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Summary 

Fresh water from estuaries is widely used, from drinking water production to agricultural 

use. The water quality standards for these various applications are regulated. One of these 

standards concerns the chloride concentration. Alterations in estuaries, such as deepening, 

may affect the chloride concentration inside the estuary. The Rhine-Meuse delta is such an 

estuary in which the fresh water is widely used for e.g. shipping but also for drinking water 

production and cooling. Therefore, predicting chloride concentrations in estuaries is 

important. Based on previously obtained measurement data, an analytical model is 

developed which provides insight in the importance and influence of boundary conditions 

on chloride concentrations.  

 

Chloride concentrations within the estuary are affected by many processes, which can be 

summarized in three main factors; the inflow of salt water due to tides; the inflow of fresh 

water due to river discharge and the mixing processes between these inflows. Previous 

research indicated that deepening of the New Waterway and Botlek may lead to increased 

chloride concentrations in the Rhine-Meuse delta. In this research daily averaged values 

were used. Due to the dependence of the inflow of salt water on the tidal water movement, 

however, this analysis is best performed at the time scale of the in- and outflow of the tidal 

wave. The inflow of fresh water in the Rhine-Meuse delta originates from the Waal, Meuse 

and Lek rivers, of which the discharge volumes are measured upstream of the estuary. 

These discharges take a certain amount of time to reach the measurement locations for 

chloride concentrations in the estuary. Similarly, the inflow of salt water with the tidal wave, 

measured as the water level at the mouth of the estuary, takes time to propagate into the 

estuary and reach the chloride concentration measurement locations. These time lags are 

determined, with the use of a cross-correlation analysis between the observed boundary 

conditions and the chloride concentrations, at four different locations in the estuary. 

Resulting time lags vary from 110 minutes to 280 minutes regarding the tide and 750 

minutes to 1900 minutes regarding the discharges of the Waal, Meuse and Lek.  

 

Variations in chloride concentrations at all four examined measurement locations are best 

explained with a non-linear analytical model, including parameters that describe the 

autocorrelation of the input parameters with a moving weighted average. Performance of 

the developed predictive analytical model of Lekhaven on the training dataset was 

determined at a R2 value of 0.87 and a RMSE value of 469.4 mg/L and on the validation 

dataset at a R2 value of 0.80 and a RMSE value of 579.1 mg/L. Similar results were found for 

the three other measurement locations. 

 

For the analysis of the effects of human interventions on chloride concentrations in the 

estuary of the Rhine-Meuse Delta, such as deepening of the New Waterway and Botlek, the 

developed analytical predictive models can be applied on post human-intervention 

gathered data. This analysis on measurement data can be used to validate results of 

theoretical models, and as indication on how relations between input parameters have 

changed due to human intervention in the Rhine-Meuse Delta.  Furthermore, the developed 

prediction models can be used for predictions of chloride concentrations with the use of 

expected values for the discharge of the Rhine and the astronomical tide.
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1.1 Background 

The Port of Rotterdam is Europe’s largest seaport and the New Waterway forms its 

connection to the North Sea. It is a shipping canal especially designed for sea-going vessels 

of which yearly over 15.000 pass along to reach the port (Port of Rotterdam, 2016). The New 

Waterway and adjoining ports are constantly dredged to maintain navigability. In order to 

handle ships with a draught of up to 15 meters, and to match with international standards, 

the New Waterway and adjacent Botlek were deepened. The New Waterway is located in 

the Rhine-Meuse Delta, forming the final terminal of these rivers before they discharge into 

the North Sea (Figure 1).  

 

Figure 1. Rhine-Meuse Delta and New Waterway in the Netherlands. 

A delta or estuary is the transition between a river and a sea (Nguyen, 2008). The salinity of 

the estuarine water is the result of two opposing fluxes: a saltwater flux, and a freshwater 

flux. The saltwater flux is driven by the tidal motion of the sea and the freshwater flux is 

driven by the river that discharges freshwater into the estuary (Savenije, 2012). Chloride 

concentrations in estuaries are the result of interaction between these two opposing fluxes.  

Savenije (2012) states both fluxes are strongly dependant on the estuary topography: “.. the 

salt water flux because the amount of water entering the estuary depends on the surface area 

of the estuary; and the fresh water flux, because the cross-sectional area of the estuary 

determines the efficiency of the fresh water flow to push back the salt”.  

Alterations to the estuary, such as deepening, affect the estuaries topography, which in turn 

influences the interaction between the saltwater and freshwater fluxes.  

  

Water in the estuary of the Rhine-Meuse Delta is widely used. Drinking water companies 

take in fresh water from these rivers for the production of drinking water. Water quality is 

regulated by law and for the production of drinking water, the maximum chloride 

concentration is 150 mg/l (Ministerie van Infrastructuur en Milieu, 2019). 

http://www.hydrologic.com/
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Similarly, maximum chloride concentrations are determined for industrial and agricultural 

use and for areas marked as Natura 2000 areas (HydroLogic, 2015a).  

 

Interventions are necessary to extend the navigability in the Port of Rotterdam to maintain 

the global economic position. However, these interventions may have a negative effect on 

the production of drinking water, agricultural and industrial use of fresh water and on 

natural habitats. Therefore, studying the effect of human interventions on chloride 

concentrations is important. For that reason, salinity concentrations have been monitored at 

several locations in the Rotterdam harbour area, since 2011. At each of these locations the 

chloride concentration is measured at various depths. Changes of chloride concentrations at 

these measurement locations could also be an indicator of changes further upstream in the 

delta. Complex processes in deltas can be approximated with the use of analytical models  

(van Rijn, 2011 and Xu, et al. 2017). This study focuses on developing an analytical model 

predicting chloride concentrations at  these measurement locations in the Port of Rotterdam.  

1.2 The Rhine-Meuse Delta 

The study area is part of the complex Rhine-Meuse Delta, consisting of several bifurcations 

and convergences. Within the system, weirs and dams are constructed to control water 

levels as to facilitate shipping, but these constructions are also obstructing free flow of river 

water into the North Sea. 

 

In the east of the study area, the Rhine enters the Netherlands at Lobith. It is then called the 

Upper Rhine. At Pannerdense Kop, the Upper Rhine bifurcates into the Waal and the 

Pannerden Canal (Figure 2). Further downstream, the Pannerden Canal bifurcates into the 

IJssel, which flows into the Lake IJssel, and the Lower Rhine. At Hagestein, water is let into 

the Amsterdam-Rhine Canal. After this bifurcation of the Lower Rhine the river is called the 

Lek. The southern part of the Rhine delta, the Waal, reaches the New Meuse through the 

Lower Merwede and Noord. Via the New Merwede it converges with the Meuse. 

 

The New Meuse is fed by water from the Lek and Waal. The Old Meuse is fed by water from 

the Waal and the Meuse. Water from the Meuse and Waal (through the New Merwede) 

flows into the Old Meuse either through the Dordtsche Kil in the east or through the Spui in 

the west. The New Meuse and Old Meuse converge into the New Waterway which flows 

into the North Sea. Water from the Rhine-Meuse Delta may also be discharged through the 

Haringvliet sluices, located south of the New Waterway. In contrast to the discharge through 

the New Waterway, discharge through the Haringvliet sluices is controlled.  

http://www.hydrologic.com/
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Figure 2. Overview of Meuse and Rhine water in the Netherlands, location of discharge measurements and 

locations of weirs or dams with sluices (Rijkswaterstaat, 2015). 

1.2.1 Salt intrusion dynamics 

Salt intrusion is a dynamic interaction between two opposing fluxes: a saltwater flux, and a 

freshwater flux. The saltwater flux, driven by tidal motion, and the freshwater flux, driven 

by the river discharge, are subjected to many influencing processes outside the estuary. 

Inside the estuary, the saltwater and freshwater fluxes meet under the influence of several 

mixing processes (Figure 3). The main factors influencing these fluxes and mixing processes 

are described below. 

 

Figure 3. Schematics visualization of saltwater flux, freshwater flush and mixing processes in the transition 

from river to sea. 

Saltwater flux 

The saltwater flux at the mouth of the estuary has two characteristics, volume and salinity 

(Savenije, 2012). The volume of the flux varies, with constant geometry, with the water level. 

http://www.hydrologic.com/
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The water level at the mouth of the estuary is the sum of the astronomical tide and the effect 

of wind.  

Tide is caused by gravitational interactions in the planetary system and is the main driver 

of the saltwater flux. At the mouth of the Rhine-Meuse Delta, at Hoek van Holland, the tidal 

amplitude varies between 1.4 and 2 meters with a period of 12 hours and 25 minutes 

(Deltares, 2014).  

The tidal amplitude varies due to the spring/neap cycle (Figure 4), with a period of 

approximately 14 days.  

 

Figure 4. Astronomical tidal water level fluctuation at Hoek van Holland, showing the spring/neap cycle. 

Wind on the surface of the North Sea may either increase or decrease water levels at the 

mouth of the estuary, generally referred to as wind setup or setdown, depending on the 

wind direction. 

 

The salinity of the saltwater flux at the mouth of the estuary is dependent on the chloride 

concentration of the North Sea and the inflow of freshwater along the coast.  

In- and outflow of tide 

In- and outflow of the tidal wave is caused by the water level difference between the water 

level at the mouth of the estuary and the water level further upstream in the estuary 

(Deltares, 2016). The water level at the mouth of the estuary is influenced by the height of 

the astronomical tide and wind, as explained above. The water level upstream of the estuary 

is dependent on the discharge volume of the river, and thus the freshwater flux.  

Freshwater flux 

The freshwater flux is driven by the inflow of fresh river water, and similar to the saltwater 

flux, has two characteristics; volume and salinity. The volume is equal to the discharge. The 

most downstream discharge measurement locations in the Rhine-Meuse Delta are situated 

at Tiel, Hagestein and Megen, measuring the discharge of the Waal, Lek and Meuse, 

respectively (Figure 2). 

 

The freshwater flux is also affected by precipitation and evapotranspiration directly at the 

water surface of the estuary and in the hinterland, downstream of the discharge 

measurement locations. During times of large precipitation events in the hinterland, water 

is being discharged via the regional water system into the Rhine-Meuse Delta, through 
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various pumping stations. During times of precipitation shortages, mainly during the 

growth season, water is withdrawn from the Rhine-Meuse Delta for, for example, 

agricultural usage. Especially during periods of relatively low discharge, this water 

withdrawal may affect the chloride concentrations in the delta significantly.  

 

Due to the multi-channel layout of the Rhine-Meuse Delta, and lack of discharge 

measurement stations at every channel, exact discharge volumes via each branch are 

difficult to determine. Water in the system is discharged into the North Sea trough the New 

Waterway and, dependant on the open sluice area, through the Haringvliet sluices.  

Discharge through Haringvliet sluices 

Before deepening of the New Waterway and Botlek in 2018, the opening of the Haringvliet 

sluices occurred based on the LPH’84 policy. In this policy the sluice opening of the 

Haringvliet sluices is set based on the discharge of the Rhine at Lobith (Figure 6). During 

flood, the sluices are closed. During ebb, below a discharge of 1100 m3/s all sluices are closed, 

between 1100 m3/s and 1700 m3/s the total sluice opening is equal to 25m2, with discharges 

of the Rhine at Lobith above 1700 m3/s the sluice opening increases with increasing discharge 

(Deltares, 2016).  

The actual discharge through the Haringvliet sluices in not measured. However, model 

simulations have been performed within SOBEK from which a relation between Rhine 

discharge at Lobith and discharge through the sluices was composed (Figure 5) 

(Rijkswaterstaat, 2011). 

 

Figure 5. Relation between discharge of Rhine at Lobith and discharge through Haringvliet sluices 

corresponding with the LPH’84 policy (Rijkswaterstaat, 2011). 

