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Summary 

Accurate rating curves are essential for a wide range of river management purposes, particularly as 

a basis for flood risk management. It is unknown how the Dutch river Rhine system behaves at 

extremely high discharges. To predict this behavior, hydrodynamic models are used which are 

calibrated and validated by rating curves. Rating curve accuracy is therefore important for the 

reliability of hydrodynamic model results. For this thesis, the three largest branches of the Dutch 

river Rhine and the bifurcation point Pannerdense Kop are considered. The rating curve locations 

Bovenrijn – Lobith (BR), Pannerdense Kop - Waal (WL) and Pannerdense Kop - Pannerdensch Kanaal 

(PK), are only 5 km apart without intermediate tributaries or significant water storage areas. 

Therefore, between the locations a nearly perfect water balance would be expected. Comparing the 

operational rating curves of 2018 for these locations shows that the water balance is not closing, up 

to 5% error. This gives a direct indication of the uncertainty in the rating curves. The objective of 

this thesis is to determine the uncertainty of single rating curves as related to flow measurement 

errors and to explore how water balance considerations can influence the uncertainty of rating curves. 

Firstly, the uncertainty that is associated with single rating curves is quantified, using Bayesian 

inference and Markov chain Monte Carlo simulations, as based on homogenized measurement 

datasets. An indication of the obtained total rating curve uncertainty bandwidths is as follows: for 

local water levels of 12 m +NAP the total rating curve uncertainty bandwidths are 430.1 m3s-1, 364.5 

m3s-1 and 199.8 m3s-1, for BR, WL and PK, respectively, and for local water levels of 16 m +NAP the 

total rating curve uncertainty bandwidths are 1018.6 m3s-1, 1113.7 m3s-1 and 727.9 m3s-1, for BR, 

WL and PK, respectively.  

Secondly, the uncertainty that is associated with single rating curves, as related to flow 

measurement errors, have been quantified. Therefore, standard discharge measurements error 

values (3 and 5%) obtained from ISO reports and scientific literature were imposed in Bayesian 

inference and MCMC simulations. It is found that from all three branches, for equal measurement 

errors, the measurement uncertainty is most dominant in BR. However, there is a large difference in 

variation explained by measurement errors when assuming discharge measurement errors of 3% 

versus 5%, especially for BR. It remains unknown what the exact measurement error is per location. 

The measurement uncertainty is likely highest for WL, since more measurement uncertainty is 

introduced due to assumed floodplain flow in the relatively large and complex cross-section of the 

floodplain of WL.  

Finally, this thesis proposes a method for establishing rating curves based on water balance 

closure. Currently, in scientific literature, no method can be found that considers the water balance 

for the establishment of rating curves. The method of todays practice only considers locally measured 

discharges for rating curve construction. The proposed method also includes discharge 

measurements from other locations to incorporate a closing water balance in the separate rating 

curves. Compared to the method used in todays practice, the proposed method clearly reduces the 

systematic error in water balance and thereby provides more consistent rating curves for the river 

network of the Dutch Rhine. Next, reducing the water balance error led to a decrease of the rating 

curve uncertainty bandwidth, for water levels above 16 m +NAP at WL, and to a slight increase of 

the rating curve uncertainty bandwidth for PK. 

Since rating curves are essential in the construction of discharge time-series from water levels 

and in the calibration of river models, it is important that the systematic error in rating curves are 

removed as much as possible. Especially if these discharge time-series and calibrated models are 

used to define and hydraulically model design flood events. Hydrodynamic models treat the river 

system as a closed water balance. To prevent systematic under- or overestimation of discharges or 

water levels on entire river branches, there must be no systematic error in the water balance and 

water levels of rating curves. In the Netherlands, the design discharge for the Rhine river network is 

far beyond any event that has ever been observed. Therefore, it of utmost importance that models 

used for development of flood management norms and regulations do not contain systematic effects 

that distort realistic system behavior.
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1. Introduction 

1.1. Background 

Discharge time series are essential for river water management. In the Netherlands, discharge time 

series are mainly derived from measured water level time series using rating curves (Quartel, et al., 

2011). Measuring techniques for discharge time series are evolving, but the technique for measuring 

water level time series is more straight forward and therefore more frequently applied (Quartel, et 

al., 2011). For several locations along the Dutch Rhine, one rating curve is established. A rating 

curve describes the relationship between water level and discharge. Rating curves generally serve 

one purpose: translating continually measured water level time series into a discharge time series 

estimate, using the stage-discharge relationship. The discharge time series on the other hand, serve 

many purposes such as hydrodynamic model calibration, navigation, dredging maintenance, solving 

water quality issues, flood risk management and drought management (Quartel et al., 2011; Le Coz, 

2012). In this thesis the focus lies on flood risk management. 

A traditional rating curve is a single relation between water level and discharge for a certain 

location (Quartel, et al., 2011), and it provides the most common and most simple method for the 

determination of discharge time series in open channels (Rantz, 1982; Schmidt, 2002; Le Coz, 2012). 

The traditional method for obtaining single rating curves, is fitting a curve through paired 

measurements of stage and discharge (Kean & Smith, 2010). This traditional method has been used 

worldwide for over a century and is mainly developed by the US Geological Survey (Rantz, 1982) 

and based on ISO reports. The traditional rating curve implies that there are no temporal variations, 

which is a major shortcoming. Also, the traditional rating curve implies a steady open channel flow 

and a permanent control (reference hydraulic situation) (Le Coz, 2012).  

In natural rivers like the Dutch river Rhine temporal variations occur, both in the channel flow 

and in the hydraulic control (Quartel, et al., 2011). The temporal variation can be:  

− continuous variation (scour and fill sand-bed channel, variable backwater and changing 

discharge/hysteresis);  

− seasonal variation (aquatic vegetation, ice cover and overflow and ponding); and 

− permanent change (change to channel cross-section, human interventions and riverbed 

subsidence) (Herschy, 2009). 

A Dutch method to incorporate temporal variations is the Qf-relationship. The method is developed 

in 1998 by Royal HaskoningDHV in collaboration with Rijkswaterstaat-RIZA and has been operational 

since 2004. This method corrects the derived discharge for the following four temporal variations: 1) 

hysteresis, 2) autonomous subsidence, 3) weir effects and 4) human interventions to the river. This 

solves some of the major shortcomings of a traditional rating curve. 

Rating curves for the Dutch Rhine branches are available for different historical periods and have 

throughout the years been obtained due to various field measuring campaigns. A crucial issue for 

establishing rating curves is to accurately measure the cross-sectional flow velocity and surface area, 

to be able to calculate the discharge for a certain water level (Le Coz et al., 2014). Discharge 

measurements are therefore not directly measured but calculated, using cross-sectional flow 

velocity- and surface area measurements. However, they are referred to as ‘discharge 

measurements’. Note that there is a strict distinction between ‘measured’ discharge and ‘derived’ 

discharge. The latter is derived from a rating curve, based on a measured water level for a specific 

location. According to Le Coz (2012) at least three types of errors need be considered when discharge 

measurements are to be used for the establishment and the evaluation of single rating curves: 

1. errors in discharge measurements which are related to the measurement process itself. 

Combining instrumental errors, assumptions for floodplain flow, environmental errors, 

human errors and spatial integration errors; 

2. errors in time integration to flow non-stationarity during the measurement (e.g., hysteresis); 

and 

3. systematic errors due to deviation of hydraulic conditions from the reference flow regime. 
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Because of the demanding efforts for data collection and processing in setting up rating curves, 

they are often created only at relatively few key river locations. Along a single river reach, 

consecutive rating curve locations are commonly far apart, because it is assumed that in a single 

channel the intermediate discharge-variations are small. An exception to this is when tributaries or 

bifurcations are present in the river. Rating curves for different branches are then required to fully 

describe the distribution of water over the branches. Together, these rating curves in a network are 

expected to give a closing water balance, where water input from upstream is traceable to 

downstream, apart from intermediate minor additional runoff, inflows, or stored or extracted water 

quantities.  

The discharge distributions at the major bifurcation points of the Dutch Rhine system, and 

thereby the amount of discharge per branch, have a dominant influence on the water levels along 

the downstream branches. Therefore, an accurate estimate of the discharge distribution and 

discharges per branch are essential for flood risk management. To obtain accurate discharge 

estimates from rating curves, a good rating curve accuracy and mass balance accuracy are needed 

(e.g., Vervoorn, 1998; HKV, 2009). However, in practice it is not possible to maximize the rating 

curve accuracy and the water balance accuracy simultaneously (Vervoorn, 1998), see Figure 1. This 

is due to errors in the measurements, for example resulting from assumption for floodplain flow. A 

trade-off has to be made between rating curve accuracy and water balance accuracy (Vervoorn, 

1998). For example, HKV (2009) only considers water balance accuracy in the validation of the rating 

curve models, to determine whether they are reliable and accurate. Furthermore, the best method 

for assessing rating curve uncertainty is an important and open scientific issue (Le Coz et al., 2014).  

 

 

Figure 1. Visual indication of the relationship between rating curve accuracy and mass balance 
accuracy. Adapted from Vervoorn (1998). 

 

1.2. Problem context 

Under the new Dutch flood risk framework, quantifications of all uncertainties are required and should 

be calculated if possible. Currently, measurement errors (errors related to the measurement process 

itself) have not yet been quantified as a source of rating curve uncertainty. Errors in discharge 

measurements translate to errors in single rating curves, and in turn to errors in discharge time 

series estimates, see Figure 2. Hydrodynamic models are calibrated and validated by discharge time 

series estimates. Since it is unknown how the river system behaves at extreme upstream discharges, 

branch discharge estimates at extreme discharges are derived from hydrodynamic model studies and 

rating curve extrapolations. In this context, an accurate set up of rating curves becomes of high 

importance for the reliability of hydrodynamic model results (Pappenberger et al., 2006; Herschy, 

2009), and thus flood risk management.  
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Figure 2. Schematization of the effect of measurement errors. 

 

Next, in the Netherlands, a great opportunity presents itself to check the consistency and 

accuracy of rating curves at river stations around the bifurcation near the Pannerdense Kop, see 

Figure 3. This location in the river Rhine is of great significance for water management in the 

Netherlands. Amongst others, the discharge split at the Pannerdense Kop affects downstream flood 

risk, and it is actively controlled to aid river navigation. Therefore, the discharge split at the 

Pannerdense Kop is frequently measured at the following locations: 

− Bovenrijn – Lobith (BR); 

− Pannerdense Kop - Waal (WL); and 

− Pannerdense Kop - Pannerdensch Kanaal (PK). 

BR is located just upstream of the bifurcation point and WL and PK are located downstream the 

Pannerdense Kop bifurcation, see inset in Figure 3. The locations are only 5 km apart without 

intermediate tributaries or significant water storage areas. Therefore, between the stations a nearly 

perfect water balance would be expected. A small lake named ‘De Bijland’ is connected with the 

Bovenrijn between the locations. It is assumed that this lake has a negligible effect on the water 

balance. Water balance closure of the operational rating curves is important for flood management. 

Discharge time series are derived from operational rating curves, using observed water levels. 

Hydrodynamic models are calibrated and validated based on these discharge time series estimates 

and observed water levels. However, hydrodynamic models treat the whole river system as a closed 

water balance, while the discharge time series used in their calibration and validation, are not 

according to a closed water balance. This causes discrepancies between actual discharge time series 

and derived discharge time series from the rating curves. 

