Acousto-optic signal generation with a nanosecond pulsed laser

S.G. Resink, E. Hondebrink, W. Steenbergen

Biomedical Photonic Imaging group, MIRA Institute for Biomedical Technology and Technical Medicine

University of Twente Enschede The Netherlands

S.G.Resink@utwente.nl

Motivation

Realize fast acousto-optics in dynamic media

- Benefits of pulsed laser:
 - Compatibility with photoacoustics
 - High pulse energy/ ns duration
 - Fluence compensation by sound light by combining photoacoustics (PA) and Acousto-optics (AO)
- Short integration time
 - τ<<in-vivo speckle decorrelation time

Setup

Ultrasound transducer (TR) 5MHz (Olympus Panametrics-NDT V310)

Camera (CCD)(Allied Vision Technologies Manta G-145B NIR)

Laser:Frequency doubled injection seeded Nd:YAG laser (Newport Quanta Ray lab series 170)

- FG: Function generators, Tektronix AFG 3102
- AMP: Power amplifier, Electronics & Innovation A075
- M: mirrors, BS: Beam splitter 50:50, PBS polarising beamsplitter
- L: 1000mm lens, BE: Beam expander (-50 mm and +75 mm lens)
- BD: beam dump

Theory/Method

- Inject two light pulses at different phases of ultrasound
- Two light pulses generate speckle patterns I1 and I2
- CCD camera integrates over both pulses
- Results in reduced speckle contrast
- AO signal ∆C = C0 − C

Where for the pulsed method $C = \frac{\langle I_1(n) + I_2(n) \rangle^2 - \langle I_1(n) + I_2(n) \rangle^2}{\langle I_1(n) + I_2(n) \rangle^2}$

And C_0 the contrast without ultrasound applied

For speckle patterns I_1 and I_2 and pixel n where $\langle . \rangle$ denotes averaging over all pixels.

- 2 Samples
- Both homogeneous cylinders of ø20mm
 - Stable phantom
 - 3% agar 3% intralipid 20% in water
 - Speckle decorrelaration time seconds
 - Time between pulses 100 ns
 - Liquid Phantom
 - 3% intralipid 20% in water
 - Speckle decorrelaration time = 25μs
 - Time between pulses 25 ns
- Resulting double pulse by using 8m delay line:

Results

- Stable phantom (US burst length 5 cycles)
- Comparing the contrast reduction of pulsed (A) vs. CW light delivery, (B)
- Liquid Phantom with use of delay line (15 US cycles)
- Differences with above:
 - Different banana shape
 - 5 vs 15 cycle burst US
 - Signal strength
 - π vs π/4 phase shift
 - US burst length

Conclusion/Outlook

- Acousto-optic sensing possible in media with short speckle decorrelation time using ns tandem pulses
 - (2x5 ns with 25 ns separation)
- Fast decorrelating samples using delay line are feasible
- Combine with photoacoustics
- Enlarge delay of delay line
- Use biological samples (both ex vivo and in vivo)
- Spectroscopy
- Extend with heterodyne reference arm for:
 - Optic amplification of tagged light
 - Sense electric field of tagged light (wavefront shaping applications)

Acknowledgements

Grant 09NIG01 of the Foundation for Fundamental Research on Matter (FOM), which is part of the Netherlands Organization for Scientific Research (NWO).