On the 15th of November 2018 the ‘Kierbesluit’ was set in motion. This meant the opening of 

the Haringvliet sluices during high tide (Figure 6), based on the discharge quantity of the 

Rhine measured at Lobith. This way, saline water from the North Sea can enter the 

Haringvliet and migratory fish can enter. During ebb, the opening of the sluices is increased 

as well, in order to discharge the saltwater that entered during high tide back into the North 

Sea (Deltares, 2017).  
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Figure 6. Opening of Haringvliet sluices based on Rhine discharge at Lobith before 'Kierbesluit' (LPH’84, 

solid blue) and after 'Kierbesluit' in 2018 (Kier, red) (Deltares, 2017). 

The size of the sluice opening with the LPH’84 and Kier policies is very similar below a 

Rhine discharge of 1500 m3/s at Lobith. Below this limit, the Haringvliet sluices are almost 

completely closed in order to direct all freshwater discharge through the New Waterway 

and minimize salinization in the Port of Rotterdam. If a period of low discharge of the Rhine 

is expected, the Haringvliet is flushed with fresh water during several tidal periods to 

maintain a fresh Haringvliet as long as possible (Deltares, 2017). 

Salinity of freshwater flux 

The freshwater inflow also contains a certain amount of chloride, the background 

concentration. This chloride concentration is dependent on the volume of discharge 

(Kranenbrug, et al., 2015).  

Mixing processes 

“There is virtually no limit to the number of mixing processes that can be identified” stated 

Savenije (2012). However, three main factors were identified which cause mixing and 

dispersion in an estuary; tidal flow, river flow and wind stresses.  

 

Mixing by tidal flow is probably the most important factor (Savenije, 2012) and is dependent 

on the salt flux. Mixing due to river flow is dependent on the freshwater flux. Mixing due to 

wind stresses have little influence compared to the other main factors (Savenije, 2012), and 

is therefore neglected in this research.  

 

The saltwater flux, freshwater flux and the mixing processes lead to a certain vertical and 

horizontal distribution of chloride concentrations in the estuary (Figure 7, left panels, blue 

lines are isohalines), often referred to as the salt wedge (Savenije, 2012). With increasing 

river discharge or decreasing tidal range, the vertical salinity gradient increases. 
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Figure 7. Schematic representation of water circulation, salinity distribution and velocity gradients in the 

estuary from stratified (top), through partially stratified or mixed (centre), to well-mixed (bottom) under 

increasing river discharge and increasing tidal range. The broken horizontal lines in the left panels indicate 

the positions of the salinity distributions and the velocity profiles (adapted from: Open University. 

Oceanography Course Team, 1999).  

1.2.2 Chloride concentration measurement locations 

In order to monitor salt intrusion in the Rhine-Meuse Delta, chloride concentrations are 

being monitored at several locations within the system. Measurement locations Lekhaven 

and Brienenoordbrug (Figure 8), are situated in the New Meuse on the north side of the 

study area. At the southern part of the Port of Rotterdam, in the Old Meuse, measurement 

locations Spijkenisserbrug and Beerenplaat are situated. Under normal river discharges of 

the Rhine and Meuse, daily fluctuations in chloride concentrations are measured at 

Lekhaven and Spijkenisserbrug (Annex A). During dry periods, with decreased river 

discharges, increased chloride concentrations are measured at Brienenoordbrug and 

Beerenplaat. 
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Figure 8. Locations of chloride measurement stations in the New Meuse and Old Meuse. 

At Spijkenisserbrug and Lekhaven chloride concentrations are measured at three different 

depths. At Brienenoordbrug, chloride concentrations are measured at two depths and at 

Beerenplaat at one depth (Table 1). 

Table 1. Measuring depths of chloride concentrations at each of the four measurement locations. 

Measurement location Measuring depth [m NAP] 

Lekhaven -2.5, -5.0, -7.0 
Spijkenisserbrug -2.5, -4.5, -9.0 
Brienenoordbrug -2.5, -6.5 
Beerenplaat -2.0 

1.3 Effects of deepening 

No research has been performed on the effects of deepening on chloride concentrations at a 

specific location in an estuary. The intrusion length of the salt wedge, which can be used as 

indication of chloride concentrations at a specific location, has been widely examined with 

the use of analytical models (van den Burgh, 1972; Savenije, 1993; Nguyen, 2008). Cai et al. 

(2012) derived a tidally averaged analytical model based on Savenije et al. (2008) for the 

effects of river discharge and channel deepening on the tidal amplitude and tidal wave 

travel time in the riverine Modaomen Estuary in China. It proved to be efficient and 

effective. With the use of this model, effects of dredging were calculated under constant 

discharges. Deepening of an estuary by dredging, increased the tidal wave propagation 

which in turn lead to increased chloride concentrations, and decreased the tidal wave travel 

time.  
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Alterations to the Rhine-Meuse Delta, such as deepening of the New Waterway, change the 

morphological characteristics of the delta, potentially causing changes in the intrusion 

length of the salt flux. Increased chloride concentrations at the measurement locations in the 

Old Meuse and New Meuse may be an indicator of changes in chloride concentrations 

further upstream where fresh river water is used for drinking water production, agricultural 

and industrial processes and Natura 2000 areas are present. 

During relatively dry periods, in which the discharge of the Rhine at Lobith is below 1500 

m3/s, discharge distributions in the Rhine-Meuse Delta are assumed to be stable due to the 

closing of the Haringvliet sluices. During these dry periods, at high tide saltwater intrudes 

up to all four chloride concentration measurements stations. Changes in morphology due to 

deepening of the New Waterway and the effects on chloride concentrations are especially of 

interest during these dry periods. Previous research has disregarded the effect of tides and 

wind setup above 0.15 meter, deepening of the New Waterway and adjacent Botlek 

potentially affected the influence of these processes on chloride concentrations in the Port of 

Rotterdam.  

 

During its most recent deepening, the New Waterway was deepened by approximately 1.5 

meter along its entire length to facilitate accessibility of ships with a draught of up to 15 

meters (Port of Rotterdam, 2016). The dredging works for this deepening started in March 

2018 and were finished at the end of 2018.  

Prior to the start of the dredging project, Svašek Hydraulics performed a model analysis on 

the potential effects of this deepening on the salinity concentrations in the Rotterdam 

harbour area (Svasek Hydraulics, 2015). From this work, HydroLogic deduced a synthetic 

dataset of chloride concentrations after deepening. These synthetic data for the situation 

after deepening were compared to the measured chloride concentrations prior to the 

deepening. With a z-score test for analysing different statistical means (Blaas & van den 

Boogaard, 2006), HydroLogic concluded that at the location Lekhaven a significant 

difference in chloride concentrations was to be expected due to the deepening (z = 6.1). A 

significant difference in chloride concentrations at Spijkenisserbrug could not be proven 

with this analysis (z = 1.25). Within this analysis, day-averaged data was used and this 

analysis was restricted to situations in which the discharge of the Rhine at Lobith was below 

1500 m3/s. Situations at which the recorded wind setup at Hoek van Holland were above 

0.15 meter were disregarded as well (HydroLogic, 2015a). By using day-averaged data the 

correlation with discharges were optimized but effects of the tidal variations were 

disregarded.  

1.4 Objective and research questions 

Currently it is unknown how deepening of the New Waterway and Botlek has affected 

chloride concentrations in the Port of Rotterdam and further upstream. Model simulations 

show that chloride concentrations are expected to increase due to deepening of the New 

Waterway and Botlek. However, these expectations are not validated with measurements of 

chloride concentrations post-deepening. The use of an analytical model, developed with the 

use of measurements, can provide this validation.  

The salt intrusion process is mostly determined by the independent boundary conditions of 

the system: river discharge, intruding tidal wave and wind setup. This research intends to 
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use these parameters to build improved analytical models for the chloride concentration at 

each of the four measurement locations in the Port of Rotterdam. By comparing these new 

analytical models with measurement data collected post human interventions, the effect of 

human alterations in the Rhine-Meuse delta on chloride concentrations in the Port of 

Rotterdam can be assessed. As the construction of the Maasvlakte 2 potentially had an 

influence on the relation between the salt intrusion processes due to geometrical change of 

the mouth of the New Waterway (Blaas & van den Boogaard, 2006), the period after 

completion of the Maasvlakte 2 in 2011, to present is examined. 

 

The research objective is stated as follows: 

How can measurement of hydrodynamic conditions best be used in an analytical model 

for predicting chloride concentrations in the Port of Rotterdam, and how can this model 

be applied for analysing effects of human interventions in the Rhine-Meuse delta? 

 

1. How do monitored boundary conditions relate to chloride concentrations in the 

Rhine-Meuse basin and how can these data best be used as an input for the 

analytical model? 

 

2. What relation between salinity, at each of the four measurement locations, and the 

boundary conditions can be composed from measurement data obtained before 

deepening of the New Waterway and Botlek? 

 

3. How can effects of human interventions on chloride concentrations in the Port of 

Rotterdam be analysed by application of the analytical model? 

1.5 Research approach and reading guide 

To answer each of the research questions an overview of the research approach is provided 

in Figure 9. Chapter 2 answers the first research question in which the correlation between 

boundary conditions and chloride concentrations is optimized in four steps. Firstly, the 

availability of measurement data is elaborated on. Secondly, the most optimal correlation 

method is determined in order to correctly relate boundary conditions to chloride 

concentrations. This is done by visual interpretation of scatter diagrams of the boundary 

conditions in relation to chloride concentrations and of the distributions of the boundary 

conditions. Thirdly, measurements of the boundary conditions are performed up- or 

downstream of the chloride concentration measurement locations. Measurements at one 

location take time to propagate to and affect parameters at another location, a time lag. The 

time lag of the boundary conditions is determined by calculating the correlation coefficient 

between each boundary condition and the chloride concentrations at various time shifts of 

the boundary conditions. With the use of the time lag analysis, multiple time series can be 

aligned to optimize correlation. Finally, the sampling interval of the dataset is optimized. 

Within this optimization, the effect of three sampling intervals on the correlation coefficients 

between the boundary conditions and chloride concentrations is analysed. From this 

analysis, the sampling interval with the highest correlation coefficients is selected.  

In Chapter 3 the analytical models are developed. Firstly, the applied models in this study 

and corresponding optimization techniques is elaborated on. Secondly, the training- and 
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validation datasets are determined from the optimized dataset obtained in Chapter 2. 

Thirdly, in order to describe the ‘memory’ that exists in the system an autocorrelation 

analysis is performed on the boundary conditions. From this analysis new parameters are 

determined. Fourthly, the optimal set of boundary conditions in relation to observed 

chloride concentrations is determined by evaluating the added value of each parameter. The 

result are trained analytical models for each of the four measurement locations, which are 

evaluated with a sensitivity analysis and an uncertainty analysis. The sensitivity analysis 

provides insights into the importance of the boundary conditions in relation to chloride 

concentrations at each of the four measurement locations. The uncertainty analysis, 

performed for Lekhaven, is applied to analyse the effect of uncertainty in the discharge on 

chloride concentrations.  

Chapter 4 contains a methodology for analysis of model residuals followed by an example 

analysis with the use of a synthetical dataset.  

Chapter 5 contains the discussion of the applied methodology and outcomes. Finally, the 

conclusions and recommendations are provided in Chapter 6.   

 

 

Figure 9. Flow chart of research approach.  
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2 Optimization of dataset 
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Optimization of the dataset is performed with the use of the correlation between the 

boundary conditions and chloride concentration measurements. The optimization consists 

of four parts. First, the availability of each factor affecting the salt- and freshwater flux is 

described. Second, the correlation method is determined by examining the type of relation 

between individual boundary conditions and chloride measurements. Third, the time lag of 

boundary conditions relative to the chloride concentration measurement, due to data 

monitoring at different distant locations, is optimized. Finally, the optimal sampling interval 

is determined by examining several time intervals for analysis. 