 

 

Figure 3. The river Rhine in the Netherlands near the bifurcation point at Pannerdense Kop. Also 
shown are the three rating curve locations. Adapted from Steenblik et al. (2020). 

 

Figure 4 shows the calculated error in the water balance at this bifurcation point, as derived from 

operational rating curves at three locations, and from actual ADCP measurements that were carried 

out in 2018. This error in the water balance, which goes up to 5%, is a direct indication of the 

uncertainty of the respective rating curves. Only data for water levels above 10 m +NAP at Lobith 
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were considered, which is the regime of a freely flowing river where no active weir operating is taking 

place (Reeze et al., 2017). This threshold of 10 m +NAP at Lobith roughly corresponds with an 

upstream discharge of 2500 m3s-1. The discharge data derived from the operational rating curves 

has a frequency of 10 minutes is open source (https://waterinfo.rws.nl/). For the ADCP measurement 

data, only same-day measurements (measurements with at least one measurement in each branch 

occurring at the same day) have been used. The positive systematic error reflects a higher upstream 

water volume, implying that in the bifurcating system water is lost.   

 

 

Figure 4. Water balance error at bifurcation Pannerdense Kop for discharge data derived from 
operational rating curves (source: https://waterinfo.rws.nl/) and for same-day ADCP flow 
measurements. The error is calculated as: (Q upstream – Q downstream) / Q downstream. The figure 
presents the discharge domain without weir effects for year 2018. 

 

The cross-sectional geometries of the three locations, obtained from Baseline 5.3.3. (2018), are 

shown in Figure 5. The wetted areas are representative for the 1995 flood, which is the highest water 

level in the data set. In Figure 5 it can be seen that at high discharges the floodplains contain flow. 

The floodplains are not accessible by measuring boats and therefore assumptions are made for 

floodplain flow. An assumed floodplain flow can result in errors in the cross-sectional averaged 

discharge measurement. This can lead to a water balance error of the rating curves and the measured 

discharges (see water balance error in ADCP data in Figure 4). In Figure 5 it can be seen that the 

floodplain of the Waal is large compared to the Bovenrijn and the Pannerdensch Kanaal. Making an 

assumption for floodplain flow is therefore most difficult in the Waal. The Waal could therefore be 

(most) responsible for the water balance error (Figure 4). 
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Figure 5. The wetted areas are representative for the 1995 flood, which is the highest water level in 
the data set (source: Baseline 5.3.3., 2018). 

 

1.3. Objective and research questions 

The objective of this thesis is to determine the uncertainty of single rating curves as related to flow 

measurement errors and to explore how considering the water balance in rating curve construction 

influences the rating curves uncertainty. The three largest Dutch Rhine branches (Bovenrijn, Waal 

and Pannerdensch Kanaal) and their bifurcation point (Pannerdense Kop) are studied. To meet the 

objective, the following research questions are addressed: 

1. How large are the uncertainty bands of the single rating curves for the three branches? 

2. To what extent is the uncertainty of single rating curves for the three branches induced by 

discharge measurement errors? 

3. Can single rating curves be established based on water balance closure, and if so, how does 

this influence the uncertainty bands of the single rating curves for the three branches? 

1.4. Outline 

Following the outline of the research questions, Chapter 2 describes the methods and Chapter 3 

describes the results. The methods and results are discussed Chapter 4 and finally the conclusions 

and recommendations presented in Chapter 5.  
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2. Methods 

2.1. Description of available data 

We use a dataset containing all available discharge measurements over a period from 1988 to 2018. 

The measurements have been collected at Lobith (Bovenrijn) and at the bifurcation Pannerdense Kop 

(Waal and Pannerdensch Kanaal), at each location containing 1303, 1202 and 1520 measurements, 

respectively. Each datapoint consists of three components: timestamp, measured stage and 

measured discharge, see Table 1. The stage has been measured continually with respect to the 

Amsterdam Ordnance Datum (NAP), using automatic float driven shaft encoders (Buschman et al., 

2017). The discharge has been measured infrequently, using helical Ott-mills (mechanical 

hydrometric current meters) between 1988-2004 and Acoustic Doppler Current Profilers (ADCP) 

between 2001-2018. The data has been validated by data-owner Rijkswaterstaat, by which several 

unrealistic outliers were removed from the data. 

 

Table 1. Overview of branches and measurement data (HKV, 2009). 

Location Timestamp Discharge 

measurement 

Water level 

measurement 

 [𝑑𝑑 − 𝑚𝑚

− 𝑦𝑦𝑦𝑦 ℎℎ:𝑚𝑚] 
[𝑚3𝑠−1]  [𝑐𝑚 + 𝑁𝐴𝑃]  

BR 𝑡𝐿𝑜𝑏𝑖𝑡ℎ  𝑄𝐵𝑜𝑣𝑒𝑛𝑟𝑖𝑗𝑛  𝐻𝐿𝑜𝑏𝑖𝑡ℎ  

WL 𝑡𝑃𝑎𝑛𝑛.  𝐾𝑜𝑝  𝑄𝑊𝑎𝑎𝑙  𝐻𝑃𝑎𝑛𝑛.  𝐾𝑜𝑝   

PK 𝑡𝑃𝑎𝑛𝑛.  𝐾𝑜𝑝 𝑄𝑃𝑎𝑛𝑛.  𝐾𝑎𝑛𝑎𝑎𝑙  𝐻𝑃𝑎𝑛𝑛.  𝐾𝑜𝑝  

 

2.2. Data homogenization 

A single rating curve implies a steady open channel flow and a permanent control (the reference 

hydraulic situation) (Le Coz, 2012). However, the measured stage-discharge data contains temporal 

variation and weir effects. Therefore, the data was homogenized. The data is homogeneous when 

there are no effects from:  

− non-permanent flow (hysteresis); 

− weirs (backwater); 

− river bed subsidence; and 

− river interventions. 

In this thesis, effects of hysteresis and river interventions were not considered in the 

homogenization process. Hysteresis is not considered due to time limitation. Next, based on the work 

of Berends (2019), river interventions were not considered. Using the same data set, Berends (2019) 

found that there is no visible effect of river interventions on water levels and argued that the effect 

of historical river interventions may be hidden in rating curve uncertainty. By not considering effects 

of hysteresis and river interventions in the homogenization process, their uncertainty is implicitly 

included in the rating curve uncertainty. This implication will be discussed in the discussion (Chapter 

4). 

The raw dataset (Section 2.1) is homogenized, by: 

− selecting data without weir effects (Section 2.2.1); and 

− detrending water levels for river bed subsidence (Section 2.2.2). 
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2.2.1. Selecting data without weir effects 

Backwater effects occur when the weir at Driel is active, which is located 25km downstream of the 

bifurcation point Pannerdense Kop in river Nederrijn. These backwater effects, influence water levels 

at the measurement locations (Lobith and Pannerdense Kop) and the discharge distribution at the 

Pannerdense Kop, see Figure 6. In the entire research period (1988-2018), the weir program of Driel 

has been as follows: as soon as the water level at Lobith dropped below 10.00 m +NAP the weir was 

put into operation (HKV, 2016; Reeze et al., 2017). However, in Figure 6 weir effects are visible for 

water levels at Lobith between 10 and 11 m +NAP. These weir effects are considered small and 

otherwise, if a threshold water level at Lobith higher than 10.00 m +NAP is used, very few data 

points remain. A water level of 10.00 m +NAP at Lobith is therefore the threshold for selecting data 

without weir effects, which corresponds with an upstream discharge of roughly 2500 m3s-1.  

 

 

Figure 6. The influence of weir effects on discharge distribution. 

 

The threshold at Lobith can directly be applied on the water level measurements at Lobith. To 

apply the threshold at Lobith on the water level measurements at the Pannerdense Kop, coinciding 

water levels between the two locations were used. HKV (2009) assumed that a water level at Lobith 

at 10.00 m +NAP coincides with a water level of ±9.68 m +NAP at Pannerdense Kop and 

Rijkswaterstaat (2015) assumed that water level at Lobith at 10.00 m +NAP coincides with a water 

level of ±9.65 m +NAP at Pannerdense Kop. The water levels Pannerdense Kop that coincide with a 

10.00 m +NAP water level at Lobith, change over time, see Figure 7. Therefore, a single value for 

the coinciding water level at Pannerdense Kop should not be used as a threshold. In this thesis, the 

stage-discharge data of the WL and PK were merged with continually measured water levels at Lobith 

(frequency of 10 min) based on the exact same timestamps. Next, the threshold at Lobith was applied 

on the water level measurements at the Pannerdense Kop, using the coinciding water levels.  
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Figure 7. Coinciding water level at Pannerdense Kop given a water level of 10 m +NAP at Lobith 

(data source: https://waterinfo.rws.nl). 

 

2.2.2. Detrending water levels for river bed subsidence 

In Figure 8, river bed subsidence is clearly visible in the long term temporal change of the stage-

discharge relationship. For all three branches, water levels have lowered at equal discharges due to 

river bed subsidence (up to roughly 0.6 m within the entire study period). To homogenize the stage-

discharge data for river bed subsidence, measured water levels are detrended. The measured 

discharges remain unchanged.  

 

 

Figure 8. Long term temporal change in stage-discharge relationship of the three branches. Note, 
the figure contains data points including weir effects (HLobith < 10.00 m +NAP). Before river bed 
subsidence homogenization the data points including weir effects are excluded.   

 

The first step in detrending the measured water levels, was to divide the dataset without weir 

effects (Section 2.2.1.) into subperiods. Per branch, the dataset was divided into 4 adjacent 

subperiods: 1988-1995; 1996-2003; 2004-2011; 2012-2018. Using more subperiods will give too 

https://waterinfo.rws.nl/
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little data points for rating curve construction and using less subperiods will hide the temporal trend. 

Furthermore, the entire period of the dataset (31 years) is too small to use a moving average. 

Therefore, separate subsets are used.  

The second step was to construct a rating curve through the subsets, representing the stage-

discharge relationship. Polynomial functions were used as rating curve models, since there is too 

little data per subset to properly fit the rating curve model of Equation 1, which will be introduced in 

Section 2.3.1. For the polynomial functions, third order polynomials were used, since second order 

polynomials will under-fit the data points and fourth order polynomials will overfit the data points. 

The disadvantage of using polynomial functions as rating curves is that they are not suitable for 

extrapolation. Therefore, third order polynomial rating curves were only constructed for the domain 

for which all subperiods hold data points.  

The third step was to linearly space 50 discharge values per branch in the domain for which all 

subperiods hold data points. Per subperiod, these 50 discharge values were translated into 50 water 

level values, using the subperiod specific rating curve. Per discharge value, 4 water level values are 

obtained for the 4 subperiods. Per discharge, the trend over time of the water levels was determined. 

This trend is assumed to be linear, based on the research of Berends (2019) who found there was a 

linear decrease over time of water levels for single discharge values. Berends (2019) have the same 

study area and period. The results of Berends (2019) are not used in this thesis, because they only 

obtained trends for 4 discharge values which is not sufficient for proper detrending. Also, even though 

Berends (2019) have the same study area, they only obtained results for the Pannerdense Kop and 

not for Lobith.  

The final step was to determine the relationship between the trend in the water levels and the 

branch discharge. The water levels could then be detrended using the following information:  

− the measured branch discharge, which is paired to the measured water level; 

− the relation between the trend in the water levels and the measured branch discharge; and 

− the time difference between the date of measurement and the reference date ‘2018-12-31 

23:59:59’. 

