Ultimaker

Technical data sheet PLA

Chemical Name	Polylactic acid
---------------	-----------------

Description

Ultimaker PLA filament provides a no-hassle 3D printing experience thanks to its reliability and good surface

quality. Our PLA is made from organic and renewable sources. It's safe, easy to print with and it serves a wide range of applications for both novice and advanced users.

Key features Good tensile strength and surface quality, easy to work

with at high print speeds, user-friendly for both home and office environments, PLA allows the creation of high-resolution parts. There is a wide range of color options

available.

Applications

Household tools, toys, educational projects, show objects,

prototyping, architectural models, as well as lost casting

methods to create metal parts.

Non suitable for Food contact and in-vivo applications. Long term outdoor usage or applications where the printed part is exposed to

temperatures higher than 50 °C.

Filament specifications Value Method Diameter 2.85±0.10 mm Max roundness deviation 0.10 mm

Net filament weight 750 g -

<u>Color information</u> <u>Color code</u>

PLA Green	RAL 6018
PLA Black	RAL 9005
PLA Silver Metallic	RAL 9006
PLA White	RAL 9010
PLATransparent	n/a
PLA Orange	RAL 2008
PLA Blue	RAL 5002
PLA Magenta	RAL 4010
PLA Red	RAL 3020
PLAYellow	RAL 1003
PLA Pearl White	RAL 1013

Mechanical properties (*)	Injectio	Injection molding			3D printing		
	Typical v	alue	Test method	Тур	oical value	Test method	
Tensile modulus	-		-		46.5 MPa	ISO 527 (1 mm/min)	
Tensile stress at yield	-		-	49.5 MPa		ISO 527 (50 mm/min)	
Tensile stress at break	-		-		6 MPa	ISO 527 (50 mm/min)	
Elongation at yield	-		-	3.3	%	ISO 527 (50 mm/min)	
Elongation at break	-		-	5.2	%	ISO 527 (50 mm/min)	
Flexural strength	-		-	103	3.0 MPa	ISO 178	
Flexural modulus	-		-	31!	50.0 MPa	ISO 178	
Izod impact strength, notched (at 23°C)	-		-	5.1	kJ/m²	ISO 180	
Charpy impact strength (at 23°C)	-		-	-		-	
Hardness	-		-	-		-	
Thermal properties		Турі	cal value		Test method	<u> </u>	
Melt mass-flow rate (MFR)		6.09	g/10min		ISO 1133 (210 °C, 2.16 kg)		
Heat deflection (HDT) at 0.455 MPa		-			-		
Heat deflection (HDT) at 1.82 MPa		-			-		
Glass transition		~60 °	С		ISO 11357		
Coefficient of thermal expansion (flow)		-			-		
Coefficient of thermal expansion (xflow)		-			-		
Melting temperature		145-1	160 °C		ISO 11357		
Thermal shrinkage		-			-		
Other properties		Турі	<u>cal value</u>		Test method	4	
Specific gravity		1.24			ASTM D1505		
Flame classification		-			-		

Notes

Properties reported here are average of a typical batch. The 3D printed test specimens were printed in the XY plane, using the normal quality profile in Cura 2.1, an UM2+, a 0.4mm nozzle, 90% infill, 210 °C nozzle temperature and 60 °C build plate temperature. The values are the average of 5 white and 5 black tensile bars. Ultimaker is constantly working on extending the TDS data.

Disclaimer

Any technical information or assistance provided herein is given and accepted at your risk, and neither the Ultimaker or its affiliates make any warranty relating to it or because of it. Neither Ultimaker nor its affiliates shall be responsible for the use of this information, or of any product, method or apparatus mentioned, and you must make your own determination of its suitability and completeness of your own use, for the protection of the environment, and for the health and safety of your employees and purchasers of your products. No warranty is made of the merchantability or fitness of any product; and nothing herein waives any of Ultimaker's conditions of sale. Specifications are subject to change without notice.

<u>Version</u>

Version 3.006

<u>Date</u>

28/02/2017

Ultimaker