2.1 Available measurements 

Not all processes are continuously measured in the Rhine-Meuse Delta from 2011 to present. 

Therefore, not all processes described in Section 1.2.1. can be included in the analysis. 

Regarding the saltwater flux and the freshwater flux, each available parameter is briefly 

described. Finally, the available dataset on chloride concentrations is described.  

Processes affecting the saltwater flux 

At Hoek van Holland, the water level is measured at a 10-minute interval. This water level 

measurement can be translated in two components; the astronomical tide, which is predicted 

based on interactions between the planetary movements, and the wind setup, by subtracting 

the astronomical tide from the observed water level. The chloride concentration of the 

incoming seawater is mostly constant over time and is not included in this study. 

Processes affecting the freshwater flux 

The main inflow of freshwater is measured at a 10-minute interval by the measurement 

stations at Tiel, Hagestein and Megen, measuring the discharge of the Waal, Lek and Meuse, 

respectively. By examining observations in which the Haringvliet sluices are (almost) 

completely closed, corresponding to a discharge of the Rhine of 1500 m3/s at Lobith, variation 

in discharge distribution through the lower branches of the Rhine-Meuse Delta is assumed 

to be constant.  

Lateral inflow or outflow by pumping stations connecting the Rhine-Meuse delta with the 

surrounding hinterland is not continuously measured and is therefore disregarded.  

Chloride concentration measurements 

As mentioned in Section 1.2.2., chloride concentrations are measured at several depths, 

except for Beerenplaat. Nguyen (2008) classified the New Waterway as a partially mixed 

estuary, where chloride concentrations gradually vary in the horizontal and vertical 

direction. At Lekhaven the shape of the salt wedge is very similar under various discharge 

conditions during low tide (Figure 10, top panels). During high tide and with increasing 

discharge, the vertical variation of chloride concentration decreases, by which the estuary 

can be classified as well-mixed. At Lekhaven, the estuary can be classified as partially mixed 

or well-mixed, slight variations are observed based on the quantity of discharge. Similarly, 

at Spijkenisserbrug the vertical variation in chloride concentrations retains a similar shape 
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under various discharge volumes (Figure 10, bottom panels). Due to the presence of little 

vertical variation in concentration, a depth-averaged chloride concentration is determined, 

in order to obtain a single time-dependant observation. This is applied to each chloride 

concentration measurement location.  

 

 

Figure 10. Shape of the salt wedge at Lekhaven (top panels) and Spijkenisserbrug (bottom panels), for 

three different discharge conditions of the Rhine measured at Lobith, indicated with the chloride 

concentration at various depths. 

2.2 Analysis period 

During droughts, in which the discharge of the Rhine at Lobith is below 1500 m3/s, 

salinization occurs at each of the four measurement locations. Determination of the time lag, 

which describes the propagation time of the boundary conditions to each of the 

measurement locations, is performed on a long period of drought in the spring of 2011. This 

period is selected because of the absence of long-lasting extreme wind setup events, 

resulting in a ‘clean’ signal for correlation with tide and discharge.  

During this period of drought from 27th of March 2011 until 23rd of June 2011 (Figure 11), 

discharge of the Waal varied from 740 m3/s to 1250 m3/s and discharge of the Lek varied 

from 0 m3/s to 110 m3/s. Discharge of the Meuse varied from 19 m3/s to 260 m3/s. In this 

period substantial wind setup (>80 cm) only occurs for short time around the 24th of May 

2011. Chloride concentrations at Lekhaven did not return to the background concentration 

of the Rhine (80-130 mg/l), indicating constant salinization at this measurement location. At 

the other measurement locations, the chloride concentrations did return to Rhine 

background concentrations, indicating the river discharge was able to flush out the intruded 

salt wedge.  
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Figure 11. Overview of boundary conditions and chloride concentration measurements from 27-03-2011 

until 23-06-2011. 

2.3 Correlation method 

Assessing correlations between water quality parameters, such as chloride concentration, 

and hydrodynamic processes, is a common practice in the field of hydrology (Shrestha & 

Kazama, 2007). Widely used correlation coefficients are the Pearson coefficient and 

Spearman R coefficient.  The Pearson coefficient is best applied to parameters that have a 

normal distribution and show a linear relation between parameters. Spearman R coefficient 

can also handle non-normal distributed parameters and non-linear relations between 

parameters. Spearman R coefficient is similar to Pearson correlation, except that it is 

computed from ranked data (Alberto, et al., 2002).  

The most basic determination of a suitable correlation method is with the use of a scatter 

diagram, a scatter plot of the variables. If a clear linear relation is visually detectable, the 
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Pearson correlation coefficient is applicable. If a clear non-linear relation is detectable or a 

linear relation cannot be observed the Spearman correlation method can be applied. In this 

study, determination of suitable correlation methods is performed based on a visual 

interpretation of a scatter plot of the individual boundary conditions and chloride 

measurements during the analysis period (Figure 12). 

 

Figure 12. Scatter diagram of boundary conditions with chloride measurement locations in the analysis 

period from 27th of March 2011 until 23rd of June 2011. 

No clear relations can be observed from the scatter diagrams in Figure 12, correlating the 

chloride concentrations with the boundary conditions for all measurement locations and 

boundary conditions simultaneously. Therefore, the distribution of each parameter is 

examined individually. All boundary conditions show a clear non-normal distribution 

(Figure 13). As the Spearman R-coefficient is capable of assessing correlation between non-

normally distributed parameters, it is applied for all further analysis.  
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Figure 13. Distribution of boundary conditions in the analysis period from 27th of March 2011 until 23rd of 

June 2011. As non-normal distributions are observed, Spearman R-coefficient is applied for further 

analysis. 

2.4 Time lag of boundary conditions 

In time series analysis with a spatial orientation, observations of influencing processes at 

one location take time to propagate to and affect parameters at another location: a time lag. 

Discharges measured at Hagestein, Lek and Megen have a certain travel time before they 

reach the chloride measurement locations at the Port of Rotterdam. Equally, the intruding 

tide, measured as a water level at the mouth of the river, takes time to reach the 

measurement locations. With the use of time lag analysis, multiple time series can be aligned 

to optimize Spearman correlation. Common practice for analysing time lags of correlated 

variables is with a Spearman cross correlation function (CCF).  

2.4.1 Water level 

Correlation of the water level, measured at Hoek van Holland (HvH), and chloride 

concentrations at each of the four measurement locations all show a similar pattern of a 

sinusoidal wave when varying the time lag of the water level (Figure 14). During the spring 

of 2011, the highest correlation coefficients are observed at Spijkenisserbrug, in the Old 

Meuse, at a time lag of 190 min. Further upstream on the Old Meuse, at Beerenplaat, 90 

minutes later, at a time lag of 280 min the highest correlation is found between water level 

at HvH and chloride concentrations at this measurement location. In the New Meuse, effects 
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of the intruding tide reach Lekhaven first at a time lag of 110 min, and further upstream at 

Brienenoordbrug at 200 min.  

 

 

Figure 14. Spearman cross correlation function diagram of water level at Hoek van Holland and chloride 

concentrations at measurement locations during analysis period from 27th of March 2011 until 23rd of 

June 2011. 

2.4.2 Discharge 

Discharge through the port of Rotterdam mostly consists of discharge from the Waal, 

followed by Meuse discharge and Lek discharge (Section 2.2). Firstly, the time lag of Waal 

discharge with each of the four measurement locations is determined with a Spearman 

cross-correlation function (CCF). Secondly, the time lag of Meuse discharge is, 

simultaneously with discharge of the Waal, determined with the use of a two-dimensional 

CCF. Finally, with a similar methodology, the time lag of Lek discharge is determined.  

In order to determine time lags of discharges, a 24-hour average of the chloride 

concentrations, as well as the discharge, are computed. This averaging is performed after 

the application of each time shift.  

Waal discharge 

The optimum correlation between Waal discharge, measured at Tiel, and chloride 

concentrations at Brienenoordbrug, is found at a time lag of 780 minutes. Further 

downstream, at Lekhaven, an optimal time lag of 1170 minutes is observed (Figure 15). 

Regarding the measurement location Beerenplaat, an optimum time lag is observed at 1200 

minutes. Further downstream, at Spijkenisserbrug, the optimum is observed at 1070 

minutes. The time lags on the Old Meuse, at Beerenplaat and Spijkenisserbrug, are 

unexpected, as one would expect the discharge of the Waal to reach Beerenplaat first, 

followed by Spijkenisserbrug sometime later. This might be caused by the relatively low 

correlation of both locations with Waal discharge, compared to locations on the New Meuse 

(Figure 15). 
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Figure 15. Spearman cross correlation function (CCF) of Waal discharge measured at Tiel and the chloride 

concentration measurement locations using Spearman correlation, during analysis period from 27th of 

March 2011 until 23rd of June 2011. 

Addition of Meuse discharge 

By varying the time lags for both the Waal and the Meuse discharge, a two-dimensional 

Spearman cross correlation function is created. With this two-dimensional CCF the 

optimum time lag, at which the maximum correlation exists between discharges of the Waal 

and the Meuse and the chloride concentrations at the measurement locations, can be 

determined. 

The optimum for Spijkenisserbrug, with a correlation coefficient of -0.771, is observed with 

a Waal time lag of 1250 min and a Meuse time lag of 1650 min (Figure 16, left panel). 

However, an optimum range can be observed in which the correlation coefficient does not 

differ much from the maximum value, indicated in black and blue shades. Similarly, an 

optimal range is observed at measurement location Beerenplaat (Figure 16, right panel). As 

the highest correlation between discharge and chloride concentration is observed at 

Spijkenisserbrug (Table 2), this observed optimum is assumed to be most representative for 

the time lag. From a physical perspective, discharge from the Waal and Meuse will reach the 

more upstream measurement location Beerenplaat first, before reaching Spijkenisserbrug. 

As the distance between Beerenplaat and Spijkenisserbrug is around 10 percent of the total 

distance from the measurement location of Waal discharge, at Tiel, to Beerenplaat. Based on 

this, the time lag of the Waal and Meuse for Beerenplaat are estimated to be 1100 min and 

1500 min, respectively. These estimated time lags are within the optimum range of 

Beerenplaat (Figure 16, right panel, indicated in blue/black) 

Figure 16. Correlation heatmaps of time lag between discharges of the Waal and Meuse and salinity at 

measurement locations Spijkenisserbrug (left) and Beerenplaat (right), both situated on the Old Meuse. 
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Optimum at Spijkenisserbrug indicated with white star. Estimated time lags at Beerenplaat indicated with 

yellow star.  

Similarly to the time lag determination on the Old Meuse, time lag determination of the 

measurement locations on de the New Meuse is guided by the most downstream 

measurement location, Lekhaven. At Lekhaven an optimum is found for a Waal time lag of 

1150 min and Meuse time lag of 1900 min (Figure 17). Again, based on distance of 

measurement locations, the time lags at Brienenoordbrug are estimated at 1000 min 

regarding the Waal and 1750 min regarding the Meuse.  

 

Figure 17. Correlation heatmaps of time lag between discharges of the Waal and Meuse and chloride 

concentrations at measurement locations Lekhaven (left) and Brienenoordbrug (right), both situated on 

the New Meuse. Optimum at Lekhaven indicated with white star. Estimated time lags at Brienenoordbrug 

indicated with yellow star. 

The addition of Meuse discharge improves the correlation compared to an analysis based 

on just the Waal discharge, especially at the measurement locations on the Old Meuse: 

Spijkenisserbrug and Beerenplaat (Table 2). This is to be expected based on discharge 

distribution as mentioned in Section 1.3.1. At Lekhaven, no change in correlation is 

observed, and at Brienenoordbrug only a small change occurs due to the addition of the 

Meuse.  