2.3. RQ1: Rating curve uncertainty 

This research question aims to quantify the uncertainty bands of the single rating curves for the 

three branches, that stem from all sources of uncertainty present in the homogenous measurement 

dataset.  

2.3.1. Rating curve model 

The rating curve model used in this thesis is a summation of the one-dimensional power function 

adapted from WMO (2010) and ISO (2010). The power function is derived from the Manning-Strickler 

equation, and assumes a steady uniform flow in a wide rectangular channel. The physical background 

for the rating curve model used of this thesis is shown in appendix A. The model is given as: 

 
𝑄 =∑𝑎𝑖

𝑁

𝑖=0

(ℎ − 𝑏𝑖)
+𝑝𝑖 , ℎ > 𝑏𝑖 (1) 

where the measured water level ℎ [𝑚 + 𝑁𝐴𝑃] serves as input to derive output: the total discharge 

𝑄 [𝑚3𝑠−1]. The model parameters are the bed level 𝑏 [𝑚 + 𝑁𝐴𝑃] (sometimes written ℎ0), the parameter 

related to the channel characteristics 𝑎 = 𝑊𝑛−1𝑆𝑏
1/2
 [𝑚4/3𝑠−1] and the hydraulic exponent parameter 

related to the hydraulic control 𝑝 [−]. The parameters are determined based on available stage 

discharge data. Furthermore, the discharge is computed from a summation following the division of 

the channel cross-section in a number of 𝑁 [−] subsections 𝑖 [−]. Following HKV (2009), three 

subsections are assumed, representing the equivalent of the main channel, groin fields and flood 

plains. 
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2.3.2. Deterministic optimized rating curve 

Per branch, a deterministic optimized rating curve is needed to derive the prior distributions of 𝑎𝑖 for 

the Bayesian rating curves (Section 2.3.3). Furthermore, deterministic optimized rating curves are 

compared with the probabilistic Bayesian rating curves. After the homogenous (i.e., no weir effects 

& no rived bed subsidence) stage-discharge datasets are obtained, it is possible to fit the general 

rating curve form of Equation 1. Equation 1 is be fitted through the measurement data points by 

using a standard regression analysis approach, namely ‘least squares’. Least squares problems are 

either linear or nonlinear, depending on whether curve model is linear. Since Equation 1 is nonlinear, 

the nonlinear least squares method is used. The goal is to find the vector of parameters 𝜃 [𝑎𝑖 , 𝑏𝑖 , 𝑝𝑖] 

that gives the best fit of the curve through the measurement data, also known as parameter 

optimization. In the least squares sense this means that the sum of the squares is minimized: 

 
𝑆 =∑𝑟𝑖

2

𝑚

𝑖=1

 (2) 

 𝑟𝑖 = 𝑄𝑖 − 𝑓(ℎ𝑖 , 𝜃) (3) 

where 𝑆 is the sum of the squares, 𝑚 is the number of measurements 𝑖 and 𝑟𝑖 is the residual (in-

sample prediction error). By optimization the vector of parameters 𝜃 is found that yields in a minimum 

of squares 𝑆. Other optimization criteria could have been used, for example RMSE, which puts a bit 

more weight on higher values. However, the results (Bayesian rating curves) are not sensitive for 

the optimization criteria, since the deterministic optimized rating curve is only needed to determine 

prior distributions of 𝑎𝑖 for the Bayesian rating curves, which are moderately informative (Section 

2.3.3). 

For the optimization process, some parameters must have preset fixed values, since it is not 

possible to compute a deterministic optimized solution if there are too many unknown parameter 

values. Therefore, a decision must be made on which parameters are fixed and which are optimized. 

Furthermore, in the optimization process, the vector of parameters 𝜃 is subject to physical boundary 

conditions. The optimization approach is as follows (see Table 2 for an overview): 

− 𝑎𝑖 are optimized since they are needed to derive the prior distributions of 𝑎𝑖. It is too difficult 

to estimate fixed values for parameters 𝑎𝑖 using the underlying physical parameters [𝑊, 𝑛,  𝑆𝑏]. 

Furthermore, since the branches only flow in the positive direction, 𝑎𝑖 are optimized for values 

larger than zero. 

− 𝑏0 is fixed, since there is limited measurement data for the low stage-discharge range due to 

exclusion of weir effects. Optimizing would therefore lead to uncertain results and unrealistic 

values. For all branches, an accurate estimation of the bed level is available in Baseline, 

namely annual- and hectare averaged multibeam measured main channel bed levels per 

section (location based on chainage). Furthermore, HKV (2009) determined 𝑏𝑖-values for an 

optimized stationary rating curve for period 2008-2009 for the same branches. Bed level 

values from Baseline were chosen as 𝑏0-values, since they are a more accurate approximation 

of the main channel bed level for 2018 (reference year). In Table 3 it can be seen that the 

bed level values from Baseline are slightly below the 𝑏0-values derived by HKV (2009) for a 

stationary rating curve for period 2008-2009. This could be the result of main channel erosion 

between 2009 and 2018. 

− 𝑏1 and 𝑏2 are optimized, since they are too difficult to estimate. They represent schematized 

levels related to groin crests and floodplains, which contain large variation in space. To 

prevent interchangeability, parameters 𝑏1 and 𝑏2 have non-overlapping boundary conditions. 

− 𝑝𝑖 are fixed, because optimizing these parameters will lead to unrealistic values. For example, 

HKV (2009) who had the same study area obtained hydraulic exponents larger than 2, 

because in their optimization approach they used fixed values for 𝑏𝑖 and optimized 𝑝𝑖. Based 

on the Manning equation 𝑝𝑖 ≈ 1.667, see Appendix A. Due to complex cross-sectional 

geometry and overbank flow, the hydraulic exponent 𝑝𝑖 can show variability (±0.1), but it is 

crucial to use realistic values for 𝑝𝑖 (close to 1.667) for physical derivation of 𝑎 and for 

extrapolation (Le Coz et al., 2014). Therefore, the hydraulic exponent 𝑝 can deviate roughly 

±0.1 from the typical value of 5/3 (≈1.667) (Le Coz et al., 2014). Furthermore, since 𝑏1 and 
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𝑏2 are too difficult to estimate, 𝑝𝑖 needs to be fixed to control the optimizing process. 

Otherwise there will be too many unknown parameters. 

 

Table 2. Optimization approach for the vector of parameters 𝜃. 

 𝑖 = 0  𝑖 = 1  𝑖 = 2  

𝑎𝑖  𝑎0 > 0  𝑎1 > 0  𝑎2 > 0  

𝑏𝑖  𝑏0 = 𝑓𝑖𝑥𝑒𝑑  𝑏1 > 𝑏0  𝑏2 > 𝑏1  

𝑝𝑖  𝑝0 = 1.667   𝑝1 = 1.667  𝑝2 = 1.667  

 

Table 3. Cease-to-flow levels. 

Location Chainage (km) Section Baseline; 2018   HKV; 2009 

   𝑏0   𝑏0  𝑏1  𝑏2  

BR 862.2 8622 3.57  3.58 11 14 

WL 868.3 8683 3.44  3.51 11 13.5 

PK  868.2 8682 3.58  3.86 10.5 14.2 

 

2.3.3. Bayesian rating curve 

The best method for assessing rating curve uncertainty is an important and open scientific issue (Le 

Coz et al., 2014). Following other authors (Reitan and Petersen-Øverleir, 2011; Le Coz et al., 2014; 

Mansanarez et al., 2019; Berends (2019) Bayesian inference and Markov Chain Monte-Carlo (MCMC) 

is used to construct stochastic rating curves. The main advantage of Bayesian inference is that 

‘hydraulic knowledge of the stage-discharge relation can be explicitly translated into prior 

distributions of the parameters of the assumed rating curve equation’ (Le Coz et al., 2014), which 

prevents physically unrealistic outcomes (Mansanarez, 2016). Furthermore, unlike deterministic 

optimization, where some parameters must have preset fixed values due to too many unknown 

parameter values, all rating curve parameters are described by probability distributions. This means 

that an uncertainty analysis can simply be done by using percentiles from the posterior distribution. 

Furthermore, the main advantage of MCMC is the computational efficiency in which samples are 

taken from the posteriors. 

Following ISO (2007) for Ott-mills and ISO (2012) for ADCP, the assumption is made that the 

distribution of the discharge measurement errors are of normal nature. Therefore, a Normal error 

model that is proportional to the discharge is used to formalize the relationship between stage and 

discharge. Assuming that errors in stage measurement are negligible, the error model is given as: 

 𝑄(ℎ|𝜃, 𝜎) = 𝑓(ℎ|𝜃) + 𝜖 (4) 

 𝜖 ~ 𝑁(0, 𝜎𝑓(ℎ|𝜃)) (5) 

where 𝑓(ℎ|𝜃) is the rating curve model (Equation 1) and 𝜖 is the Normal error term. The normal error 

term 𝜖 is a Normal distribution around the rating curve model 𝑓(ℎ|𝜃) (no bias), in which 𝜎𝑓(ℎ|𝜃) is the 

standard deviation and 𝜎 is the relative standard deviation. Furthermore, as recommended by Le Coz 

et al. (2014), the standard deviation can also be written as 𝛾1 + 𝛾2 ∙ 𝑓(ℎ|𝜃). “This affine model assumes 

that this standard deviation is dominated at low flows by a constant term c1 whereas at high flows 

the error is proportional to the discharge estimation” (Mansanarez, 2016). This thesis is only focused 

on high flows and 𝛾1 + 𝛾2 ∙ 𝑓(ℎ|𝜃) leads to values of 𝛾1 roughly between zero and four, which is very 

small compared to high flows (order size 105). Therefore, the standard deviation will not be written 

as 𝛾1 + 𝛾2 ∙ 𝑓(ℎ|𝜃), but as given in Equation 5. 
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The error model of Equation 5 contains several unknown values, namely the rating curve 

parameters 𝜃 and the relative standard deviation 𝜎. These unknown values are stochastic variables 

(described by probability distributions). “Prior to inference, the initial distributions should be chosen 

such that they cover the region where we expect the model to be accurate” (Berends, 2019). So, 

optimizing the parameters using Bayesian inference provides an understanding of what parameter 

values lead to an accurate model. This is formalized in Bayes’ theorem: 

 𝑝(𝑃|𝑂) = 𝑝(𝑂|𝑃) 𝑝(𝑃) 𝐶−1 (6) 

where the posterior distribution 𝑝(𝑃|𝑂) of the parameters 𝑃, given observations 𝑂, is the product of 

the prior distribution 𝑝(𝑃) and scaling term 𝐶 to ensure unity. For this research question the theorem 

can be rewritten as: 

 𝑝(𝜃, 𝜎|ℎ𝑜𝑏𝑠, 𝑄𝑜𝑏𝑠)⏟          
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

= 𝑝(𝑄𝑜𝑏𝑠|𝜃, 𝜎, ℎ𝑜𝑏𝑠)⏟          
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑝(𝜃, 𝜎)⏟    
𝑝𝑟𝑖𝑜𝑟

𝐶−1 (7) 

The likelihood of the observed discharge measurements 𝑄𝑜𝑏𝑠 is evaluated, given the pdf of a Normal 

distribution with mean 𝑓(ℎ𝑜𝑏𝑠|𝜃) and standard deviation 𝜎𝑓(ℎ𝑜𝑏𝑠|𝜃): 

 𝑝(𝑄𝑜𝑏𝑠|𝜃, 𝜎, ℎ𝑜𝑏𝑠) = 𝑝(𝑄𝑜𝑏𝑠|𝑁(𝑓(ℎ𝑜𝑏𝑠|𝜃), 𝜎𝑓(ℎ𝑜𝑏𝑠|𝜃))) (8) 

The priors (prior distributions) of θ and σ are follows (see Table 4 and Table 5 for an overview): 

− For 𝑎𝑖, moderately informative priors with Normal distributions centered at the deterministic 

optimized rating curve of the considered branch are adopted. 

