UNIVERSITY OF TWENTE.

Specialization (MEO) MAINTENANCE ENGINEERING & OPERATIONS

Master Mechanical Engineering

MAINTENANCE ENGINEERING & OPERATIONS

Ontwerp en verbetering van onderhoud en logistieke ondersteuning over de gehele levenscyclus van technische installaties.

Kernvakken

- Maintenance Engineering & Management
- Reliability Engineering & Maintenance Management
- Failure Mechanisms & Life prediction
- Structural Health & Condition Monitoring

Werkveld

Multidisciplinair vakgebied: technologie, organisatie en finance Vraagt: analytische vaardigheden, technische systeemkennis en organisatietalent

CONTENTS MAINTENANCE ENGINEERING & OPERATIONS (MEO)

- Introduction
- Relevance of Maintenance
- Groups / people involved
- Educational program

- Research / thesis projects:
 - Maintenance Engineering
 - Production and Supply Chain Management
 - Maintenance Planning
 - Tribology based Maintenance
 - Dynamics based Maintenance
- Conclusion

INTRODUCTION BACKGROUND /HISTORY

2010-2012

- Cooperative research program and Development of Maintenance Master in NL / WCM Summer School
- **2013**
 - Research Center "Twente is Maintenance Excellence" (TIME)
 - Master specialization in ME
 - ✓ also in Industrial Engineering
 - ✓ later also part-time (executive) Master
 - Master Class Maintenance Engineering for industry
- **2014-2015**
 - PDeng Maintenance program started

RELEVANCE OF MAINTENANCE

Maintenance is an important issue in many industries

- Capital goods are ageing → replace or extend life time ?
 - o Chemical plants, infrastructure
- Operational costs must be reduced
 - o Trains, aircraft, Defence systems
- New (sensor) technologies and data analysis provide opportunities
 - Semiconductor machines, factories

- o Analytical skills / data analysis / technical system knowledge
- o Multidisciplinary view: technical / costs / logistics / organization

MAINTENANCE \rightarrow MULTIDISCIPLINARY

OFF-SHORE WIND TURBINE

PROSPECTS MAINTENANCE

- Multi-disciplinary field with many challenges and different areas for specialisation
 - Reliability engineering Gasune Structural Integrity assessment After sales service logistics WÄRTSILÄ Design for Maintenance **Condition Based Maintenance** -essen Koninklijke Marine Asset Life Cycle Management NedTrain
- Companies search for future Maintenance and Reliability engineers

GROUPS & PEOPLE INVOLVED 2 FACULTIES / 4 GROUPS

Engineering Technology (CTW)

- Prof. Leo van Dongen Maintenance Engineering
 - Jan Braaksma / Alberto Martinetti
- Prof. Tiedo Tinga Dynamics based Maintenance
 - Richard Loendersloot
- Prof. Piet Lugt Tribology based Maintenance
 - Rob Bosman

Management and Governance (MB)

- Prof. Henk Zijm Production and Supply Chain Management
 - Matthieu v/d Heijden / Ahmad Al Hanbali

EDUCATIONAL PROGRAM

EDUCATIONAL PROGRAM - MEO SPECIALIZATION CORE COURSES

- Maintenance Engineering & Management
- Reliability Engineering & Maintenance management
- Failure Mechanisms & Life Prediction
- Structural Health & Condition Monitoring

EDUCATIONAL PROGRAM - MEO SPECIALIZATION SUGGESTED ELECTIVES

Reverse logistics

- Advanced Dynamics
- Solid Mechanics

- Product design
- Product Life Cycle Management
- Governing Product Development

Signal Processing

- Data Mining
-

RELATION WITH PROFILES / SPECIALIZATIONS

- Possible in all three profiles
 - Design & Construction
 - Research & Development
 - Management & Organisation
- # remaining electives depends on profile chosen

Thesis project

- supervision from one of participating groups
- either with industrial partner (external) or PhD students (internal)

REGISTRATION UNTIL JUNE 15TH 2015

- www.wcmsummerschool.org
- 8 WORKSHOPS
- LEADERSHIP TRAINING
- CASE STUDY WITH COMPANY VISIT
- €150 EURO FOR SELECTED STUDENTS

MAINTENANCE ENGINEERING

RESEARCH TOPICS

- Design for Maintenance
- Asset (Life Cycle) Management
- Maintenance Decision Making
- Asset Information Management
- Supportability Analysis
- Planning and control of spare parts and maintenance resources (a.o. service engineers, tools)

MONITORING BASED MAINTENANCE

APPLICATION OF USAGE PARAMETERS IN THE MAINTENANCE PROGRAM

Transmission of sensor readings

Role of Monitoring Based Maintenance

Preventive overhaul of compressor

CURRENT/PAST MASTER PROJECTS

Life Cycle Costs of ECT – Zhe Chuan Ooi

Life Cycle Management of the electricity grid – Richard Ruitenburg Sustainable Asset Management - Maurits Korse

Managing supportability data for NedTrain – Joost Ziggers Design of a classification method for spare parts control – Haico Stegink NedTrain

Monitoring Based Maintenance – Reinier Moonen A method supporting Reliability and Maintainability in radar system design – Jack van Dalen

Europe

THALES

Liander

ontainer Terminals

(CBM) planning of naval platform subsystems - Aikaterini Tsoni

Potential Failure Interval Generalization and Assessment – Varun Raman

ASML

TATA STEEL

OPEN MASTER PROJECTS

- A survey study of best practices in Dutch Asset Management (Internship) - SUTO
- NVDO
- Het definiëren van de systeem architectuur van de toekomstige Naval Maintenance Environment THALES
 Niveau - THALES