Addition of Lek discharge 

Similarly to the addition of the Meuse, discharge of the Lek is added to the Waal discharge. 

At Spijkenisserbrug (Figure 18, left panel) a wide range of time lags for both the Waal, 

indicated with a wide spread in the x-direction, as well as the Lek, indicated with a wide 

spread in the y-direction, is observed. The optimal correlation is found at a Waal time lag of 

1200 min and a Lek time lag of 1750. The corresponding Spearman R-coefficient is -0.730. At 

Beerenplaat (Figure 18, right panel) no clear range of Lek discharge can be observed. For the 

Waal the correlation is optimal for time lags below 1500 min. Again, the time lag of the Waal 

and Lek at Beerenplaat is estimated based on the distance between measurement locations 

(Table 2). 
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Figure 18. Correlation heatmaps of time lag between discharges of the Waal and Lek and chloride 

concentrations at measurement locations Spijkenisserbrug (left) and Beerenplaat (right), both situated on 

the Old Meuse. Optimum at Spijkenisserbrug indicated with white star. Estimated time lags at Beerenplaat 

indicated with yellow star.  

At Lekhaven (Figure 19, left panel) as well as at Brienenoordbrug (Figure 19, right panel) 

again a wide range of time lags of the Lek can be observed, possibly caused by the low 

discharge during the analysis period. The time lag of the Waal at Lekhaven is optimal at 

1150 min and of the Lek at 900 min. The time lags of the Waal and Lek at Brienenoordbrug 

are again estimated based on the distance between measurement locations.  

 

Figure 19. Correlation heatmaps of time lag between discharges of the Waal and Lek and chloride 

concentrations at measurement locations Lekhaven (left) and Brienenoordbrug (right), both situated on 

the New Meuse. Optimum at Lekhaven indicated with white star. Estimated time lags at Brienenoordbrug 

indicated with yellow star. 

At none of the measurement locations the addition of Lek discharge improves the Spearman 

R-coefficient compared to an analysis only including the Waal discharge (Table 2). Contrary, 

at all locations the correlation between discharge and chloride concentrations decrease. The 

observed and estimated time lag of the Waal discharge is similar to the time lag when only 

considering the Waal or when considering the Waal with addition of the Meuse (Table 2).  
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Table 2. Spearman R-coefficients (Corr.) and time lags for Waal discharge and for Waal discharge with the 

addition of Meuse and Lek discharge, at each of the four measurement locations. 

 Waal discharge Waal and Meuse Waal and Lek 

Measurement 

location: 

Corr. 

[-] 

Time lag 

[min] 

Corr. [-] Time lag 

[min] 

Corr. [-] Time lag 

[min] 

    Waal Meuse  Waal Lek 

Old Meuse         

Spijkenisserbrug -0.736 1070 -0.771 1250 1650  -0.730 1250 1750  

Beerenplaat -0.660 1200 -0.708 1100 1500 -0.651 1100 1600 

New Meuse         

Lekhaven -0.820 1170 -0.820 1150 1900 -0.815 1150 900 

Brienenoordbrug -0.796   780 -0.805 1000 1750 -0.784 1000 750 

2.5 Sampling interval 

Previous research used 24-hour averaged values for the determination of the Rhine 

discharge time lag (HydroLogic, 2015a). In section 2.4.2 again 24-hour averaged values were 

used to determine correlations between Waal, Meuse and Lek discharges in relation to 

chloride concentrations. For the determination of time lags of the astronomical tide in 

relation to chloride concentration measurements, in Section 2.4.1., the original data interval 

of 10 minutes was applied. Considering the most appropriate averaging interval, it needs to 

be considered that in order to incorporate tides, wind and discharges into a single analysis, 

the sampling interval may not exceed the duration of half a tidal cycle, as this will cause 

information loss from the tidal signal. 

Three time intervals are examined, the original 10-minute interval of the data, an hourly 

average and data sampling based on half a tidal cycle. The tidal sampling is based on peaks 

and troughs in the tide signal (Figure 20). The cycle is split in two parts, from low water level 

to high, the incoming tidal wave, and from high to low water, the outgoing tidal wave. 

During the incoming tidal wave (or flood), the minimum chloride concentration and 

minimum water level and tidal water lever are selected. An average over half a cycle is taken 

of the discharge and wind setup during the flood period. During the outgoing tidal wave 

(or ebb), the maximum chloride concentration and maximum water level and tidal water 

level are taken. Again, the average is taken of the discharge and wind setup during the ebb 

period. The Spearman correlation method and time lags determined in previous sections are 

used. 

 

Figure 20. Applied sampling for tidal sampling technique based on the peaks and throughs in the 

astronomical tide signal. 
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Compared to the correlation of the 10 min data, an hourly average of water level measured 

at Hoek van Holland shows a slight improvement in correlation coefficient between the 

water level and chloride concentrations (Table 3). Applying the tidal sampling technique 

further improves the correlation between chloride concentrations and water level 

measurements for all measurement locations except Spijkenisserbrug. Regarding 

Spijkenisserbrug, a slight decrease of the Spearman R coefficient is observed. Wind setup 

and astronomical tidal water level show a similar pattern (Table 4 and Table 5). By taking 

an hourly average, the Spearman R-coefficient slightly increases, and by applying tidal 

sampling the coefficient further increases, except for Spijkenisserbrug.  

Table 3. Spearman R correlation coefficients between water level, measured at Hoek van Holland, and 

chloride concentrations at each of the four measurement locations for three sampling intervals.  

Measurement location 10 min (original data) 1 hour Tidal sampling 

Brienenoordbrug 0.6924 0.7027 0.8005 

Lekhaven 0.3835 0.3885 0.4933 

Spijkenisserbrug 0.8674 0.8796 0.8456 

Beerenplaat 0.3900 0.4075 0.6523 

Table 4. Spearman R correlation coefficients between wind setup, derived from water level measured at 

Hoek van Holland, and chloride concentrations at each of the four measurement locations for three 

sampling intervals. 

Measurement location 10 min (original data) 1 hour Tidal sampling 

Brienenoordbrug 0.1074 0.1019 0.1243 

Lekhaven - 0.0049 - 0.0003  0.0401 

Spijkenisserbrug 0.0933 0.0908 0.1813 

Beerenplaat 0.1528 0.1554 0.1748 

Table 5. Spearman R correlation coefficients between astronomical tide determined at Hoek van Holland 

and chloride concentrations at each of the four measurement locations for three sampling intervals. 

Measurement location 10 min (original data) 1 hour Tidal sampling 

Brienenoordbrug 0.6555 0.6665 0.7690 

Lekhaven 0.3792 0.3840 0.4929 

Spijkenisserbrug 0.8333 0.8472 0.8011 

Beerenplaat 0.3619 0.3772 0.5946 

 

Correlating hourly averages of the discharge has no influence on the Spearman R coefficient 

(Table 6, Table 7 and Table 8) compared to the correlation coefficients of the 10 minute data. 

When applying the tidal sampling on Waal, Waal + Lek and Waal + Meuse the correlation 

decreases, except for a minor improvement at Spijkenisserbrug.   

Table 6. Spearman R correlation coefficients between Waal discharge measured at Tiel and chloride 

concentrations at each of the four measurement locations for three sampling intervals. 

Measurement location 10 min (original data) 1 hour Tidal sampling 

Brienenoordbrug - 0.5483 - 0.5479 - 0.4247 

Lekhaven - 0.7185 - 0.7309 - 0.7628 

Spijkenisserbrug - 0.3130 - 0.3034 - 0.3524 

Beerenplaat - 0.6686 - 0.6640 - 0.5450 

Table 7. Results of correlations for three sampling intervals regarding Waal and Lek discharge. 

Measurement location 10 min (original data) 1 hour Tidal sampling 
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Brienenoordbrug - 0.5261 - 0.5260 - 0.4214 

Lekhaven - 0.6983 - 0.7105 - 0.7669 

Table 8. Results of correlations for three sampling intervals regarding Waal and Meuse discharge. 

Measurement location 10 min (original data) 1 hour Tidal sampling 

Spijkenisserbrug - 0.3125 - 0.3029 - 0.3525 

Beerenplaat - 0.6551 - 0.6523 - 0.5325 

 

Although correlations between discharges and chloride concentrations generally decrease 

with tidal sampling, the correlations of all other parameters show a greater increase. 

Therefore, tidal sampling is applied for further analysis. 

2.6 Summary 

Due to the non-normal distributed hydrodynamic input parameters (Figure 13), correlations 

with chloride concentrations at each of the four measurement locations is best described 

with the Spearman R coefficient.  

From the time lag analysis, the propagation time of hydrodynamic boundary conditions 

water level and discharge are determined (Table 9). As the effect of wind setup depends on 

the intruding or outgoing tidal wave (Section 1.2.1), the time lags of wind setup regarding 

each measurement locations are assumed equal to the time lags regarding tide.  

The sampling interval analysis shows that applying a tidal sampling interval provides the 

best correlations for chloride concentrations and water level, astronomical tide and wind 

setup at each measurement location. Although the tidal sampling interval causes a decrease 

in correlation coefficient of discharge of the Waal, Lek and Meuse with the chloride 

concentrations within this study area, this decrease is less significant. Therefore, for further 

analysis tidal sampling is applied.  

Table 9. Time lags of tide and Waal, Meuse and Lek discharges regarding each of the four measurement 

locations. 

 Tide Waal Meuse Lek 

Old Meuse     

Spijkenisserbrug 190 min 1250 min 1650 min 1750 min 

Beerenplaat 280 min 1100 min 1500 min 1600 min 

New Meuse     

Lekhaven 110 min 1150 min 1900 min   900 min 

Brienenoordbrug 200 min 1000 min 1750 min   750 min  
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3 Chlorinity predictor model development 

 

  

image: Weirs in the Lek at Hagestein, https://beeldbank.rws.nl, Rijkswaterstaat , Ruimte voor de Rivier 
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3.1 Regression model building and validation methodology 

Development of a chlorinity predictor is performed by a regression analysis. A linear and a 

non-linear model are created based on a limited dataset prior to deepening, the training set. 

The residuals of the model predictions for the training are examined. Validation of the model 

is performed with a different dataset of measurements under similar conditions prior to 

deepening, the validation dataset.  

 

Regression analysis is performed with the open source machine learning library Scikit-Learn 

in Python (Pedregosa, et al., 2011). Two models are selected for this regression analysis, a 

linear model and a non-linear model. The linear regression model makes use of an ordinary 

least squares (OLS) optimization. The non-linear model consists of a linear model, but uses 

polynomial input features created from the selected parameters. The non-linear model uses 

a technique of least absolute shrinkage and selection operator (Lasso) which performs both 

variable selection and regularization in order to enhance the accuracy and prevent 

overfitting. In order to reduce the number of parameters in the regression an extended 

Lasso-model with cross-validation is applied (LassoCV). The addition of cross-validation 

reduces overestimation of the model (Chetverikov & Liao, 2016). In further analyses both 

models are run simultaneously. The linear OLS model is more simplistic and uses fewer 

parameters compared to the non-linear LassoCV model, which is potentially more accurate.  

 

Performance of the linear and non-linear model is tested with the use of the coefficient of 

determination, the r-squared (Eq. 1). The coefficient of determination is the proportion of 

the variance in the dependant variable, the chloride concentration in this study, that is 

predicted by the independent variables, the boundary condition parameters. The r-squared 

value varies between 0 (no predictive value) and 1 (perfect prediction).  

 
𝑅2 =

∑ (�̂�𝑖 − �̅�)2
𝑖

∑ (𝑦𝑖 − �̅�)2
𝑖

 (Eq. 1) 

where �̂�𝑖 is the prediction value of 𝑦 for observation 𝑖, �̅� is the mean of 𝑦 and 𝑦𝑖  is the 𝑦 value 

for observation 𝑖. 