− For 𝑏0 is a fixed prior is adopted, to control the inference because there is limited 

measurement data for the low stage-discharge range due to exclusion of weir effects. Similar 

to the deterministic rating curve optimization, the bed level values from Baseline are used 

as 𝑏0-values, since they are the most accurate approximation of the main channel bed level 

for 2018 (reference year).  

− For 𝑏1 and 𝑏2, priors with non-overlapping Uniform distributions to prevent interchangeability 

are adopted. 

− For 𝑝𝑖, informative priors with Normal distributions centered at 1.667 (based on the Manning 

equation) are adopted. 

− For 𝜎, a non-informative prior with a Half-Normal distribution is adopted, following Gelman 

(2006). 

The prior distributions of the underlying parameters (parameter uncertainty) of the rating curves are 

shown in Appendix B. 

 

Table 4. Overview of prior choice. 

Parameter Level Distribution Notation 

𝑎𝑖 Moderately informative Normal 𝑁(𝜇, 𝜎) 

𝑏0  Fixed Fixed 𝑥  

𝑏1, 𝑏2 Non-informative Uniform 𝑈(𝑥1, 𝑥𝑢) 

𝑝𝑖 Informative Normal 𝑁(𝜇, 𝜎) 

𝜎 Non-informative Half-Normal |𝑁(𝜇, 𝜎)| 
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Table 5. Prior distributions. 

Parameter BR WL PK 

𝑎0  𝑁(121,25)  𝑁(87, 25)  𝑁(42, 25)  

𝑎1  𝑁(78, 25)  𝑁(126, 25)  𝑁(32, 25)  

𝑎2  𝑁(264, 25)   𝑁(280, 25)  𝑁(410, 25)  

𝑏0  3.57  3.44  3.58  

𝑏1  𝑈(3.57, 12)  𝑈(3.44, 12)  𝑈(3.58, 12)   

𝑏2  𝑈(12, 15)  𝑈(12, 15)  𝑈(12, 15)  

𝑝𝑖  𝑁(1.667, 0.25)  𝑁(1.667, 0.25)  𝑁(1.667, 0.25)  

𝜎  |𝑁(0, 2)|  |𝑁(0, 2)|  |𝑁(0, 2)|  

 

Finally, a Markov Chain Monte Carlo (MCMC) algorithm is used to sample from the posterior 

(Equation 7), using the Hamiltonian No-U-Turn sampler (NUTS) (Hoffman & Gelman, 2014). 

Typically, a sample size of 104-105 is used, according to Le Coz et al. (2014). Due to the large 

computational effort of taking samples, a sample size of 2000 is used. This fits the scope of the 

thesis. Furthermore, testing the sample size of 2000 resulted in proper chains, matching posteriors 

of the different chains and few divergences in the parameter space. The result is an ensemble of 

2000 single rating curves samples, from which total uncertainty is derived. The total uncertainty 

consists out of model uncertainty and predictive uncertainty. The model uncertainty (or parametric 

uncertainty) results from the rating curve parameters 𝜃. “Model uncertainty arises from fitting the 

rating curve model through a limited number of measurements” (Berends et al., 2020). The 

predictive uncertainty is present in the relative standard deviation 𝜎 of the Normal error term 

(Equation 5). Causes for predictive uncertainty include seasonal changes, hysteresis effects, and 

measurement error (Berends et al., 2020). To summarize, the model uncertainty depends on the 

number of measurements and the predictive uncertainty depends on the spread of these 

measurements. 

2.4. RQ2: Influence of measurement errors 

The aim of this research question is to quantify the uncertainty bands of the single rating curves for 

the three branches, that only stem from the measurement errors. In other words, which part of the 

total variation present in the measurement data, can be explained by measurement errors. 

The variation (spread) of the measurement data is reflected by the predictive uncertainty, which 

includes variation of measurement errors, hysteresis effects and seasonal changes. The 

measurement errors cannot be derived from the available dataset, because the dataset does not 

contain the required metadata (e.g., number of verticals, duration of flow measurements). Therefore, 

similar to Le Coz et al. (2014), ISO reports and scientific literature were used to determine the 

measurement errors. These measurement errors are then be imposed in Bayesian inference and 

MCMC simulations. From the simulations the distribution of the remaining predictive uncertainty 

(hysteresis effects and seasonal changes) is obtained, which is needed to analyze to what extent the 

measurement errors define the predictive uncertainty.  

Furthermore, two different instruments (Ott and ADCP) have been used by the data owner 

Rijkswaterstaat. Therefore, it was tested whether there is a difference in predictive uncertainty 

between the instruments, and if so, whether this difference should be considered for this research 

question. The Ott-mill measurements were split from the ADCP measurements, which then served 

as separate input for runs of Bayesian inference and MCMC simulations. This allowed for the 

possibility to spot differences in predictive uncertainty between the Ott-mill- and ADCP 

measurements.  
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2.4.1. Discharge measurement errors of helical Ott-mill instruments 

Assuming that the uncertainties of the individual components are independent, the relative combined 

uncertainty for Ott measurements can be determined as follows (ISO, 2007): 

 

𝑟𝑄 = √𝑟𝑚
2 + 𝑟𝑠

2 + (
1

𝑚
)(𝑟𝑏

2 + 𝑟𝑑
2 + 𝑟𝑝

2 + (
1

𝑛
) (𝑟𝑐

2 + 𝑟𝑒
2)) (9) 

where: 

− 𝑟𝑄:   relative combined uncertainty in the discharge measurement; 

− 𝑟𝑚:   relative uncertainty due to limited number of verticals; 

− 𝑟𝑠:   relative uncertainty due to calibration errors in the current-meter, width  

  measurement instrument, and depth sounding instrument; 

− 𝑟𝑏:   relative uncertainty in the width measurement; 

− 𝑟𝑑:   relative uncertainty in the depth measurement; 

− 𝑟𝑝:   relative uncertainty in mean velocity, due to limited number of depths per 

  vertical; 

− 𝑟𝑐:   relative uncertainty in point velocity due to variable responsiveness of  

  current-meter;  

− 𝑟𝑒:   relative uncertainty in point velocity due to velocity fluctuations (pulsations) 

  in the stream; 

− 𝑚:   number of verticals; and 

− 𝑛:   number of depths per vertical.  

Equation 9 gives a qualitative overview of how the individual components contribute to the combined 

uncertainty in discharge measurements. It is remarkable that Equation 9 does not specify how 

assumptions for floodplain flow are accounted for. The ISO (2007) does not consider this source of 

uncertainty for Ott measurements. Standard uncertainties can be found in look up tables in ISO 

(2007):  

− 𝑟𝑚 = 3%  see Table G.6 ISO (2007), assuming: 15 verticals; 

− 𝑟𝑠 = 1%   see Equation H.2 ISO (2007); 

− 𝑟𝑏 = 0.15%  see Table G.1 ISO (2007), assuming: widths between 0 to 100 m; 

− 𝑟𝑑 = 0.25%  see Table G.2 ISO (2007), assuming: depths between 6 and 14 m; 

− 𝑟𝑝 = 2.5%  see Table G.4 ISO (2007), assuming: 5 points per vertical; 

− 𝑟𝑐 = 0.5%  see Table G.5 ISO (2007), assuming: individual rating with velocity > 0.5 

  m/s; 

− 𝑟𝑒 = (√5 ∙ 3
2)%  see Table G.3 ISO (2007), assuming: exposure time = 1 min, velocity > 1 

  m/s; 

− 𝑚 = 15   see STOWA (2009); and 

− 𝑛 = 5   estimation. 

Filling these standard uncertainties into the Equation (9) gives a value of 𝑟𝑄 = 3.3%, which indicates 

a high accuracy. According to the handbook for measuring discharge in open channels of STOWA 

(2009), Ott measurements from a boat result in 𝑟𝑄 = 3 − 8%. However, according to Table 9-2 in 

STOWA (2009) 𝑟𝑄 ≤ 5% for more than 5 verticals. Rijkswaterstaat uses a minimum of 15 verticals 

(STOWA, 2009). So, the combined uncertainty in the discharge measurement is assumed to be 

between 3 and 5% for Ott-mills. 

2.4.2. Discharge measurement errors of ADCP instruments 

ISO (2012) on ADCP measurements, does not specify a methodology for computing the (combined) 

uncertainty of discharge measurements, but state that “the overall uncertainty will be a combination 

of the measured parameters, the computation methodology and the assumptions regarding the 

unmeasured portions of the channel” (ISO, 2012). According to STOWA (2009), the relative 

combined uncertainty for ADCP measurements can be determined as follows, assuming 

independency of the components: 
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𝑟𝑄 = √𝑟𝑄𝑚

2 + 𝑟𝑄𝑏
2 + 𝑟𝑄𝑤

2 + 𝑟𝑄𝑜
2 + 𝑟𝑖

2 (10) 

Where: 

− 𝑟𝑄: relative combined uncertainty in the discharge measurement 

− 𝑟𝑄𝑚: relative uncertainty in the direct measurable zone of the cross-section 

− 𝑟𝑄𝑏: relative uncertainty in the bottom layer, calculated based on an assumed velocity profile 

− 𝑟𝑄𝑤: relative uncertainty in the surface layer, calculated based on an assumed velocity profile  

− 𝑟𝑄𝑜: relative uncertainty in the near bank- and floodplain area, estimated or calculated based 

on an assumed velocity profile 

− 𝑟𝑖: relative uncertainty of instrumental errors. 

The relative uncertainty in the near bank- and floodplain area 𝑟𝑄𝑜, is not equal for all locations 

due to the different geometries. However, it is unknown how 𝑟𝑄𝑜 differs per location and therefore 

treated equally. Implications of this will be discussed in the discussion, see Chapter 4. STOWA (2019) 

do not give example values to fill in Equation 10, but state that ADCP measurements using the 

moving boat method result in 𝑟𝑄 = 3 − 5%. In scientific literature, usually 𝑟𝑄 = 5% is used for ADCP 

measurements (e.g., Le Coz et al., 2014; Mansanarez, 2016). Finally, ADCP measurements are 

commonly considered more accurate then Ott measurements (e.g., Le Coz et al., 2014; Mansanarez, 

2016). 