- Clustering of maintenance tasks PRORAIL
- Reducing life cycle cost of railway ballast by optimizing policies of ballast tamping and renewal -PRORAIL

PRODUCTION AND SUPPLY CHAIN MANAGEMENT/ MAINTENANCE PLANNING

CURRENT/PAST MASTER PROJECTS

- Spare part inventory management at ASML (Hanneke van der Horst)
- Last time buy decisions for spare parts at IBM (Laura van Silfhout)
- Maintenance planning at "Loodswezen" (piloting of ships, a.o. in Rotterdam harbor) (Simon Prent)
- Service contract fulfillment at Thales (related to spare part supply;
 Wouter Sleiderink)

THALES

TRIBOLOGY BASED MAINTENANCE

RESEARCH TOPICS

- Wear (corrosive, abrasive, (fatigue))
 Life/durability and reliability
- Condition monitoring
 Predictive maintenance
- Re-lubrication intervals
 - Aging of lubricants (contamination, oxidation)
- Statistical methods for reliability Multi-parameter Weibull, etc.
- Component and system life
 Transients and system reliability (life)

Defensie

CURRENT / PAST MASTER PROJECTS

BOSCH: Increasing friction without wear, in a CVT transmission

BOSCH: The influence of wear on the friction in a CVT transmission

SKF: Measuring the dynamic film thickness in grease lubricated roller bearings

ProRail: Redesign of the pantograph with increased reliability

DYNAMICS BASED MAINTENANCE

RESEARCH TOPICS

Dynamic Maintenance

- Adapt maintenance intervals to actual usage of systems
 - \circ Failure mechanisms \rightarrow metals / composites
 - $\circ\,$ Monitoring of usage / loads / condition

Structural Health Monitoring

- Dynamic response of systems / structures yields info on damage (location, size)
- Smart autonomous wireless sensor networks
- Data analysis, signal processing and interpretation

All based on understanding of system behaviour and physical mechanisms !

STRUCTURAL HEALTH MONITORING EXAMPLE: RESEARCH OF ANDREA SANCHEZ RAMIREZ

- Design Framework for Smart Autonomous Wireless Sensor Network
 - Multidisciplinary (design, signal processing, dynamics, tribology)
 - Various use cases
 - Roller & Journal bearings (trains, machines & gas turbines)
- MONITORING STRATEGY FUNCTION • Helicopter & wind turbine rotor blades SYSTEM FAILURE MODES Collaboration in EU project with European partners DETECTION DIAGNOSTICS PROGNOSTICS VIONITORING SYSTEM ALGORITHMS INFORMATION BEHAVIOR Energy Sensing DSP Communication Harvesting STRUCTURE

CURRENT / PAST MASTER PROJECTS

Sierd Heida – finished December 2013

subsystems

systems

Mark ten Dam – finished August 2014 Lloyds: Rail defect identification based on train wheel axle vibrations Slawik Prosjkin – finished October 2014

Imtech Marine: Concept for condition based maintenance for marine

Thales: Concept for condition based maintenance on radar

WiBRATE: Design of a test set-up for monitoring of rotating blades Joris Wolters – finished October 2014

WiBRATE: Multibody modelling of rotating flexible blades for SHM Stefan Oosterik – finished October 2014

CURRENT / PAST MASTER PROJECTS

WiBRATE: SHM based on operational loading - theory and experiments

Ruben Teunis – started December 2014

UNIVERSITY OF TWENTE.

DTP: Energy Harvesting for Autonomous Wireless Sensor Networks

Geert Kottier – started December 2014

MECAL: Monitoring Strategies for Wind Turbines using SCADA and Vibration Data

Dick Breteler – started February 2015

PON Power: Remote Monitoring for Marine Diesel Engines

Bas Aman – starts April 2015

OPEN MASTER PROJECTS

RNN: Developing a condition assessment system for a naval ship

Triogen:Rotor Dynamic Analysis for High Speed Turbo Generators

NRG: Fatigue monitoring of nuclear reactors

NLR, Fokker, Air Force: Effects of 3D printing on Maintenance

NEW MASTER PROJECTS

TNO Rijswijk: Non destructive evaluation of solid state propellant for rocket engines

Strukton: Predictive maintenance of rail infrastructure

Infrastructures: Structural health monitoring of bridges etc.

Apollo-Vredestein: Smart rubber for car tyres

(-)) tto://www.utwente.nl/ti **INTERESTED?** 🎪 🧭 News Box WordPress The... 👔 28 New Great Magazine-... 🧃 Web Slice-galerie 🕶 🕨 Aanbevolen web 🛅 🔹 🔝 👻 🖃 🔹 Pagina 🔹 Beveiliging 🔹 Extra 🛛 🔞 - BACK TO HOMEPAGE STRENTEN Q. CONTACT UNIVERSITY OF TWENTE. TIME - Twente is Maintenance Excellence MAINTENANCE ENGINEERING AND OPERATIONS (MEO) HOME SPECIALIZA MAINTENAL OPERATION MASTER'S SPECIALIZATION STUDENTS EMPLOYEES UPCOMING EVENTS PAST EVENTS SITEMAP SEARCH More information Website: www.utwente.nl/time/ cope of the special Reliability Engineering & Mainte Failure Mechanisms & Life Pred Contact one of staff members

UNIVERSITY OF TWENTE.

EXPERIENCES WIH MAINTENANCE ENGINEERING AND OPERATIONS

ALICE VAN DER HORST FIRST YEAR MASTERSTUDENT MEO

ALICE VAN DER HORST – EXPERIENCES WITH MEO

- Bachelor Industrial Design Engineering
- Pre Master Mechanical Engineering
- Master Mechanical Engineering
 - Maintenance Engineering and Operations

BACHELOR ASSIGNMENT AT NEDTRAIN