The error of the model is indicated with the root-mean squared error (RMSE). The RMSE 

(Eq. 2) is the standard deviation of the residuals (Barnston, 1992). The RMSE is used to 

indicate the spread of the residuals around the line of best fit, and has the unit of the 

dependant prediction variable, thus in mg/L. 

 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑(𝑦𝑖 − �̂�𝑖)

2

𝑛

𝑖=1

 (Eq. 2) 

where 𝑛 is the number of observations. 

 

The derivation of the model consists of several steps. First, the input parameters are 

normalized, with the use of scaling, in order to be able to compare coefficients of the various 

parameters. The influence of parameters, such as discharge or wind setup, might not be 

linear in relation to observed chloride concentrations. Non-linear weighting is applied to 

several parameters based on physical relationships for each relevant process. Second, the 

training and validation datasets are elaborated on. Third, based on autocorrelation analysis 

of the input parameters, new parameters are derived with the goal of incorporating the 

‘memory’ of the system. Fourth, the multi-step analysis is explained to determine the most 
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suitable parameters for describing the chloride concentrations at each of the four 

measurement locations. Finally, effect uncertainty in the input boundary conditions on 

predicted chloride concentrations is examined.  

3.1.1 Training and validation datasets 

Validation of both regression models is performed according to the hold-out method 

(Devroye & Wagner, 1979). In the hold-out method part of the dataset is not used for model 

training, but for model validation. This fundamental model validation method is best 

applied when particular sequences within datasets are used for either training or validation 

(Arlot & Celisse, 2010).  

The training dataset consists of three long periods of Rhine discharge at Lobith below 1500 

m3/s (Figure 21, indicated in green). The training set consists of data measurements gathered 

throughout all four seasons (Table 10). The validation data set consists of all data points 

prior to the deepening in 2018, below a Rhine discharge at Lobith of 1500 m3/s, excluding 

the training dataset (Figure 21, indicated in black). Similarly, to the training dataset, the 

validation data set contains datapoints throughout all seasons.  

 

Figure 21. Discharge of Rhine at Lobith from 2011 until start of 2019. The training dataset is indicated in 

green, the validation dataset consists of all data points prior to the deepening started in March 2018 and 

below a discharge of the Rhine at Lobith of 1500 m3/s (indicated in black). 

Table 10. Distribution of training and validation datapoints by season. 

 Number of datapoints 

Season Training set Validation set 

Spring 254 296 

Summer 274 544 

Autumn 313 894 

Winter 252 123 

Total: 1093 1857 

3.1.2 Parameter normalization and non-linear weighting 

Normalization of boundary condition parameters is applied to compare the influence of 

each boundary condition on chloride concentrations individually. This is done by analysing 

the coefficients the linear or non-linear model assigns to each individual parameter. The 

boundary conditions are therefore normalized to a range between 0 and 1. Except for wind 

setup, which is normalized between -0.5 and 0.5 since negative values have an opposite 

effect.  The values corresponding with the normalized -0.5 and 0.5 or 0 and 1 are provided 
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in Table 11 for each parameter. Astronomical tide is normalized such that the original mean 

value of 0.30 m NAP corresponds with the normalized value of 0.5. Similarly, wind setup is 

normalized such that the normalized value 0, corresponds with no wind setup. The 

corresponding original values (Table 11) correspond with the minimum and maximum 

values is the combined training and validation dataset.  

Table 11. Criteria for normalization of input parameters. 

Parameter Normalized 

minimum 

value 

Corresponding 

original value 

Normalized 

maximum 

value 

Corresponding 

original value 

Astronomical tide 0 -100 [cm NAP] 1 160 [cm NAP] 

Discharge Waal 0 0 [m3/s] 1 1500 [m3/s] 

Wind setup -0.5 -121 [cm] 0.5 121 [cm] 

Discharge Meuse 0 0 [m3/s] 1 522 [m3/s] 

Discharge Lek 0 0 [m3/s] 1 175 [m3/s] 
 

 

Wind setup not only affects the height of the tidal wave, it can also be applied as indicator 

of mixing processes inside the estuary, as mentioned in Section 1.2.1. Also, in situations with 

extreme wind setup, no water level difference is present between the mouth of the estuary 

and further upstream in the estuary, preventing the tidal wave from extruding (Deltares, 

2016). Therefore, a non-linear weighting is applied on to the normalized value of the wind 

setup parameter. Similarly, the incoming tide affects not only the amount of saline water 

intruding in the estuary, it also affects mixing processes. Therefore, also a non-linear 

weighting is applied to the astronomical tide. Squaring of the normalized parameter, which 

is performed by default when compiling polynomial features, gives more weight to higher 

values and decreases the weight of lower values (Figure 22, green line). However, a desired 

weighting would be an exponentially increasing weight as seen from the 0.5 normalized 

value and higher values, representing increasing weight for more positive values, and an 

exponentially decreasing weight as seen from the 0.5 normalized values and lower, 

representing increasingly negative values in the original data. An inverted Smootherstep 

distribution exactly describes this distribution (Figure 22, red line): 
 

𝑓(𝑥) = 𝑥 + (𝑥 − (𝑥3 ∗ (6𝑥 − 15) + 10)) (Eq. 3) 

A similar non-linear weighted distribution is applied to the normalized wind setup between 

-1 and 1, however now the original ‘no wind setup’ value corresponds with a normalized 

value of 0. 

 

Figure 22. Distribution functions applied for creating polynomial input features LassoCV non-linear model. 

x-axis indicating the original normalized value, f(x) representing the non-linear weighted value of x. 
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3.1.3 Autocorrelation of boundary conditions 

Autocorrelation analysis is applied to examine to what extent samples of a series, in this case 

the boundary conditions, are related in time and to what extent a ‘memory’ exists in the 

system (Blaas & van den Boogaard, 2006). By computing parameters based on the 

autocorrelation analysis, observed chloride concentrations can be indicated as independent 

from previous observations. Thus, eliminating autocorrelation in the predicted chloride 

concentrations. Within this autocorrelation analysis the threshold of ‘memory’ in the system 

is set at a correlation equal to the e-folding value (i.e. e-1 ≈ 0.367), which is often applied in 

analyses with hydrological parameters (Blaas & van den Boogaard, 2006; Gerberet al., 2008; 

Park et al., 2018). The extent of the system ‘memory’ is indicated as the autocorrelation time 

(𝜏𝑎𝑡).  

The auto-correlogram of the wind setup indicates an autocorrelation time 𝜏𝑎𝑡 = 2 sampling 

periods (Figure 23), which is equal to one tidal cycle or about 12.4 hours. A parameter 

describing the ‘memory’ of wind setup is added based on a moving weighted average 

(MWA), which weighs previous observations, in this case two, according to a linear series 

between 0 and 1 (Appendix B). The new parameter thus contains a weighted average of the 

two previous wind setup measurements.  

 

Figure 23. Autocorrelation of wind setup of tidal sampled data. 

A similar approach is applied to the discharge time series of the Waal, Meuse and Lek. From 

this an autocorrelation time of the Waal discharge is determined at 𝜏𝑎𝑡 = 94 sampling periods, 

about 24 days (Figure 24). Autocorrelation times of the Meuse and Lek are much smaller, 𝜏𝑎𝑡 

= 27 sampling periods (~7 days) and 𝜏𝑎𝑡 = 4 sampling periods (~1 day), respectively 

(Appendix 2).  

 

Figure 24. Autocorrelation of Waal discharge of tidal sampled data. 
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Also in the astronomical tidal signal autocorrelation is present (Figure 25) due to the neap-

spring cycle. The autocorrelation of the astronomical tide 𝜏𝑎𝑡 = 90, about 12 days.  

 

Figure 25. Autocorrelation of astronomical tide of tidal sampled data. 

Finally, a parameter is added describing the absolute change in water level from low tide to 

high tide and visa-versa, the tidal amplitude. This change in water level is relevant to the 

amount of saline water flowing in or out of the estuary. 

3.1.4 Parameter selection 

Model development is a trade-off between model performance on the training dataset and 

model performance on the validation dataset (Figure 26). An increase in model complexity, 

by for example the addition of parameters, generally increases the model performance on 

the training dataset. A too complex model, however, can cause over-fitting on the training 

dataset, which leads to a decrease of model performance on the validation dataset and 

increased variance, indicated with the RMSE. A too simplistic model has a low performance 

on the training dataset as well as on the validation dataset. The model is optimized by 

selection of the model complexity corresponding with the highest model performance on 

the validation dataset .  

 

Figure 26. Schematic trade-off between model complexity and model performance.  

Model complexity and performance is assessed with the use of a multi-step analyses. The 

multi-step analysis is designed to assess the effect of each additional parameter on the model 

performance indicators R2 and RMSE, on the training dataset as well as on the validation 

dataset.  

For each of the four chloride concentration measurement locations, a multi-step analysis is 

performed to determine the most suitable set of parameters to describe chloride 
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concentrations at that specific location. The multi-step analysis regarding the linear OLS 

model evaluates the addition of five independent input parameters (i.e. tide, 

Waal/Meuse/Lek discharge and wind setup), with addition of the moving weighted 

averages (MWS) of these parameters developed using the autocorrelation time (Section 

3.1.3) and the tidal amplitude (Table 12). The non-linear LassoCV model incorporates, in 

addition to the first 11 parameters, each cross-product as a parameter. For example, when 

evaluating the first three parameters the additional cross-products: [Tide * Discharge Waal], 

[Tide * Wind setup] and [Discharge Waal * Wind setup] are added. These parameters are 

added in order to describe processes, as described in Section 1.2.1, which are dependent on 

multiple input parameters, such as the inflow of the tidal wave. The non-linear model also 

incorporates the non-linear weighted parameters (1b, 3b, 9b and 10b in Table 12) as 

described in Section 3.1.1.  

Table 12. Parameters for multi-step analysis. 

Parameter number Parameter name Parameter unit 

 Independent input parameters:  

1 Astronomical Tide [cm NAP] 

2 Discharge Waal [m3/s] 

3 Wind setup [cm] 

4 Discharge Lek [m3/s] 

5 Discharge Meuse [m3/s] 

   

 MWA of autocorrelation of parameter:  

6 Discharge Waal [m3/s] 

7 Discharge Meuse [m3/s] 

8 Discharge Lek [m3/s] 

9 Wind setup [cm] 

10 Astronomical Tide [cm NAP] 

11 Tidal amplitude [cm] 

   

 Smootherstep of:  

1b Astronomical tide [cm NAP] 

3b Wind setup [cm] 

9b MWA wind setup [cm] 

10b MWA astronomical tide [cm NAP] 

 

Based on the outcome of the multi-step analysis, the most suitable parameters for each of 

the four measurement locations are selected and applied for further analysis.  

 

The criteria that are applied for incorporating any addition parameter are:  

- Inclusion of the parameter increases the model performance on the training 

dataset, without decreasing model performance on the validation dataset, or: 

- Inclusion of the parameter increases the model performance on the validation 

dataset. 
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3.1.5 Sensitivity analysis 

A sensitivity analysis is performed based on the SALib-package (Usher, et al., 2016). SALib 

is an open source library written in Python for performing sensitivity analysis. It can be 

applied to Python based models such as the applied linear OLS model and non-linear 

LassoCV model.  

The applied technique for computing the sensitivity of the model to the input parameters is 

the Sobol’ sensitivity analysis (Sobol′, 2001), a variance-based sensitivity analysis. Based on 

the spread of the input parameters, this technique determines the sensitivity of the model 

output based on variation of the input parameters (Saltelli, et al., 2010). 

The computed sensitivity indices refer to the fraction of variance in the output. Main 

advantage of the Sobol’ sensitivity is the division of first and higher order sensitivity indices. 