2.4.3. Bayesian inference 

From Section 2.4.1. and Section 2.4.2. it is concluded that 𝑟𝑄 = 3 − 5% for both Ott-mill and ADCP 

measurements. Following common hydrometry practice (e.g., ISO, 2007; ISO, 2012), uncertainty 

intervals of 𝑟𝑄 are defined as 95% confidence intervals. Now, with 𝜎𝑚 = 3 − 5% at 95% confidence, 

the remaining relative standard deviation 𝜎𝑟 has to be determined. The normal error model of 

Equation 4 is adapted to include measurement errors. Assuming that the measurement- and 

remaining error are independent and without bias, the adapted error model is given as: 

 𝑄(ℎ|𝜃, 𝜎𝑚, 𝜎𝑟) = 𝑓(ℎ|𝜃) + (𝜖𝑚 + 𝜖𝑟) (11) 

 
𝜖𝑚 + 𝜖𝑟  ~ 𝑁 (0, 𝑓(ℎ|𝜃)√𝜎𝑚

2 + 𝜎𝑟
2) 

(12) 

where 𝜖𝑚 is the measurement error, 𝜖𝑟 is the remaining error, 𝑓(ℎ|𝜃)√𝜎𝑚
2 + 𝜎𝑟

2 is the standard 

deviation, √𝜎𝑚
2 + 𝜎𝑟

2 is the relative standard deviation, 𝜎𝑚 is the relative standard deviation of 

measurement uncertainty and 𝜎𝑟 is the relative standard deviation of remaining uncertainty. For this 

research question Bayes’ theorem can be written as: 

 𝑝(𝜃, 𝜎𝑚, 𝜎𝑟|ℎ𝑜𝑏𝑠, 𝑄𝑜𝑏𝑠)⏟              
𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟

= 𝑝(𝑄𝑜𝑏𝑠|𝜃, 𝜎𝑚, 𝜎𝑟 , ℎ𝑜𝑏𝑠)⏟              
𝑙𝑖𝑘𝑒𝑙𝑖ℎ𝑜𝑜𝑑

𝑝(𝜃, 𝜎𝑚, 𝜎𝑟)⏟        
𝑝𝑟𝑖𝑜𝑟

𝐶−1 
(13) 

The likelihood of the observed discharge measurements 𝑄𝑜𝑏𝑠 is evaluated, given a Normal distribution 

with mean 𝑓(ℎ𝑜𝑏𝑠|𝜃) and standard deviation 𝑓(ℎ|𝜃)√𝜎𝑚
2 + 𝜎𝑟

2: 

 
𝑝(𝑄𝑜𝑏𝑠|𝜃, 𝜎𝑚, 𝜎𝑟 , ℎ𝑜𝑏𝑠) = 𝑝(𝑄𝑜𝑏𝑠|𝑁 (𝑓(ℎ𝑜𝑏𝑠|𝜃), 𝑓(ℎ𝑜𝑏𝑠|𝜃)√𝜎𝑚

2 + 𝜎𝑟
2))  (14) 

The priors (prior distributions) of 𝜃, 𝜎𝑚 and 𝜎𝑟 are as follows: 

− For 𝜃, containing [𝑎𝑖 , 𝑏𝑖  𝑝𝑖], priors equal to the priors of research question 1 are adopted, see 

Table 4 and Table 5. 

− For 𝜎𝑚, a fixed prior is adopted, with values obtained from ISO reports, which have been 

used by Rijkswaterstaat. A value of 3% and 5% are used, which are the most outer values 

for both Ott and ADCP.  

− For 𝜎𝑟, a non-informative prior with a Half-Normal distribution is adopted, following Gelman 

(2006). 
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An overview of the prior choice and distributions of 𝜎𝑚 and 𝜎𝑟 is given in Table 6 and Table 7. Finally, 

like research question 1, again a Markov Chain Monte Carlo (MCMC) algorithm is used to sample 

from the posterior, using the Hamiltonian No-U-Turn sampler (NUTS) (Hoffman & Gelman, 2014). 

 

Table 6. Overview of prior choice 

Parameter Level Distribution Notation 

𝜎𝑚  Fixed Fixed 𝑥  

𝜎𝑟  Non-informative Half-Normal |𝑁(𝜇, 𝜎)|  

 

Table 7. Prior distributions. 

Parameter BR WL PK 

𝜎𝑚  3%, 5%  3%, 5%  3%, 5%  

𝜎𝑟  |𝑁(0, 2)|  |𝑁(0, 2)|  |𝑁(0, 2)|  

 

2.5. RQ3: Water balance in rating curves 

For this research question a new method is proposed for establishing rating curves based on a closed 

water balance. Next, it is shown how this method influences the uncertainty bands of the rating 

curves, as compared to the rating curves of research question 1. In scientific literature, no method 

can be found that considers the water balance in the establishment of rating curves.  

In Section 1.2 it was shown that the original rating curves give a systematic error in water 

balance. However, there is no way to determine which of the three rating curves is most reliable and 

which of the three contribute(s) most to the water balance error. Therefore, all three locations are 

treated as equally reliable and a new method is proposed in which for each location data from the 

other two locations is used to adjust for water balance-offset in the rating curves. Novel in this 

method is that discharge measurements from other locations are included. In current practice, similar 

to the rating curves of research question 1, rating curves are constructed by only using locally 

measured stage and discharge as input data.  

To illustrate this method, Lobith is picked as example location. First, the data previously used 

for RQ1 (Section 2.3) is filtered on the prerequisite that a water level and discharge measurement is 

available in each of the three branches within the same day. This allows a same-day comparison of 

the water balance of the discharge measurements for each data point. The resulting filtered dataset 

contains 292 same-day discharge and water level measurements for each of the three locations. 

Second, for the upstream location of Lobith, the same-day discharge measurements of the two 

downstream bifurcating branches are summed and coupled with the same-day water levels at Lobith. 

The resulting 292 calculated data points are added to the 292 locally measured same-day stage-

discharge data at Lobith. Per water level point, there are now have two same-day discharges values, 

one local and one non-local, yielding a total of 584 data points. This same approach was used to 

construct 584 local and calculated data points for the two downstream locations. See Table 8 for an 

overview of how for each station additional data points were calculated based on a water balance. 

Finally, similar to the method used in Section 2.3.3, Bayesian rating curves were constructed for all 

three locations. 
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Table 8. Overview of how for each station additional non-local same-day data points were calculated 

based on a water balance 

Considered location      Discharge Water level 

BR      𝑄𝑊𝐿 +𝑄𝑃𝐾  𝐻𝐿𝑜𝑏𝑖𝑡ℎ  

WL      𝑄𝐵𝑅 − 𝑄𝑃𝐾  𝐻𝑃𝑎𝑛𝑛.  𝐾𝑜𝑝  

PK       𝑄𝐵𝑅 − 𝑄𝑊𝐿  𝐻𝑃𝑎𝑛𝑛.  𝐾𝑜𝑝  

 

By using same-day measurements, variation in discharge and water level in time and space is 

neglected. It is assumed that the temporal variation is small, because the river Rhine is a delta river. 

It is estimated that the maximum rate of change of discharge is roughly 20 m3s-1 per hour. Also, the 

same-day measurements are taken in a small time window, namely between 08:00 and 17:00. 

Assuming that the measurements are distributed evenly throughout the day and given the rate of 

change of 20 m3s-1 per hour and the time window of 9 hours, there would be an average deviation 

of 9 / 2 * 20 = 90 m3s-1. This corresponds with roughly 5 cm water level deviation at Lobith. Next, 

it is assumed that the variation in space is small, since the distance between Lobith and Pannerdense 

Kop is only 5 km, see Figure 3. Furthermore, for the water level, there exists a strong linear 

correlation, namely r2=0.9989, between the same-day water level measurements at Lobith and 

Pannerdense Kop, which proves the little variation in discharge and water level in time and space. 

Finally, another method is explored for establishing rating curves based on a closing water 

balance, in which an attempt was made to impose the water balance as a boundary condition in the 

rating curve function. This attempted method did not work. Since three rectangular subsections are 

used to schematize a branch, each rating curve contains two kinks. To impose the water balance 

between the upstream branch and the two downstream branches, the rating curves of the two 

downstream branches are summed and thereby creates a rating curve with 4 kinks. However, it is 

not possible to compare this rating curve with 4 kinks with the rating curve of the upstream branch, 

which contains 2 kinks.  
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3. Results 

3.1. Homogenized data 

A single rating curve implies a steady open channel flow and a permanent control (the reference 

hydraulic situation) (Le Coz, 2012). However, the measured stage-discharge data contains temporal 

variation and weir effects. Therefore, the data is homogenized, by: 

− selecting data without weir effects (Section 3.1.1); and 

− detrending water levels for river bed subsidence (Section 3.1.2). 

3.1.1. Selecting data without weir effects 

In the entire research period (1988-2018), the weir program of Driel has been as follows: as soon 

as the water level at Lobith dropped below 10.00 m +NAP the weir was put into operation (HKV, 

2016; Reeze et al., 2017). Therefore, a water level of 10.00 m +NAP at Lobith is therefore the 

threshold for selecting data without weir effects, which corresponds with an upstream discharge of 

roughly 2500 m3s-1. By selecting data without weir effects, the length of the measurement data has 

been reduced from 1303 to 568, 1202 to 464 and 1520 to 533, for BR, WL and PK, respectively. 

Figure 9 shows the data points with and without weir effects. The data points with weir effects were 

excluded from the dataset. 

 

 

Figure 9. Discharge distribution at Pannerdense Kop (left) and stage discharge plot (right) with 
indication of measurements that are not influenced by weirs. 

 

3.1.2. Detrending water levels for river bed subsidence 

For all three branches, water levels have lowered at equal discharges due to river bed subsidence 

(up to 0.6 m within the entire study period). To homogenize the stage-discharge data for river bed 

subsidence, measured water levels are detrended. The measured discharges remain unchanged. 

The first step in detrending the measured water levels, was to divide the dataset without weir 

effects into subperiods. The dataset was divided into 4 adjacent subperiods: 1988-1995; 1996-2003; 

2004-2011; 2012-2018. The second step was to construct a rating curve through the subsets, see 

Figure 10. The third step was to determine the linear trends over time of the water levels at 50 

discharge values. For proper visualization of the trend lines, only 4 of the 50 trend lines are presented 

in Figure 11. To determine how well the linear models fit the data points, an R-squared value is 

determined per discharge, see Figure 12. R-squared gives the percentage of the variable variation 
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that is explained by a linear model: ‘R-squared = Explained variation / Total variation’. The R-squared 

scores are good (>0.8) for the Waal and the Pannerdensch Kanaal, but less good for the Bovenrijn 

for high discharges. However, it is assumed that this is not a problem, because for high discharges 

the correction of the data points is relatively smaller. 

 

 

Figure 10. Rating curves constructed for the subperiods. Only the domain for which all subperiods 

hold data points are used in the rating construction. 

 

 

Figure 11. Water level trends different discharge values. The red dots indicate where the discharge 
value corresponds with the water level of Figure 10. For higher discharges the water level trends 
become less steep. Note: a total of 50 discharges have been used in the detrending process. 
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Figure 12. Goodness of fit of linear trends in water levels of Figure 11. 

 

The final step was to determine the relationship between the water level trend and the branch 

discharge. In Figure 13, it can be seen that the shape of the relationships of the data points are 

different per branch. It is important to know that all data points in Figure 13 fall within the discharge 

domain of main channel flow, for all three branches. It is assumed that the difference in shape of the 

relationship shown by the data points, results from the different cross-sectional main channel 

geometries of the three branches, see Figure 14. Constant river bed subsidence rates are assumed, 

based on Berends (2019). In theory, when the cross-sectional geometry of the main channel is 

rectangular, a constant river bed subsidence rate results in a constant water level decrease rate, 

which results in a linear shape of the relationship between the water level trend and branch discharge. 

