
Encrypting data files
v5 (checked by Cyber Security)

Encryption
Encryption is a technical tool to protect data. You can only encrypt a single file. In case you want to
encrypt a directory containing multiple files that logically belong together, you first has to create an
archive file (zip/tar file). How to make an archive file, see Archiving datasets in Areda: a guide.

There is a distinction between symmetrical and asymmetrical encryption.

Symmetrical encryption
Symmetrical encryption means that you generate a key (password) and only the person(s) who
knows this key can decrypt the file. If you lose this encryption key there is no way to decrypt. If
available, check research group policies regarding key sharing.

In some cases it is desired or needed to give access to encrypted data files without sharing the key.
This is possible by means of asymmetrical encryption.

Asymmetrical encryption
Asymmetrical encryption is based on two different keys: a public and a private one. The combination
of public and private key is unique. The public key is used when encrypting the file, the private key
when decrypting it.

A key pair can be generated by means of a specific tool, such as AGE, Actually Good Encryption (see
below). From this key pair only the public key should be shared. People who shared their public key
with the person who encrypts the file, can decrypt it by using their private, non-shared, key.

For further explanation of asymmetrical encryption, see the section below about encryption tool AGE
or this Wikipedia website.

Recommended encryption tools
Always use a program that is designed for encryption and nothing else, which is open source, and
available for multiple platforms. Do not use a standard built-in encryption functionality offered, for
instance, by 7-zip, as this is known to be very weak and can easily be cracked if you know the type of
the files.

GnuPG (for experienced users)
GnuPG (GNU Privacy Guard) supports both symmetrical and asymmetrical encryption.

If you are already a GnuPG user, you can also use it for encryption of datasets. Make sure that people
who have to decrypt your archive, in some cases many years later, are also used to GnuPG.

Please note that GnuPG is not easy for beginners. Below we discuss two more user-friendly
encryption tools.

AES Crypt (symmetrical encryption)
A user-friendly open source cross platform encryption tool is AES Crypt. From the website you can
download the version for your platform and install it on your computer (home directory, e.g.
c:\users\bob). The website offers clear guidelines for each platform.

https://areda.utwente.nl/protected/pub/areda-archive-instructions.html
https://en.wikipedia.org/wiki/Public-key_cryptography
https://gnupg.org/
https://www.aescrypt.com/

AGE (asymmetrical encryption)
Asymmetrical encryption is recommended when sharing of a single encryption key is not desired or
permitted, or when the risk of losing the key for decryption is higher, often in case of long-term
archiving of data.

AGE is an asymmetrical encryption tool which means that it generates a key pair. AGE can be freely
downloaded here. Scroll to ‘Assets', expand, and download the file for your platform.

In the downloaded zip/tar file you will find the folder ‘age’ containing two files called (in case of
Windows) age.exe and age-keygen.exe. Extract this folder to your home directory, e.g. c:\users\bob.
Be sure that you use exactly this path to your home directory in the procedure described below.

How to generate a key pair
To generate a key pair, use the command prompt.

cd c:\users\bob\age
.\age-keygen -o privkey.txt

This command generates a file privkey.txt that contains your private key. Store this file in a secret
place (e.g. on a USB stick saved in a vault), and securely remove the file from your hard disk. You will
only need the private key when decrypting the encrypted file.

The command also prints your public key. Save this key in a text file called pubkeys.txt (use a text
editor like notepad, not Word!). You do not need to keep this file secret.

Giving right to decrypt
When encrypting a file you can give someone, who should have generated a key pair as well, the
right to decrypt by adding his or her public key in the file pubkeys.txt. It is highly recommended to
add not only your public key but also the public key of at least one colleague in the group who should
have the right to decrypt the file (with his/her own private key). Check research group policies
regarding key sharing, if available.

If you give Alice the right to decrypt an AGE encrypted file, the file pubkeys.txt could look like this:

My (Bob's) public key
age1gu7d9xqu6f48a3ldr9csrayds249nnjxsjgmhsla8saz3yx3d5escjeplq
Alice's public key
age1l0x67n9gvz6r6x0hd48u4tlvk6wd3rwamw9fqxk7s8z609nnxqmstcsxm6

Note: It is not possible to add public keys to an already encrypted file. If any change in decryption
rights is needed, you need to decrypt the file and encrypt it again with a new pubkeys.txt file.

How to encrypt a file
The next command encrypts the tar file stored at drive d, directory ‘data’, d:\data\mydataset.tgz.

d:

cd \data

c:\users\bob\age\age -e -R c:\users\bob\age\pubkeys.txt -o mydataset.tgz.age mydataset.tgz

The encrypted tar file has the extension .age.

The file pubkeys.txt. file should contain the public keys from those who have the right to decrypt (see
below).

How to decrypt a file
An AGE encrypted file can be decrypted with the command

https://github.com/FiloSottile/age
https://github.com/FiloSottile/age/releases

c:\users\bob\age\age -d -i c:\users\bob\age\privkey.txt -o mydataset.tgz mydataset.tgz.age

Encrypting a large dataset
In case of large datasets (> 100GB) it is recommended to execute the encryption simultaneously with
the creation of an archive file (zip or tar), avoiding the storage of the intermediate unencrypted
zip/tar file on disk. Such a one-step execution can be done by using the command prompt.

For instance, you have installed AES Crypt or AGE in your home directory (e.g. c:\users\bob), and you
want to archive ‘mydataset’ with tar and encrypt in one step:

AES Crypt (using your chosen key):

tar -czvf - mydataset | c:\users\bob\aescrypt\aescrypt -e –p [key] mydataset.tgz.aes

AGE:

tar -czvf - mydataset | c:\users\bob\age\age -e -R c:\users\bob\age\pubkeys.txt -o mydataset.tgz.age

The encrypted archive file (.aes or .age) can be uploaded to Areda (see Archiving datasets in Areda: a
guide).

Decryption and extraction of the encrypted archive file can be done with the command:

AES Crypt:

c:\users\bob\aescrypt\aescrypt -d -p [key] mydataset.tgz.aes | tar -xzvf –

AGE:

c:\users\bob\age\age -d -i c:\users\bob\age\privkey.txt -o - mydataset.tgz.age | tar -xzvf –

https://areda.utwente.nl/protected/pub/areda-archive-instructions.html
https://areda.utwente.nl/protected/pub/areda-archive-instructions.html

	Encrypting data files
	Encryption
	Symmetrical encryption
	Asymmetrical encryption

	Recommended encryption tools
	GnuPG (for experienced users)
	AES Crypt (symmetrical encryption)
	AGE (asymmetrical encryption)
	How to generate a key pair
	Giving right to decrypt
	How to encrypt a file
	How to decrypt a file

	Encrypting a large dataset