First order sensitivity indices indicate the fraction of variance explained by the input 

variable. Higher order sensitivity indices indicate the explained variance of the output from 

interactions between input parameters and non-linearity of input parameters, such as 

applied in the non-linear LassoCV model. The output of the Sobol’ sensitivity analysis is a 

total order sensitivity index, which is a combination of first and higher order indices 

(Zhange, et al., 2015). Application of this Sobol’ sensitivity analysis makes it possible to 

compare sensitivity of both models to each of the input parameters, by comparing the total 

order sensitivity index computed for each model.   

3.1.6 Uncertainty analysis 

Measurement of the input parameters is not performed at the location of chloride 

concentration measurements. For example, the discharge of the Waal may change between 

Hagestein and Lekhaven due to water withdrawal or lateral inflow from pumping stations 

along the river.  

Especially during spring and summer, water is needed for agricultural use. For 

measurement location Lekhaven, on the New Meuse, we assess the effect of water 

withdrawal and discharge from Boezemgemaal Gouda on chloride concentrations. This 

pumping station is capable of pumping up to 50 m3/s (HydroLogic, 2015b).  

  

http://www.hydrologic.com/


Predictive analytical model for chloride concentrations in the Port of Rotterdam 

 hydrologic.com  38 

3.2 Lekhaven prediction model 

Computation of the Lekhaven prediction models consists of several steps. Firstly, the most 

suitable parameters are selected with the use of the multi-step analysis. Secondly, results of 

this parameter selection are used to train the model based on the training dataset. Model 

performance on this training dataset is further elaborated on. Thirdly, performance of the 

model is further specified by examining predictions for the validation dataset and analysis 

of the residuals. Furthermore, a sensitivity analysis is applied to both models. Finally, the 

effect of uncertainty in the discharge input of the Waal on chloride concentration predictions 

is assessed. Based on comparisons of the model performances, one model is selected for 

further analysis.    

3.2.1 Parameter selection with multi-step analysis 

Linear OLS model 

From the multi-step analysis it can be concluded that the addition of the Lek (as regular 

parameter or as MWA parameter) has no influence on the performance of the model (Figure 

27). Similarly, the addition of a parameter based on the autocorrelation of the Waal (MWA 

Discharge Waal) has no influence on model performance. These three parameters are 

therefore disregarded for further computation of the Lekhaven prediction model prior to 

deepening. The addition of the parameter describing the autocorrelation of the astronomical 

tide improves the model performance on the training dataset, however performance on the 

validation dataset decreases. Therefore, the parameter ‘MWA Tide’ is also not incorporated 

in further analysis. 

 

Figure 27. Results of multi-step analysis for parameter selection of the linear OLS model regarding 

measurement location Lekhaven. Results consist of model performance indicators R2 and RMSE.  

Nonlinear LassoCV model 

Similarly, the multi-step analysis has been applied to the non-linear model (Figure 28). 

Again, the addition of Lek discharge has no effect on model performances. Addition of the 
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parameters ‘MWA Discharge Waal’ and ‘Smootherstep tide’ also have no influence on 

model performance on the training dataset as well as on the validation dataset. The addition 

of ‘MWA tide’ and ‘Smootherstep MWA tide’ improve the model performance on the 

training dataset, however, have a negative effect on the model performance on the validation 

dataset, and thus are disregarded.  

 

Figure 28. Results of multi-step analysis for parameter selection of the non-linear LassoCV model regarding 

measurement location Lekhaven. Results consist of model performance indicators R2 and RMSE. 

Table 13 shows the selected parameters for predicting chloride concentrations at Lekhaven 

regarding the linear and non-linear model which are determined with the multi-step 

analysis. Model coefficients for each of the parameters are presented in Annex B. 

Table 13. Parameters selected for computation of the linear OLS model and the non-linear LassoCV model 

with the use of the multi-step analysis for location Lekhaven. 

Parameter name linear OLS model nonlinear LassoCV model 

Astronomical Tide x x 

Discharge Waal x x 

Wind setup x x 

Discharge Lek   

Discharge Meuse x x 

Tidal amplitude x x 

MWA Discharge Waal   

MWA Discharge Meuse x x 

MWA Discharge Lek   

MWA Wind setup x x 

MWA Astronomical Tide   

Smootherstep Astronomical tide   

Smootherstep Wind setup  x 

Smootherstep MWA wind setup  x 

Smootherstep MWA astronomical tide   
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3.2.2 Performance on training dataset 

The linear OLS and non-linear LassoCV model are trained based on the training dataset of 

Lekhaven chloride concentration observations and parameters as selected with the use of 

the multi-step analysis. With these models, expected chloride concentrations can be derived 

based on the input boundary conditions. The predicted chloride concentrations are 

compared to the measured chloride concentrations (Figure 29). The coefficient of correlation 

(R2) and error (RMSE) of the model are based on these predicted and measured chloride 

concentrations (Table 14).  

 

Figure 29. Measured and predicted chloride concentrations with linear OLS model and non-linear LassoCV 

including model performance parameters on training dataset. 

Table 14. Performance of linear and non-linear model per season on training dataset. 

  linear OLS model nonlinear LassoCV model 

Season number of points R2 [-] RMSE [mg/L] R2 [-] RMSE [mg/L] 

Spring 254 0.858 446.7 0.882 407.0 

Summer 274 0.878 407.2 0.878 406.4 

Autumn 313 0.821 563.6 0.839 534.2 

Winter 252 0.864 561.8 0.891 502.7 

All 1093 0.854 501.6 0.872 469.4 

 

Performance of both models is further specified per season (Table 14). Regarding the linear 

OLS model, variance of chloride concentrations at Lekhaven can best be explained during 

summer (R2 = 0.878), in which also the standard deviation of the error is lowest (RMSE = 

406.9 mg/L).  During autumn the performance of the model decreases, the variance that can 

be explained by the independent input parameters decreases (R2 = 0.821) and the standard 

deviation of the errors increase (RMSE = 563.6 mg/L).   

Regarding the nonlinear LassoCV model, performance of the model is best during spring 

(R2 = 0.882 and RMSE = 407.0 mg/L) and least optimal during autumn (R2 = 0.839 and RMSE 

= 534.2 mg/L). Overall the performance of the nonlinear LassoCV model surpasses that of 

the linear OLS model. Both models score best during spring and summer. During autumn 

and winter performance of both models decreases, potentially due to seasonal fluctuations 

in water withdrawal and extreme weather frequency.  
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3.2.3 Performance on validation dataset 

Performance of the model on the validation dataset shows a larger spread around the line 

of perfect fit (Figure 30, blue line) which is represented with an increase in the RMSE. Also, 

the predicted chloride concentrations are generally lower compared to the measured 

chloride concentrations. The linear model has an average prediction error of -288.0 mg/L 

and the non-linear model the average prediction error is  -264.4 mg/L. 

 

Figure 30. Measured and predicted chloride concentrations with linear OLS model and nonlinear LassoCV 

including model performance parameters on validation dataset. 

Proportion of variance explained (R2) by the model in the validation dataset is quite constant 

over all seasons regarding the linear model (Table 15). The estimation error (RMSE) 

increases drastically for datapoints in autumn and winter. The non-linear model performs 

best for datapoints in spring, datapoints collected in winter again show a substantial 

increase in estimation error.  

Table 15. Performance of linear and nonlinear model per season on validation dataset 

  linear OLS model nonlinear LassoCV model 

Season Number of points R2 [-] RMSE [mg/L] R2 [-] RMSE [mg/L] 

Spring 296 0.717 549.9 0.773 492.2 

Summer 544 0.787 503.7 0.810 476.2 

Autumn 894 0.786 640.4 0.798 622.6 

Winter 123 0.749 787.8 0.733 812.3 

All 1857 0.784 600.9 0.799 579.1 

 

3.2.4 Sensitivity analysis 

Sensitivity of the linear OLS model is fully described by the first order sensitivity indices, 

which is to be expected as the model does not make use of interdependent parameters 

(Figure 31Figure 32). The linear OLS model is most sensitive to changes in the discharge of 

the Waal, followed by the MWA of the wind setup and astronomical tide. 
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Figure 31. Linear OLS model sensitivity to each parameter visualized as first and total order sensitivity 

indices.  

The nonlinear LassoCV model is most sensitive to changes in discharge of the Waal, 

followed by changes in the MWA of wind setup, astronomical tide and wind setup (Figure 

32). Compared to the linear model, the nonlinear model for most parameters a difference 

between the first and total order sensitivity indices is present. The difference is caused by 

interdependence between variables, incorporated as cross-products of input parameters, 

and non-linear weighting.   

 

Figure 32. Nonlinear LassoCV model sensitivity to each parameter visualized as first and total order 

sensitivity indices. 

3.2.5 Uncertainty analysis 

Plotting the residuals of the non-linear LassoCV model over time during the first training 

period (Figure 33) shows multiple periods of underestimation of the chloride concentrations 

(i.e. negative residuals). During these periods, the boundary conditions used to predict 

chloride concentrations at Lekhaven show no extreme values (Figure 33, bottom plot), which 

could indicate unexpected observed chloride concentrations. Therefore, this is possibly 

caused by external factors affecting these boundary conditions, or influencing parameters 

which have not been incorporated in this analysis. The analysis period in Figure 33 is 

renowned for the precipitation shortage (KNMI, 2011), which potentially caused increased 
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water withdrawal from the area between the discharge measurement locations Hagestein 

and Lekhaven. 

 

 

Figure 33. Predicted and measured chloride concentrations, residuals and normalized input independent 

boundary condition of nonlinear LassoCV model during first training period (2011). 

Upon further inspection it turns out that during the period of model underestimation, the 

Boezemgemaal Gouda withdraws water for several consecutive sampling periods (Figure 

34).  
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Figure 34. Residuals from nonlinear LassoCV model versus average discharge of Boezemgemaal Gouda per 

sampling period during the first training period (2011). 

The effect of the discharge from Boezemgemaal Gouda on residuals is analysed by adjusting 

the discharge input of the Waal with the observed withdrawal (positive values) or discharge 

(negative values) of the pumping station. The influence of Boezemgemaal Gouda on the 

non-linear model is dependent on whether this occurs during high tide or low tide due to 

higher order dependencies, as indicated in the sensitivity analysis (Figure 32), which results 

in two ‘lines’ of change in residual regarding the nonlinear model (Figure 35). The effect on 

residuals of the linear model is very similar to that of the nonlinear model.  

 

Figure 35. Influence of water withdrawal and discharge of Boezemgemaal Gouda on residuals of the linear 

and nonlinear model. 

Extrapolation of the results obtained from this analysis indicates that an underestimation of 

1000 mg/L, the maximum underestimation during the spring of 2011, would indicate a 

potential water withdrawal of approximately 300 m3/s. This seems unrealistic as the 

discharge of the Waal in this period is between 750 and 1000 m3/s (Figure 11). 

3.2.6 Model selection 

Overall the non-linear LassoCV model performs better on the training dataset (Table 14) in 

all seasons. On the validation dataset, the non-linear model performs slightly less during 

winter, however, performs better during all other seasons (Table 15). Furthermore, the non-

linear model only differs from the linear model due to the addition of the parameters 

‘Smootherstep wind setup’ and ‘Smootherstep MWA wind setup’ (Table 13), which does not 

increase the model complexity much. Therefore, for further application of predicting 

chloride concentrations at Lekhaven, only the non-linear LassoCV model is applied. 