Since the cross-sectional main channel geometry of the Bovenrijn is nearly rectangular at Lobith, the 

shape of the relationships of the data points is linear, see Figure 13. Next, the non-linearity of the 

shape of relationships of the WL and PK could be explained by the nearly triangular cross-sectional 

geometries of the main channels of the Waal and Pannerdensch Kanaal at Pannerdense Kop, see 

Figure 14. Also, due to the triangular cross-sections, river bed subsidence is more dominant towards 

the deeper part of the cross-sections, which could also contribute to non-linearity of the shape of the 

relationships. For WL at a discharge of 2000 m3s-1, Berends (2019) obtained a trend of 1.7 cm/year. 

This compares well with the result of 1.8 cm/year, see Figure 13.  

 

 

Figure 13. Relationship between water level trend and branch discharge resulting from Figure 11. 
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Figure 14. Main channel cross-sectional geometry of the three locations. The wetted area is 
representative for the maximum water level in the domain for which all subperiods hold data points, 

see Figure 10. The chainage of the cross-section at Lobith is 862.2 km and the chainage of the cross-
section at Pannerdense Kop is 868.3km (source: Baseline 5.3.3., 2018) 

 

The data points in Figure 13 are interpolated using a linear function for BR and a third order 

polynomial function for WL and PK. Furthermore, extrapolations were needed since there are data 

points that need to be detrended and contain discharge values outside the discharge domain, for 

which all subperiods hold values. The data points in Figure 13 are linearly extrapolated until 

intersection with the x-axis, where the water level increase remains constant. Linear extrapolation is 

used, since there is no information to choose for a different extrapolation approach. Also, since the 

correction of the data points at high discharges is relatively small, it is assumed that this is not a 

problem. Given Figure 13 and the time difference with the reference date ‘2019-01-01 00:00:00’, 

the water level corrections are obtained, see Figure 15. Detrending the stage-discharge dataset 

without weir effects by applying the corrections of Figure 15 gives the detrended stage-discharge 

dataset of Figure 16. In Figure 16 it can be seen that the spread has decreased, especially for lower 

water levels due to the relatively larger correction, and that the position of data points have become 

independent of time. 

 

 

Figure 15. Water level corrections obtained from Figure 13 and the time difference with the reference 
date ‘2019-01-01 00:00:00’. 
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Figure 16. Result of detrending the long-term temporal change in stage discharge relationship. The 
left plot shows the stage-discharge data before detrending and the right plot shows the stage-

discharge data after detrending. This removed the time-dependency and reduced the spread. 

 

3.2. RQ1: Rating curve uncertainty 

3.2.1. Deterministic optimized rating curves 

Per branch, a deterministic optimized rating curve is needed to derive the prior distributions of 𝑎𝑖 for 

the Bayesian rating curves (Section 2.3.3). Furthermore, deterministic optimized rating curves are 

compared with the probabilistic Bayesian rating curves. The result of deterministic optimization of 

the rating curve parameters is presented in Table 9. Filling in these parameters into the general 

rating curve form (Equation 1) gives the rating curves for the branches, see Figure 17. To check 

whether optimizing the values of 𝑏1 and 𝑏2 resulted realistic values, a comparison can be made with 

the values of 𝑏1 and 𝑏2 of HKV (2009), see Table 9. HKV (2009) estimated values of 𝑏1 and 𝑏2 based 

on the cross-sectional geometries of the locations for 2008-2009 and in this thesis the values of 𝑏1 

and 𝑏2 are optimized for 2018. Assuming that values of 𝑏1 and 𝑏2 do not change much over a period 

of 10 year, our values of 𝑏1 and 𝑏2 compare well with HKV (2009). Furthermore, next to obtaining 

realistic values for 𝑏1 and 𝑏2, realistic values for 𝑝𝑖 were maintained by fixing these parameters on 

5/3 (≈1.667). HKV (2009) chose to optimize 𝑝𝑖, which in their case resulted in unrealistic hydraulic 

exponents larger than 2, see Table 9. Therefore, it is a better optimization strategy to optimize 𝑏1 

and 𝑏2, and fix values for 𝑝𝑖 on 1.667. 
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Table 9. Deterministic optimized rating curve parameters.  

 BR   WL   PK 

Parameter Result RQ3 HKV (2009)  Result RQ3 HKV (2009)  Result RQ3 HKV (2009) 

𝑎0  121.082 102.094957  86.924 97.432094  42.420 38.940582 

𝑎1  78.004 87.006333  126.286 135.916967  31.650 9.405317 

𝑎2  264.031 246.106698  279.510 231.1769  409.778 352.874043 

𝑏0  3.57 3.58  3.44 3.51  3.58 3.86 

𝑏1   11.093 11  11.680 11  10.5145 10.5 

𝑏2  13.965 14  14.195 13.5  14.121 14.2 

𝑝0  1.667 1.721789  1.667 1.577044  1.667 1.723856 

𝑝1   1.667 1.720418  1.667 1.481197  1.667 2.416239 

𝑝2  1.667 2.00681  1.667 1.929289  1.667 1.741329 

 

3.2.2. Bayesian rating curves 

Following other authors (Reitan and Petersen-Øverleir, 2011; Le Coz et al., 2014; Mansanarez et al., 

2019; Berends, 2019) and given the advantages of the Bayesian approach, Bayesian inference and 

Markov Chain Monte-Carlo (MCMC) were used to construct stochastic rating curves. The result of 

Bayesian inference and Markov chain Monte Carlo simulations, as based on a homogenized 

measurement dataset, is presented in Figure 17. The posterior distributions of the underlying 

parameters (parameter uncertainty) of the rating curves are shown in Appendix B. The total 

uncertainty bandwidths of the rating curves increase for higher water levels. Indications of the total 

rating curve uncertainty bandwidths for local water levels of 12 and 16 m +NAP are shown in Table 

10. The total uncertainty consists out of model uncertainty and predictive uncertainty. The model 

uncertainty depends on the number of measurements and increases for domains with less 

measurements. The predictive uncertainty depends on the spread of the measurements and 

increases when the spread in the measurements increases. In Figure 17 it can be seen that the model 

uncertainty is dominant for domains with little measurements, which in this case is for high 

discharges. The obtained rating curves contain standard deviations of predictive uncertainty of 

2.54%, 2.90%, 3.31% for the BR, WL and PK, respectively. 

Furthermore, the maximum a posteriori (MAP) rating curves have been plotted in Figure 17. 

Using the MAP values is a standard choice in Bayesian statistics (Mansanarez, 2016). The MAP rating 

curve is in fact the modus of the total uncertainty of the rating curve and is not obtained by taking 

the modi of the individual parameters (𝜃, 𝜎). For all branches, Figure 17 shows that the MAP rating 

curves are equal to the deterministic rating curves for the measured discharge domain. Also, for all 

branches, Figure 17 shows that the MAP rating curves lie above the deterministic rating curves for 

higher discharges outside the measured discharge domain, especially for river Waal. The difference 

between the MAP- and the deterministic rating curves could be explained by the fact that the 

deterministic approach gives more weight to higher data points. This results in lower rating curves 

as compared to the Bayesian rating curves, which allows for a full uncertainty propagation leading 

to higher rating curves. 
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Figure 17. Bayesian rating curve uncertainty. The total uncertainty consists out of model uncertainty 
(depends on the number of measurements) and predictive uncertainty (depends on the spread of 
the measurements). The MAP rating curves indicate the modus curve of the total uncertainty. 

 

Table 10. Total uncertainty bandwidths at local water levels of 12 and 16 m +NAP. 

 Water level = 12 m +NAP Water level = 16 m +NAP 

Location 

Total uncertainty bandwidth 

[m3s-1] 

Total uncertainty bandwidth 

[m3s-1] 

BR 430.1 1018.6 

WL 364.5 1113.7 

PK 199.8 727.9 

 

3.3. RQ2: Influence of measurement errors 

For the stage-discharge data two different instruments (Ott and ADCP) have been used by 

Rijkswaterstaat. To check whether there is a difference in spread of the discharge measurements 

between the instruments, the Ott-mill measurements are split from the ADCP measurements. 

Separate runs of Bayesian inference with MCMC simulations for separate Ott- and ADCP 

measurement input resulted in the posterior distributions of the predictive uncertainty, see Figure 

18. The predictive uncertainty represents the measure of the spread in the data points. For all 

branches the Ott measurements have a higher predictive uncertainty than the ADCP measurements, 
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especially at PK. Note that the predictive uncertainty includes variation from measurement errors, 

hysteresis effects and seasonal variation. Assuming that seasonal variation and hysteresis effects 

are equal for both Ott- and ADCP measurement data, the measurement errors are likely higher for 

helical Ott mills as compared to ADCP instruments. This is in agreement with the common 

consideration that ADCP measurements are more accurate then Ott measurements (e.g., Le Coz et 

al., 2014; Mansanarez, 2016). Figure 18 shows that this difference is statistically significant for PK, 

since the 95% confidence intervals do not intersect. However, this is not the case for all locations 

and therefore no distinction is made between the two instruments. Also, in order to distinguish 

distinguish between the different measurements, a separate analysis would have to be done for Ott-

mill measurements and ADCP measurements. Since measurement data is limited, all measurent data 

were needed for rating curve construction. This will be discussed in the discussion (Chapter 4). 

 

 

 

Figure 18. Predictive uncertainty of Ott- and ADCP measurements expressed in relative standard 
deviation. 

 

The aim of this research question is to determine the extend into which the variation present in 

the measurement data can be explained by measurement errors. The variation (spread) of the 

measurement data is reflected by the predictive uncertainty, which includes variation of 

measurement errors, hysteresis effects and seasonal changes. Similar to Le Coz et al. (2014), ISO 

reports and scientific literature were used to determine the measurement errors (3 and 5%). These 

measurement errors were imposed in Bayesian inference and MCMC simulations, resulting in 

posterior distributions of the remaining predictive uncertainty (hysteresis effects and seasonal 

changes), see Appendix C. The MAP values of the posterior distributions of the remaining predictive 

uncertainty were used to analyze to what extent the measurement errors define the predictive 

uncertainty. Table 11 shows the percentages of variation of the predictive uncertainty, explained by 

measurement uncertainty 𝜎𝑚 and the remaining uncertainty 𝜎𝑟. In Table 11 it can be seen that from 

all three branches, for equal measurement errors, the measurement uncertainty is most dominant 

in BR. There is a large difference in variation explained by measurement errors when assuming 

discharge measurement errors of 3% versus 5%, especially for BR. However, it remains unknown 

what the exact measurement error is per location. The measurement uncertainty is likely highest for 

WL, since more measurement uncertainty is introduced due to assumed floodplain flow in the 

relatively large and complex cross-section of the floodplain of WL. Next, even though variation due 

to hysteresis is still present in the data, Table 11 shows little remaining uncertainty for 𝜎𝑚=5% 

(especially for BR), which indicates that variation due to hysteresis effects is small compared to 

variation of measurement errors. A possible explanation for this might be the validation by data 

owner Rijkswaterstaat, since outlier removal reduces the variation in the data. 
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Table 11. Variation of predictive uncertainty explained by measurement uncertainty 𝜎𝑚 vs. remaining 

uncertainty 𝜎𝑟. MAP values have been used for the remaining uncertainty 𝜎𝑟 (Appendix C). 

