Towards quantitative photoacoustic spectroscopy using acousto-optic modulation

Altaf Hussain, Jacob Staley, Khakid Daoudi, Erwin Hondebrink and Wiendelt Steenbergen
BioMedical Photonic Imaging Group, MIRA Institute, University of Twente

Introduction

Photoacoustic spectroscopy (PAS) has enabled deep tissue functional imaging. However, photoacoustics alone inherently lacks the ability to do quantitative imaging, since the local light fluence $\sigma(\lambda)$ is unknown.

$$\sigma(\lambda) = \Gamma \mu_a(\lambda) \phi(\lambda)$$

$\sigma(\lambda)$: Initial stress distribution, quantity measured in PA imaging
Γ: Grüneisen parameter
$\mu_a(\lambda)$: Absorption coefficient, enables estimation of chromophore concentration
$\phi(\lambda)$: Local light fluence, unknown parameter in PA imaging

Goals

1) correction of fluence variations experimentally in PAS using acousto-optics (AO) modulation
2) quantitative estimation of simulated blood oxygenation using combination of PA and AO at two wavelengths

Method

- **PA Spectroscopy**: estimation of locally absorbed energy using PA at excitation wavelengths
 - Fluence compensated PA measurements after fluence correction

- **AO Spectroscopy**: measurement of locally modulated light power P_{123} using AO at excitation wavelengths, where $P_{123} \propto \Delta \lambda C$
 - Combination of PA and AO measurements using photon path reversibility principle $P_{12} = P_{21}$ for wavelength dependent fluence variations
 - Quantification of simulated blood oxygen saturation So_2 using
 $$So_2 = \frac{C_i}{C_f} = \frac{M^{+}^{2} \mu^{+}^{2} - M^{+}^{-} \mu^{+}^{-}}{M^{+} \Delta \phi^{+} - M^{-} \Delta \phi^{-}}$$

Phantom

- Background: $\mu_a = 11.5 \text{ cm}^{-1}$ @532 nm, 8.0 cm^{-1} @ 760 nm, 8.5 cm^{-1} @ 720 nm
- Absorbers: two nylon tubes 4 mm and 8 mm deep from side 1, containing different types of ink

Results

- **Before fluence compensation**
 - Absorption Spectra for absorbers at 532 nm and 760 nm
 - PA image intensity at 533 nm and 760 nm, PA image before fluence correction, Absorption Spectrum for absorbers at 532 nm and 760 nm

- **After fluence compensation**
 - Absorption Spectrum for absorbers at 532 nm and 760 nm
 - PA image intensity at 533 nm and 760 nm, PA image after fluence correction, Absorption Spectrum for absorbers at 532 nm and 760 nm

Quantification of simulated blood oxygen saturation (So_2)

- Inclusions: two nylon tubes at depths 4 mm and 8 mm containing mixture of black ink (33.3 vol%) and green ink (66.7 vol%)

Acknowledgment

- This research is funded by the Technology Foundation in The Netherlands (STW)