Parameter coefficients are provided in Annex B.   
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3.3 Spijkenisserbrug prediction model 

For development of a prediction model for chloride concentrations at Spijkenisserbrug a 

similar analysis as Lekhaven is performed. However, Spijkenisserbrug differs from 

Lekhaven in one major characteristic: at Spijkenisserbrug the chloride concentration reduces 

to the background concentration of the Rhine during almost every low tide (Figure 11), 

resulting in little variation in the low tide chloride concentrations. Hence, the observed and 

predicted chloride concentrations during low tide are much smaller  in relation to high tide: 

100 mg/L and 2000 - 10000 mg/L, respectively.  

3.3.1 Parameter selection with multi-step analysis 

Linear OLS model 

Five parameters do not meet the selection criteria as stated in Section 3.1.4, which are; 

’discharge Lek’, ‘MWA discharge Meuse’, ‘Tidal amplitude’, ‘MWA discharge Lek’ and 

‘MWA tide’ (Figure 36). These parameters are therefore disregarded for further analysis. 

 

Figure 36. Results of multi-step analysis for parameter selection of the linear OLS model regarding 

measurement location Spijkenisserbrug when only using high tide observations.  

Nonlinear LassoCV model 

Regarding the non-linear LassoCV model, ‘Discharge Lek’, ‘MWA discharge Lek, ‘MWA 

tide’ and the non-linear weighted parameters ‘Smootherstep wind setup’, ‘Smootherstep 

MWA wind setup’ and ‘Smootherstep MWA tide’ do not meet the selection criteria (Figure 

37). These parameters are disregarded for further analysis. 
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Figure 37. Results of multi-step analysis for parameter selection of the nonlinear LassoCV model 

regarding measurement location Spijkenisserbrug when only using high tide observations. 

Table 16 shows the selected parameters for predicting chloride concentrations at 

Spijkenisserbrug regarding the linear and non-linear model, which are determined with the 

multi-step analysis.  

Table 16. Parameters selected for computation of the linear OLS model and the nonlinear LassoCV model 

with the use of the multi-step analysis for location Spijkenisserbrug.  

Parameter name linear OLS model nonlinear LassoCV model 

Astronomical Tide x x 

Discharge Waal x x 

Wind setup x x 

Discharge Lek   

Discharge Meuse x x 

MWA Discharge Waal x x 

MWA Discharge Meuse  x 

MWA Discharge Lek   

MWA Wind setup x x 

MWA Tide   

Tidal amplitude  x 

Smootherstep tide  x 

Smootherstep Wind setup   

Smootherstep MWA wind setup   

Smootherstep MWA tide   
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3.3.2 Performance on training dataset 

The linear OLS and nonlinear LassoCV model are trained based on the training dataset of 

Spijkenisserbrug chloride concentration observations and parameters as selected with the 

use of the multi-step analysis (Table 16Figure 38)Figure 29. An overview of the 

corresponding parameter coefficients can be found in Annex C. 

 

Figure 38. Measured and predicted chloride concentrations with linear OLS model and nonlinear LassoCV 

including model performance parameters on training dataset for location Spijkenisserbrug with only high 

tide observations. 

Overall performance of the non-linear model exceeds the linear model performance (Figure 

38). When specifying model performance per season (Table 17), the non-linear LassoCV 

model also outperforms the linear OLS model each season.  

Table 17. Performance of Spijkenisserbrug linear and nonlinear model per season on training dataset. 

  linear OLS model nonlinear LassoCV model 

Season number of points R2 [-] RMSE [mg/L] R2 [-] RMSE [mg/L] 

Spring 255 0.889 877.2 0.953 573.3 

Summer 274 0.854 940.3 0.884 839.9 

Autumn 312 0.861 1025.5 0.910 823.5 

Winter 238 0.849 1132.6 0.913 857.7 

All 1079 0.863 996.7 0.915 784.3 
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3.3.3 Performance on validation dataset 

Performance of the model on the validation dataset shows a larger spread around the line 

of perfect fit (Figure 39) which is represented with an increase in the RMSE. 

 

Figure 39. Measured and predicted chloride concentrations with linear OLS model and nonlinear LassoCV 

including model performance parameters on validation dataset for location Spijkenisserbrug. 

The overall performance of the non-linear LassoCV model exceeds that of the linear OLS 

model on the validation dataset (Figure 39). If model performance is specified per season 

(Table 18), performance of the non-linear model, again, outperforms the linear model.  

Table 18. Performance of Spijkenisserbrug linear and nonlinear model per season on validation dataset. 

  linear OLS model nonlinear LassoCV model 

Season number of points R2 [-] RMSE [mg/L] R2 [-] RMSE [mg/L] 

Spring 296 0.847   886.6 0.894   735.8 

Summer 510 0.891   797.8 0.914   710.7 

Autumn 846 0.864 1010.4 0.877   959.2 

Winter 120 0.656 1643.4 0.738 1434.2 

All 1772 0.853   992.4 0.878   902.4 

3.3.4 Sensitivity analysis 

The linear OLS model is most sensitive to variation in the discharge of the Waal, followed 

by variation in wind setup and tide (Figure 40).  
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Figure 40. Spijkenisserbrug linear OLS model sensitivity to each parameter visualized as first and total 

order sensitivity indices. 

The nonlinear LassoCV model is most sensitive to variation of Waal discharge, closely 

followed by variation in wind setup (Figure 41). The nonlinear model is much more sensitive 

to variation in wind setup, compared to the linear model. Also, the sensitivity regarding 

Waal discharge shows a large decrease, while simultaneously the sensitivity to the MWA 

discharge Waal shows a large increase.  

 

Figure 41. Spijkenisserbrug nonlinear LassoCV model sensitivity to each parameter visualized as first and 

total order sensitivity indices. 

3.3.5 Model selection 

Overall the non-linear LassoCV model for predicting the chlorinity at Spijkenisserbrug 

performs better on the training dataset than the linear model (Figure 20Table 14) in all 

seasons. On the validation dataset, the non-linear model also performs better during all 

seasons (Figure 22). Furthermore, the non-linear model only differs from the linear model 

due to the addition of the parameters ‘MWA discharge Meuse’, ‘Tidal amplitude’ and 

‘Smootherstep tide’ (Figure 19), which does not increase the model complexity much. 

Therefore, for further application of predicting chloride concentrations at Lekhaven, only 

the non-linear LassoCV model is applied. Parameter coefficients are provided in Annex C.   

3.4 Brienenoordbrug and Beerenplaat prediction models 

Equal to Lekhaven and Spijkenisserbrug, for measurement locations Brienenoordbrug and 

Beerenplaat the non-linear LassoCV model outperforms the linear OLS model (Annex D and 

Annex E).  
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3.5 Summary 

For comparison between individual models, the prediction error has been normalized by 

dividing the RMSE with the mean observed value (NRMSE). Similarly to the RMSE, a lower 

value for the NRMSE indicates a better model performance.  

 

Highest factor of variance explained by the input parameters (R2) regarding the validation 

dataset, on which the model type is selected, is found at the most downstream measurement 

locations Spijkenisserbrug and Lekhaven (Table 19), on the Old Meuse and New Meuse 

respectively. Further upstream at Beerenplaat and Brienenoordbrug, where the influence of 

the tidal wave decreases, the R2-values decrease and the estimation errors (NRMSE) 

increase.   

Table 19. Selected model type regarding each measurement location and corresponding model 

performance on validation and training dataset. 

Measurement 

location 

Model Training dataset Validation dataset 

  R2  

[-] 

RMSE 

[mg/L] 

NRMSE 

[-] 

R2 

 [-] 

RMSE 

[mg/L] 

NRMSE  

[-] 

Lekhaven non-linear 0.872 469.4 0.21 0.799 579.1 0.31 

Spijkenisserbrug non-linear 0.915 784.3 0.30 0.878 902.4 0.37 

Brienenoordbrug non-linear 0.813 370.5 0.50 0.699 413.1 0.69 

Beerenplaat non-linear 0.725 541.1 1.07 0.620 531.2 1.42 

 

The inclusion of non-linear parameters and the inclusion of cross-products improves the 

explained variance in chloride concentrations by variance in the input parameters, indicated 

with an increase in R2-value. Also, the estimation error (RMSE) decreases with application 

of the non-linear LassoCV model. Therefore, chloride concentrations in the Port of 

Rotterdam are best explained with a non-linear model, as described is Section 3.1.  
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4 Model application 

 

 

  

image: Dredging ship ‘Causeway’ on the New Waterway, https://beeldbank.rws.nl, Rijkswaterstaat / Harry van Reeken 
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This chapter elaborates on potential applications of the developed prediction models 

(Chapter 3), that have been developed in this research. Two applications of the models can 

be indicated; impact of human intervention and chloride concentration prediction.  

Assessing impact of human intervention 

The main application of the models is the analysis of the effect of human interventions on 

chloride concentrations in the Port of Rotterdam. This application is based on the 

comparison of predicted chloride concentrations, computed with the developed models, 

with the measured chloride concentrations after a human intervention. The analysis of 

effects of human interventions on chloride concentrations can be performed according to the 

flow chart as provided in Figure 42. This flow chart can be applied once the prediction model 

has been trained such as described in Chapter 3. Step 1 describes the computation of chloride 

concentrations for the reference period. Step 2 describes the computation of expected 

chloride concentrations using the model that was trained on the period before human 

interventions, with use of the input of boundary conditions after human intervention. Step 

3 holds the computation of residuals before and after human intervention and the analysis 

of these residuals, which is further elaborated on in Section 4.1. An example of the analysis 

of the impact of potential human interventions is provided in Section 4.3.  

 

Figure 42. Flow chart for analysing effects of human intervention on chloride concentrations [Cl]. With 

the trained prediction model indicated in brown.  

Effect of human intervention on chloride concentrations can be further examined by 

comparison between the model sensitivity before and after human intervention. First, the 

model is trained on data before human intervention (Figure 43, Step 1). Followed by the 

training of an alternative model trained with data obtained after human intervention. This 

training is performed with the same set of input parameters as used before human 

intervention (Figure 43, Step 2). Next, the sensitivity indices before human intervention and 

after human intervention can be compared (Figure 43, Step 3). This provides information on 

which processes became more, or less, influential due to the human intervention.  
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Figure 43. Flow chart for analysis of changes in model sensitivity due to human intervention. 

Chloride concentration prediction 

Another application of the developed chloride concentration prediction model is the 

prediction of chloride concentrations with the use of expected values of the input boundary 

conditions (Figure 44).  

The discharge boundary condition is currently predicted 4 days in advance. Astronomical 

tide is predicted several months in advance. Step 1 contains the prediction of chloride 

concentrations with the use of a trained prediction model. Step 2 contains the validation of 

the prediction which can be performed as a hindcast for model improvement.  

These predictions, which are currently not performed, can be useful to water managers, as 

this information can potentially be used for planning of water extraction by agriculture or 

industry. 

 

 

Figure 44. Flow chart for predicting chloride concentrations based on predictions of boundary conditions. 

4.1 Methodology for analysis of residuals 

For future application of the analytical prediction models to analyse the impact of human 

interventions on chloride concentrations in the Port of Rotterdam, a methodology is 

determined for analysis of residuals. This methodology may be applied to the residuals 

collected during high and low tide separately or combined. However, especially for 

measurement locations: Spijkenisserbrug, Beerenplaat and Brienenoordbrug, a separate 
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analysis on residuals would be preferable due to the decrease of the chloride concentration 

to Rhine background concentrations during low tide.  

For increased validity of residuals calculated after human intervention, the application of 

the prediction model must be performed within the range of the input parameters before 

human intervention (Table 20). 

Table 20. Range of input parameters prior to deepening for which the model has been trained and 

validated. 

Parameter Range Unit 

astronomical tide -91 to 160 [cm NAP] 

wind setup -90 to 122 [cm]  

discharge Waal 670 to 1250 [m3/s] 

discharge Meuse 13 to 522 [m3/s] 

discharge Lek 0 to 174 [m3/s] 

Statistical testing for difference in means 

Previous analysis of HydroLogic (2018) applied the z-score test for testing for equal means 

(Eq. 4).  