 𝜎𝑚 = 3%   𝜎𝑚 = 5%  

Location 𝜎𝑚  𝜎𝑟   𝜎𝑚  𝜎𝑟  

BR 35.1%  64.9%   97.4%  2.6%  

WL 26.6%  73.4%   74.9%  25.1%  

PK 20.5%  79.5%   57.2%  42.8%  

 

3.4. RQ3: Water balance in rating curves 

For this research question a new method is proposed for establishing rating curves based on a closed 

water balance. Novel in this method is that discharge measurements from other locations are 

included. Per water level point, there are now two same-day discharges values, one local and one 

(calculated) non-local, yielding a total of 584 data points. In current practice, similar to the rating 

curves of research question 1, rating curves are constructed by only using locally measured stage 

and discharge as input data. Bayesian rating curves were constructed for all three locations, using 

the same method as RQ1 (Section 2.3.3). The results are shown in Figure 19, where among the data 

points the non-local calculated data points are plotted in grey. In Figure 19 it is visible that the rating 

curves of RQ3 have now shifted as compared to the rating curves of RQ1. The effect of the shifting 

rating curves on the water balance error between the three locations is shown in Figure 20, where a 

comparison is given between three different methods of rating curve construction. The different 

methods are the deterministic optimization method, the Bayesian method of RQ1 and the Bayesian 

method of RQ3. For Bovenrijn discharges below roughly 10,000 m3s-1, the rating curves of RQ3 give 

slightly lower discharges at equal water level for the upstream location of Lobith and slightly higher 

discharge values, for equal water levels, at the two downstream locations. For Bovenrijn discharges 

above roughly 10,000 m3s-1, the rating curves of RQ3 give higher discharges at equal water level for 

the upstream location of Lobith and lower discharge values for equal water levels at the two 

downstream locations. In Figure 20 it can be seen that the Bayesian method of RQ3 gives a smaller 

water balance error than the Bayesian method of RQ1. So, adding the calculated non-local data 

points to the analysis clearly reduced the systematic error in water balance.  

Next, it is shown how the proposed method influences the uncertainty bands of the rating curves, 

as compared to the rating curves of research question 1. Figure 21 gives a comparison of the 95% 

uncertainty bandwidths of the RQ1- and RQ3 rating curves for all three locations. In Figure 21 it can 

be seen that the uncertainty bandwidths of the rating curves of RQ1 and RQ3 are nearly equal for 

BR and for water levels below 16 m +NAP for WL, which means that it was possible to reduce the 

water balance error without changing the rating curve uncertainty bandwidth. Next, for water levels 

above 16 m +NAP at WL, the uncertainty bandwidth RQ1 is much larger than the uncertainty 

bandwidth of RQ3, which means that it was possible to reduce the water balance error and the rating 

curve uncertainty bandwidth both. Finally, the uncertainty bandwidth RQ1 is slightly smaller than the 

uncertainty bandwidth of RQ3 for PK, which means that reducing the water balance error led to a 

slight increase in the rating curve uncertainty bandwidth. 
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Figure 19: Bayesian rating curve uncertainty based on water balance consideration. The RQ1 MAP 
rating curve is plotted for comparison. 

 

 

Figure 20. Comparing the water balance error at the Pannerdense Kop of the deterministic rating 
curves, RQ1 Bayesian rating curves and RQ3 Bayesian rating curves. 
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Figure 21. Comparing the 95% uncertainty bandwidths of the RQ1- and RQ3 rating curves for all 
three locations.  

 

Finally, rating curve uncertainty bandwidths can be influenced by a change in the number of 

data points and a change in the spread of the data points. For RQ1 and RQ3, roughly the same 

number of data points were used. For RQ1 (Section 2.3), a number of 568, 464 and 533 data points 

were used for BR, WL and PK, respectively. For RQ3, per water level point, two same-day discharges 

values (one local and one calculated non-local) were used, yielding a total of 584 data points. Since 

for RQ1 and RQ3 roughly the same number of data points were used, it is assumed that this did not 

influence the rating curve uncertainty. Next, adding the calculated non-local data to the analysis 

resulted in a different spread of the data points, resulting in a slight reduction of the spread for BR, 

a slight increase for WL, and a large increase for PK, see Table 12. An increase in spread is introduced 

by a relatively larger spread of calculated non-local data. The reason why the increase in spread is 

especially large for PK, is because PK is a relatively small branch on which the uncertainties of the 

larger branches have a larger effect. The opposite holds for BR, which is the largest branch, on which 

the uncertainties of the two smaller branches have almost no effect. 

 

Table 12. The influence water balance consideration on the spread (predictive uncertainty) of the 

data points.  

Location 

RQ1 

Relative standard deviation [%] 

RQ3 

Relative standard deviation [%] 

BR 2.54% 2.51% 

WL 2.90% 3.12% 

PK 3.31% 4.35% 
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4. Discussion 

4.1. Bayesian approach 

The best method for assessing rating curve uncertainty is an important and open scientific issue (Le 

Coz et al., 2014). Following other authors (Reitan and Petersen-Øverleir, 2011; Le Coz et al., 2014; 

Mansanarez et al., 2019; Berends, 2019) Bayesian inference was used to construct stochastic rating 

curves. Unlike deterministic optimization, where some parameters must have preset fixed values due 

to too many unknown rating curve parameters, all rating curve parameters are described by 

probability distributions. This means that an uncertainty analysis can simply be done by using 

percentiles from the posterior distribution. Furthermore, the main advantage of Bayesian inference 

is that ‘hydraulic knowledge of the stage-discharge relation can be explicitly translated into prior 

distributions of the parameters of the assumed rating curve equation’ (Le Coz et al., 2014), which 

prevents physically unrealistic outcomes (Mansanarez, 2016). However, this main advantage is also 

this is also a disadvantage, since hydraulic knowledge of the stage-discharge relation is required and 

since it is difficult to translate this knowledge into prior distributions of the rating curve parameters. 

Specifying the priors too informative can lead to poor results. Therefore, it is important carefully 

consider the degree of how informative the priors are specified.  

4.2. Data homogenization  

Effects of hysteresis and river interventions were not considered in the homogenization process. 

Hysteresis is not considered due to time limitation. River interventions are not considered based on 

the work of Berends (2019). Using the same data set, Berends (2019) found that there is no visible 

effect of river interventions on water levels and argued that the effect of historical river interventions 

may be hidden in rating curve uncertainty. By not considering effects of hysteresis and river 

interventions in the homogenization process, their uncertainty is implicitly included in the rating 

curve uncertainty. If the effects of hysteresis and river interventions were considered in the 

homogenization process, the spread of the data points would have been smaller, resulting in less 

rating curve uncertainty.  

4.3. Measurement instrument 

For all branches the Ott measurements have a higher predictive uncertainty (representing the spread 

in the data points) than the ADCP measurements, especially at PK. Note that the predictive 

uncertainty includes variation from measurement errors, hysteresis effects and seasonal variation. 

Assuming that seasonal variation and hysteresis effects are equal for both Ott- and ADCP 

measurement data, the measurement errors are likely higher for helical Ott mills as compared to 

ADCP instruments. This is in agreement with the common consideration that ADCP measurements 

are more accurate then Ott measurements (e.g., Le Coz et al., 2014; Mansanarez, 2016). In order 

to distinguish between the different measurements, a separate analysis has to be done for Ott-mill 

measurements and ADCP measurements. However, since measurement data is limited, all measurent 

data were needed for rating curve construction. Therefore, no distinction is made between the 

different measurement instruments. The consequence of this is that the variation present in the 

discharge data explained by measurement errors are underestimated for Ott measurement and 

overestimated for ADCP measurements. 

4.4. Assumed floodplain flow 

For all three branches, at high discharges the floodplains contain flow. The floodplains are not 

accessible by measuring boats. Therefore, assumptions are made for floodplain flow which give more 

uncertainty to the discharge measurements. This can lead to a water balance error of the rating 

curves. The floodplain of the Waal is large compared to the Bovenrijn and the Pannerdensch Kanaal. 
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Making an assumption for floodplain flow is therefore most difficult in the Waal. So, the Waal could 

be (most) responsible for the water balance error of the original rating curves of 2018. However, all 

three locations were treated as equally reliable in the new method for establishing rating curves 

based on a closed water balance. The new method clearly reduces the systematic error in water 

balance. Further improvements in the reduction of the water balance error could be made by making 

corrections in the discharge measurements, by considering the uncertainty of the assumed floodplain 

flow. A large floodplain with a complex geometry results in more uncertainty of the assumed 

floodplain flow, for which a larger correction could be made in the discharge measurements of that 

particular branch.  

4.5. Discharge distribution 

Figure 22 shows the total rating curve uncertainty of RQ1 and RQ3 translated into the discharge 

distribution uncertainty at Pannerdense Kop bifurcation. The hydrodynamic model results of Deltares 

(2015), who used the ‘Splitsingspunten model’ in WAQUA, have also been plotted in Figure 22 and 

compare well with the discharge distribution uncertainty resulting from the rating curves of RQ1 and 

RQ3. Next, Gensen et al. (2018a) concluded that “the variations in discharge distributions in m3s-1 

increase for an increasing upstream discharge”, which can be seen in Figure 22. Furthermore, based 

on expert opinions, Steenblik et al. (2020) quantified the uncertainty in the discharge distribution at 

the Pannerdense Kop. Steenblik et al. (2020) found that for an upstream discharge at Lobith of 

16,000 m3s-1 (old norm for flood protection in the Netherlands before the new norm was adopted in 

2017), the 90% uncertainty bandwidth is 571 m3s-1 towards the Waal. Figure 22 shows uncertainty 

bandwidths at 95% confidence of 908 m3s-1 and 992 m3s-1 towards the Waal, for respectively RQ1 

and RQ3 for an upstream discharge at Lobith of 16,000 m3s-1. Note that Steenblik et al. (2020) 

obtained a bandwidth at a 90% confidence level and in this thesis, bandwidths are obtained at a 95% 

confidence level, which does not allow a direct comparison. However, the results of Steenblik et al. 

(2020) still show smaller uncertainty bandwidths. Next, Gensen et al. (2018b) studied the effect of 

main channel roughness uncertainty the discharge distribution uncertainty of the Pannerdense Kop 

for upstream discharge at Lobith of 16,000 m3s-1. Gensen et al. (2018b) used deterministic scenarios, 

and for their extreme scenarios obtained a bandwidth of roughly 1000 m3s-1, which is similar the 

bandwidth of Figure 22. 

 

 

Figure 22. Discharge distribution uncertainty at Pannerdense Kop bifurcation as based on total rating 

curve uncertainty results from RQ1 and RQ3. 
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Next, rating curve uncertainty translates into discharge distribution uncertainty, which in turn 

translates to uncertainty of downstream water level predictions. “The effect of varying discharge 

distributions decreases the range of water levels along the Waal, while it increases the range for the 

Nederrijn and IJssel” (Gensen et al., 2018b). In the Dutch flood risk framework, the probabilities of 

water levels need to be calculated. This discharge distribution uncertainty presented in Figure 22 

could be used in a model study, to determine the effect on the water levels along the Rhine branches 

for a number of discharges. 

