption 
do not impede the penetration of optical energy into lower parts of the node, indicating that 
metastases that are located deeper within the node could also be visualized. Since normal 
lymphatic tissue displays low absorption at 720 nm, the nodal outline and size could not be 
distinguished in nodes 7–10 (Table 2); however, the dimensions and shape extracted from 
the PA images of the nodes containing SPIOs match those estimated from MRI. An 
accurate depiction of nodal size using SPIO-enhanced PA imaging could function as an 
additional indicator of possible metastatic involvement, because larger nodes (≥1 cm) are 
more likely to include metastases [40]. The fact that nodes without SPIOs do not produce 
recognizable PA response patterns could imply that nodes that are totally filled with 
malignant cells will also not show up on PA measurements. In these cases, clinical staging 
has to be performed on images without distinguishable features, which could create some 
problems with regard to specificity. However, in the case of a sentinel node biopsy, an 
additional colored tracer, spreading homogeneously through the node, is always injected for 
locating the actual sentinel node. Multiple wavelength imaging [41, 42] could in this case 
provide us with a nodal outline based on the colored tracer while staging decisions could be 
made on the images of a wavelength sensitive for the SPIO contrast agent. In nodes with 



smaller metastases, macrophages will be replaced by tumor cells in specific parts of the 
node. These tumor deposits occupying in regions as small as 2 mm in the node have been 
proven to be detectable in MR studies [43-45]. Likewise in PA images, smaller metastases 
could be detectable based on spatial features showing low intensities. How sensitively these 
features can be visualized in PA needs to be investigated in future experiments using a 
metastatic model.  
 
Table 2. Calculated maximal and perpendicular diameters of all lymph nodes based on both 
photoacoustic (PA) imaging and MRI. Lymph nodes sorted by number. Measured sizes contain error 
margins of ± 0.3 mm. PA dimensions of nodes 7–10 could not be calculated because of their lack of 
PA response 

  

 PA based diameter MRI based diameter 
Number Maximal 

(mm) 
Perpendicular 

(mm) 
Maximal 

(mm) 
Perpendicular 

(mm) 
1 3.5 3.0 3.5 3.0 

2 4.1 2.8 3.4 2.8 

3 4.5 2.8 4.5 2.8 

4 4.1 2.6 4.1 2.9 

5 4.0 3.3 4.2 2.9 

6 3.5 2.6 3.4 2.6 

7 - - 3.5 2.6 

8 - - 3.3 2.8 

9 - - 3.9 3.1 

10 - - 3.4 3.2 

 
The detection of SPIOs in lymphatic tissue using PA imaging offers possibilities for 
distinguishing nodes with nanoparticle deposits from nodes lacking uptake. Future research 
should verify if the difference in uptake between malignant and benign nodes can be 
visualized using PA imaging, creating opportunities for fast intra-operative nodal staging. 
Detection of iron oxide nanoparticles using PA imaging can prove especially promising 
once other types of iron oxide-based agents enter the clinic. A combination of diagnostic 
pre-operative imaging using MRI and per-operative staging using PA imaging could be 
performed and the translation of PA imaging into the clinic would also benefit from a direct 
comparison of the results with an established imaging method like MRI. Moreover, the 
magnetic properties of the SPIOs could also be used to influence photoacoustic signals, 
thereby generating additional biological information and considerably improving specificity 
[46-48]. Although our ex vivo study mainly shows the potential for intra-operative imaging, 



non-invasive high-resolution PA lymph node mapping [49, 50] after SPIO injection for 
superficial nodes could also be investigated, although it remains unclear if SPIO particles 
provide sufficient in vivo contrast for such an application.  
 

Conclusion 
We conclude that iron oxide nanoparticles are able to enhance PA response in lymph nodes 
because of their active uptake by nodal macrophages in locations unaffected by metastatic 
cells and therefore have the potential to be implemented as a PA contrast agent for nodal 
staging purposes. Further research using a metastatic model should show if PA imaging 
based on these nanoparticles is able to produce reliable indicators for the presence of 
metastatic deposits. 
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