4.6. Flood management norms 

Since rating curves are essential in the construction of discharge time-series from water levels and 

in the calibration of river models, it is important that the systematic error in rating curves are 

removed as much as possible. Especially if these discharge time-series and calibrated models are 

used to define and hydraulically model design flood events. Hydrodynamic models treat the river 

system as a closed water balance. To prevent systematic under- or overestimation of discharges or 

water levels on entire river branches, there must be no systematic error in the water balance and 

water levels of rating curves. In the Netherlands, the design discharge for the Rhine river network is 

far beyond any event that has ever been observed. Therefore, it is of utmost importance that models 

used for development of flood management norms and regulations do not contain systematic effects 

that distort realistic system behavior. 
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5. Conclusion and recommendations 

5.1. Conclusion 

5.1.1. RQ1: Rating curve uncertainty 

The aim of this research question is to determine how large the uncertainty bands of the single rating 

curves for the three branches are. Therefore, Bayesian inference and Markov Chain Monte-Carlo 

(MCMC) were used to construct the total uncertainty intervals of the rating curves for the three 

branches, as based on homogenized measurement data. The total uncertainty bandwidths increase 

for higher water levels. An indication of the total rating curve uncertainty bandwidths is as follows: 

for local water levels of 12 m +NAP the total rating curve uncertainty bandwidths are 430.1 m3s-1, 

364.5 m3s-1 and 199.8 m3s-1, for BR, WL and PK, respectively, and for local water levels of 16 m 

+NAP the total rating curve uncertainty bandwidths are 1018.6 m3s-1, 1113.7 m3s-1 and 727.9 m3s-

1, for BR, WL and PK, respectively. 

5.1.2. RQ2: Influence of measurement errors 

The aim of this research question is to determine the extend into which the variation present in the 

measurement data can be explained by measurement errors. Similar to Le Coz et al. (2014), ISO 

reports and scientific literature are used to determine the measurement errors (3 and 5%). These 

measurement errors were imposed in Bayesian inference and MCMC simulations, resulting in 

posterior distributions of the remaining predictive uncertainty (hysteresis effects and seasonal 

changes). From all three branches, for equal measurement errors, the measurement uncertainty is 

most dominant in BR. There is a large difference in variation explained by measurement errors when 

assuming discharge measurement errors of 3% versus 5%, especially for BR. However, it remains 

unknown what the exact measurement error is per location. The measurement uncertainty is likely 

highest for WL, since more measurement uncertainty is introduced due to assumed floodplain flow 

in the relatively large and complex cross-section of the floodplain of WL. Next, even though variation 

due to hysteresis is still present in the data, there is little remaining uncertainty for 𝜎𝑚=5% 

(especially for BR), which indicates that variation due to hysteresis effects is small compared to 

variation of measurement errors. A possible explanation for this might be the validation by data 

owner Rijkswaterstaat, since outlier removal reduces the variation in the data. 

5.1.3. RQ3: Water balance in rating curves 

The aim of this research question is to propose a method to establish rating curves based on water 

balance closure and to see how this influences the uncertainty bands of the single rating curves for 

the three branches. Novel in the proposed method is that discharge measurements from other 

locations are included. Per water level point, there are two same-day discharges values, one local 

and one (calculated) non-local, yielding a total of 584 data points. In current practice and in RQ1, 

rating curves are constructed by only using locally measured stage and discharge as input data. 

Similar to RQ1, Bayesian rating curves were constructed for all three locations. The rating curves of 

the proposed method have shifted as compared to the rating curves of RQ1, which clearly reduced 

the water balance error between the three locations. So, adding the calculated non-local data points 

to the analysis clearly reduces the systematic error in water balance and thereby it provides more 

consistent rating curves for the river network of the Dutch Rhine. 

Next, the proposed method influenced the uncertainty bands of the rating curves, as compared 

to the rating curves of research question 1. The uncertainty bandwidths of the RQ1- and RQ3 rating 

curves are nearly equal for BR and for water levels below 16 m +NAP for WL, which means that it 

was possible to reduce the water balance error without changing the rating curve uncertainty 

bandwidth. Next, for water levels above 16 m +NAP at WL, the uncertainty bandwidth RQ1 is much 

larger than the uncertainty bandwidth of RQ3, which means that it was possible to reduce the water 

balance error and the rating curve uncertainty bandwidth both. Finally, the uncertainty bandwidth 

RQ1 is slightly smaller than the uncertainty bandwidth of RQ3 for PK, which means that reducing the 

water balance error led to a slight increase in the rating curve uncertainty bandwidth.  
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Finally, the rating curve uncertainty bandwidths can be influenced by a change in the number of 

data points and a change in the spread of the data points. For RQ1 and RQ3, roughly the same 

number of data points were used. Therefore, it is assumed that this did not influence the rating curve 

uncertainty. Next, adding the calculated non-local data to the analysis resulted in a different spread 

of the data points, resulting in a slight reduction of the spread for BR, a slight increase for WL, and 

a large increase for PK. An increase in spread is introduced by a relatively larger spread of calculated 

non-local data. The reason why the increase in spread is especially large for PK, is because PK is a 

relatively small branch on which the uncertainties of the larger branches have a larger effect. The 

opposite holds for BR, which is the largest branch, on which the uncertainties of the two smaller 

branches have almost no effect. 

5.2. Recommendations 

Based on this thesis on the water balance in the Dutch river Rhine and uncertainty of rating curves, 

recommendations can be made regarding hysteresis effects, assumed floodplain flow and 

measurement strategy. 

For future research it is recommended to extend this work by correcting for hysteresis effects in 

the homogenization of the dataset. This will reduce the spread of the data points, resulting in less 

rating curve uncertainty and improving the quality of the results. 

Next, for Rijkswaterstaat it is recommended to consider the uncertainty of the assumed 

floodplain flow of the different locations. This could be done by making corrections in the discharge 

measurements of the different locations. A large floodplain with a complex geometry results in more 

uncertainty of the assumed floodplain flow, for which larger corrections could be made in the 

discharge measurements of that particular location. This will improve the accuracy and consistency 

of the rating curves. 

Finally, for Rijkswaterstaat it is recommended to take more same-day measurements for future 

measurement campaigns. In addition, it is recommended to minimize the timespan in the which the 

same-day measurements are taken to reduce uncertainty caused by delay. The same-day discharge 

measurements of the three locations can be compared to check whether they are consistent from 

the perspective of a closing water balance. Also, same-day measurement can be used in combination 

with the proposed method, to impose water balance closure in the establishment of rating curves, 

which will improve the accuracy and consistency of the rating curves for the river network of the 

Dutch Rhine. 
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Appendix A: Physical background rating 

curve model 

In this section, the rating curve model that is used in this thesis and the underlying physical basis is 

shown. Neglecting the physical background will lead to poor rating curve quality (Le Coz, 2012) and 

rating curve construction should not simply be considered a mathematical fitting operation without 

any physical basis (DHV & DelftHydraulics, 1999). 

For a channel with a rectangular cross-section, the total discharge is given as: 

 𝑄 = 〈𝑢〉(ℎ − 𝑏)𝑊 (A-1) 

with total discharge 𝑄 [𝑚3𝑠−1], cross-sectionally averaged flow velocity 〈𝑢〉 [𝑚 𝑠−1], water level ℎ [𝑚 +

𝑁𝐴𝑃], bed level 𝑏 [𝑚 + 𝑁𝐴𝑃] and channel width 𝑊 [𝑚]. Using the Chézy equation to describe steady 

uniform flow in a wide channel, the equation becomes: 

 𝑄 = 𝑊𝐶𝑆𝑏
1/2
(ℎ − 𝑏)3/2 (A-2) 

with Chézy coefficient 𝐶 [𝑚1/2𝑠−1] and slope 𝑆𝑏 [−]. Using the often-used empirical Manning-Strickler 

equation 𝐶 = (ℎ − 𝑏)1/6𝑛−1, the equation becomes: 

 𝑄 = 𝑊𝑛−1𝑆𝑏
1/2
(ℎ − 𝑏)5/3 (A-3) 

with Manning coefficient 𝑛 [𝑠 𝑚−1/3]. Usually, this equation forms the physical basis for empirical rating 

curve models. In practice this equation is simplified, which is acceptable for its hydrometric purposes, 

to the following commonly used one-dimensional power function [adapted from WMO, 2010; ISO, 

2010]:  

 𝑄 = 𝑎(ℎ − 𝑏)𝑝, ℎ > 𝑏 (A-4) 

where parameter 𝑎 = 𝑊𝑛−1𝑆𝑏
1/2
 [𝑚4/3𝑠−1] is related to the channel characteristics, parameter 𝑏 [𝑚 +

𝑁𝐴𝑃] is the cease-to-flow reference level (sometimes written ℎ0) and parameter 𝑝 [−] is the hydraulic 

exponent related to the hydraulic control. The parameters are determined based on available stage 
discharge data. The power function is derived from the Manning-Strickler equation and assumes 

steady uniform flow in a wide rectangular channel. Therefore, the hydraulic exponent 𝑝 can deviate 

roughly ±0.1 from the typical value of 5/3 (≈1.667) (Le Coz et al., 2014).  
 

The cross-sectional geometry of the Rhine branches is too complex to be modelled as a single 

rectangular cross-section. Therefore, the divided channel approach is applied to approximate the 

complex geometries by multiple rectangular cross-sections. The general form is given as a 

summation of the power function: 

 
𝑄 =∑𝑎𝑖

𝑁

𝑖=0

(ℎ − 𝑏𝑖)
+𝑝𝑖 , ℎ > 𝑏𝑖 (A-5) 

with number of subsections 𝑁 [−] and subsections 𝑖 [−]. Following HKV (2009), three subsections are 

assumed, representing the equivalent of the main channel, groin fields and flood plains. These 

subsections represent different channel characteristics and hydraulic controls, which can be 

expressed in the parameters of power function of Equation A-5. Whether a subsection is active 

(containing flow), depends on the river stage ℎ with respect to the cease-to-flow levels 𝑏𝑖 of the 

subsection. 𝑁 = 3 is used, where the cease-to-flow levels 𝑏0, 𝑏1, 𝑏2 are related to the position of the 

main channel bed level, the height of the groin crests and the flood plain level respectively. The 

cease-to-flow levels are schematizations. Using 𝑁 < 3 will results in high hydraulic exponents 𝑝𝑖, 

giving a weak physical basis for the rating curve model. Therefore, 𝑁 = 3 is required. 
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Appendix B: Rating curve parameter 

uncertainty 

In this section the parameter uncertainties of RQ1 are presented for the three locations, to give an 

indication of the sensitivity of the parameters. Figure B-1 presents the parameter uncertainty of 

Lobith – Bovenrijn, Figure B-2 presents the parameter uncertainty of Pannerdense Kop – Waal, and 

Figure B-3 presents the parameter uncertainty of Pannerdense Kop – Pannerdensch Kanaal. 

 

 

Figure B-1. Prior- and posterior distributions of the rating curve parameter uncertainty for Lobith – 
Bovenrijn. 
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Figure B-2. Prior- and posterior distributions of the rating curve parameter uncertainty for 

Pannerdense Kop – Waal. 
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Figure B-3. Prior- and posterior distributions of the rating curve parameter uncertainty for 

Pannerdense Kop – Pannerdensch Kanaal. 

  



Water balance in the Dutch river Rhine and uncertainty of rating curves 

43 

 

Appendix C: Remaining predictive 

uncertainty 

In Figure C-1 the posterior distributions of the remaining uncertainty of RQ2 are presented for the 

three locations for the outer values (3 and 5%) of measurements errors, to give an indication of the 

sensitivity. 

 

 

  

 

Figure C-1. Posterior distributions of the remaining uncertainty. 