 

 

 

𝑧𝑠𝑐𝑜𝑟𝑒 =  
𝑋 − 𝜇

𝜎
 (Eq. 4) 

where 𝑋 is the mean residual prior to human intervention, 𝜇 is the mean residual post human 

intervention and 𝜎 is the standard deviation prior to human intervention. The z-score is used 

to test the hypothesis:  

 
𝐻0: 𝑀𝑒𝑎𝑛 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑝𝑜𝑠𝑡 ℎ𝑢𝑚𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 = 𝑀𝑒𝑎𝑛 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑏𝑒𝑓𝑜𝑟𝑒 ℎ𝑢𝑚𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 

𝐻1: 𝑀𝑒𝑎𝑛 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑝𝑜𝑠𝑡 ℎ𝑢𝑚𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 ≠ 𝑀𝑒𝑎𝑛 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙 𝑏𝑒𝑓𝑜𝑟𝑒 ℎ𝑢𝑚𝑎𝑛 𝑖𝑛𝑡𝑒𝑟𝑣𝑒𝑛𝑡𝑖𝑜𝑛 

 

The z-score for different means is a quick tool for assessing changes in the mean residual. 

However, it does not consider the number of observations. The more advanced Welch’s t-

test (Eq. 5) does take the number of observations in the datasets into account (Welch, 1947). 

For testing of equal means, as stated in 𝐻0, a two-tailed test is applied, of which the critical 

score is determined based on the significance level (α) and the degrees of freedom (𝜈), which 

can be estimated with Eq. 6. The Welch’s t-test can handle equal and unequal variances and 

sample sizes, providing a uniform testing methodology (Zimmerman, 2004).  

 
𝑡𝑠𝑐𝑜𝑟𝑒 =  

�̅�1 − �̅�2

√
𝑠1

2

𝑁1
+

𝑠2
2

𝑁2

 
(Eq. 5) 

where �̅�1 is the mean of the residuals prior to human intervention, �̅�2 is the mean of the 

residuals post human intervention, 𝑁1 is the number of independent observations prior to 

human intervention, 𝑁2 is the number of independent observation post human intervention, 

𝑠1
2 is the variance of residuals prior to human intervention and 𝑠2

2 is the variance of residuals 

post human intervention. The degrees of freedom needed for determining the critical t-score 

is determined with (Derrick & White, 2016):  
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𝜈 ≈  
(

𝑠1
2

𝑁1
+

𝑠2
2

𝑁2
)

2

𝑠1
4

𝑁1
2𝜈1

+
𝑠2

4

𝑁2
2𝜈2

 (Eq. 6) 

where 𝜈1 =  𝑁1 − 1 and 𝜈2 =  𝑁2 − 1.  

4.2 Example on synthetic timeseries 

All dredging work for deepening of the New Waterway has been completed in January 2019. 

Around 10 percent of the total dredged volume (6 million m3) has been used to fill erosion 

pits in the Old Meuse. Between measurement location Lekhaven and the divergence point 

of the New and Old Meuse, dredging has not been completed yet due to the presence of 

pipes and cables in the riverbed (Figure 45). This final part of the deepening project is 

scheduled in the fourth quarter of 2019. The presence of these pipes and cables have an 

unknown influence on the final effect of deepening of the New Waterway and Botlek on 

chloride concentrations as they currently form a sill with a height of approximately 1.5 

meter.  

 

Figure 45. Deepening of the New Waterway and Botlek and location of erosion pits and pipes and cables. 

Synthetic time series 

As the deepening of the New Waterway and Botlek has not been fully completed yet, an 

example analysis on effects of human interventions on chloride concentrations is performed 

on a synthetic period of low discharges. The corresponding measured chloride 

concentrations for measurement location Lekhaven have been altered based on the outcome 

of previous research performed by HydroLogic (2018). This analysis by HydroLogic, based 

on calculations performed by Svasek Hydraulics (2015), resulted in a percentual change in 

chloride concentrations with a Rhine discharge dependency (Figure 46).  
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Figure 46. Expected relative change at measurement locations Lekhaven and Spijkenisserbrug with a 

discharge dependency (HydroLogic, 2018) 

The measured chloride concentrations (Figure 47, green line) correspond with the “[Cl] 

measured” boxes in Figure 42.  The measured chloride concentrations have been altered 

(Figure 47, blue line) based on the percentual change as provided in Figure 46, and 

correspond with the “[Cl] measured” box in Step 2 of Figure 42. With the use of the 

Lekhaven non-linear prediction model chloride concentrations have been predicted based 

on discharges of the Waal and Meuse, wind setup and astronomical tide (Figure 47, bottom 

plot.  

 

Figure 47. Measured chloride concentrations (top plot, green line), synthetic chloride concentrations based 

on HydroLogic (2018) (top plot, blue line) and overview of normalized input boundary conditions (bottom 

plot). 

Figure 48 shows the synthetic chloride concentrations versus the predicted chloride 

concentrations, determined with the use of the Lekhaven prediction model. The trend of the 

observations is indicated with the black dotted line. An increase in trend corresponds with 
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higher synthetic chloride concentrations, compared to the expected chloride concentrations. 

This suggests a change in chloride concentrations, which is statistically tested by comparing 

residuals obtained from the synthetic dataset and the predicted dataset, relative to the 

reference situation (Figure 42). 

 

Figure 48. Scatter plot of predicted and synthetic chloride concentrations for example period. Change in 

chloride concentrations can be indicated by shift in trend line relative to the perfect fit line. 

A summary of statistics of the residuals is provided in Table 21. A negative mean of the 

synthetic residuals is observed, indicating an underestimation of the Lekhaven prediction 

model caused by an increase in chloride concentrations.  

Table 21. Number of observations, means and standard deviations of measured and synthetic residuals. 

 Observations Mean [mg/L] Standard deviation [mg/L] 

Measured residuals 85 71.8 549.8 

Synthetic residuals 85 -168.2 608.4 

Statistical testing for difference in means 

The statistical test, as elaborated on in Section 4.1, is performed on the residual’s statistics 

provided in Table 21. Result the Welch’s t-test, given in Equation 5, is provided in Table 22.  

Table 22. Outcome of statistical test between synthetic and expected residuals. 

 Synthetic series 

Degrees of freedom (df) 166 

Significance level (α) 0.05 

critical  t𝑠𝑐𝑜𝑟𝑒 ± 1.984 

computed  t𝑠𝑐𝑜𝑟𝑒 2.70 

𝐻0 rejected 

 

Increase of  

chloride concentrations 

Decrease of  

chloride concentrations 

http://www.hydrologic.com/


Predictive analytical model for chloride concentrations in the Port of Rotterdam 

 hydrologic.com  59 

The statistical test indicates that residuals from the predicted and altered time series cannot 

be regarded as equal (computed t𝑠𝑐𝑜𝑟𝑒  >  critical  t𝑠𝑐𝑜𝑟𝑒). This indicates a significant change 

in chloride concentrations due to the alteration of the time series. This is in line with the 

conclusion from the analysis of HydroLogic (2018).  
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5 Discussion 

 

 

  

image: Lekhaven, chloride concentration measurement location / Erik Plaggenmars 
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5.1 Gained insight on salt intrusion in the Port of Rotterdam 

Previous analysis by HydroLogic on salt intrusion in the Port of Rotterdam focused on 

predicting chloride concentrations at Lekhaven and Spijkenisserbrug with day-averaged 

discharges of the Rhine at Lobith below a wind setup of 0.15 meter at Hoek van Holland. A 

time lag of one day was applied to the Rhine discharge (HydroLogic, 2015a). With the use 

of the cross-correlation analyses, as described in Section 2.4, time lags of the water level at 

Hoek van Holland and the discharges of the Waal, Lek and Meuse at Tiel, Hagestein and 

Megen, respectively, are determined at a 10 minute resolution, regarding each of the four 

measurement locations.   

The reduction of the sampling interval, from one day to the frequency of half a tidal 

cycle (e.g. 6.2 hours), facilitates the incorporation of the tidal water level variation of each 

ebb and flood period. This water level variation is split in the components astronomical tide 

and wind setup. Deviating from previous analyses, all occurring values of wind setup, 

within the analysis period are now incorporated in the analysis. This incorporation of tide 

and wind setup proves to be efficient as, for example at Spijkenisserbrug, variation in 

chloride concentration is much more sensitive to variation in wind setup compared to 

variation in tide (Figure 41).  

With the auto-correlation analysis, as described in Section 3.1.3, the auto-correlation 

in each of the five boundary conditions, astronomical tide, wind setup and discharges of the 

Waal, Lek and Meuse, are incorporated mean-weighted averages in the analysis in order to 

describe chloride concentration observations independent from previous observations. At 

Lekhaven, this results in a high sensitivity of the non-linear model to the autocorrelation 

parameter of the wind setup (Figure 32, MWA wind setup).  

Application of a multi-step analysis, for selecting parameters when describing 

chloride concentrations at each of the four measurement locations, provides insight in the 

added value of each parameter. For example, the discharge of the Lek is not included in any 

of the models, as it does not increase the ability of the models to predict chloride 

concentrations. Also, with the use of the validation dataset in the multi-step analysis 

parameters are excluded that would have been included in the analysis when only using the 

training dataset as an indicator. An example is the exclusion of MWA tide in the Lekhaven 

prediction model (Figure 28). Here, the performance of the model on the training dataset 

increases with inclusion of the parameter MWA tide, but it decreases the performance on 

the validation dataset.  

The increased performance of the non-linear model compared to the linear model at 

each of the four measurement locations indicates that processes affecting salt intrusion are 

better described with the inclusion of cross products of the input parameters and the 

autocorrelation parameters (Chapter 3.4). At Lekhaven, the wind setup is no longer 

incorporated in the non-linear model as a single parameter (parameter coefficient = 0) but 

only in the cross product parameters (Annex B). Similar results are obtained from the 

parameters coefficients at the three other measurement locations (Annex C, Annex D and 

Annex E). 

 

From the specification of model performance per season, variation in model performance is 

observed. Regarding Lekhaven and Spijkenisserbrug, performance is best during summer 

and least optimal during winter (Table 15 and Table 18). This may indicate a seasonal 

variation in the uncertainty of the input parameters, such as water withdrawal or discharge 
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from pumping stations, or in the influencing factors not incorporated in the analysis, such 

as the salt concentration of the intruding sea water (Chapter 2.1). Further analysis on 

seasonally fluctuating processes in the Rhine-Meuse delta or incorporation of (expected) 

seasonal water withdrawal or discharge may reduce the seasonal performance fluctuation 

of the developed models.  

5.2 Impact of model assumptions 

Section 2.1. shows the variation in chloride concentrations at several depths. Based on a 

visual interpretation of the salinity profiles (Figure 10), a depth-averaged value is applied. 

A slight difference in salt wedge profile is observed from the analysis of salt wedges 

corresponding with three discharge volumes. From theory we know, that the salinity profile, 

and thus the vertical variation of chloride concentrations, is dependent on the river 

discharge volume and tidal range (Savenije, 2012; Open University, 1999). As the tidal range 

will not differ much, the vertical variation of chloride concentrations is mainly influenced 

by the river discharge. However, application of a depth-averaged value, disregards the 

variation of the vertical chloride concentrations distribution.  

Although the shape of the vertical variation does not differ much under various 

discharge conditions, a difference, regarding high and low tide, is observed between the 

measurement locations Lekhaven and Spijkenisserbrug (Figure 10). Measurement location 

Lekhaven is located inside a harbour basin which causes trapping of saline water at the 

bottom (Savenije, 2012). Also, it limits the influence of the fresh water to flush out the salt 

during low tide,  causing increased chloride concentrations during low tide. Water 

movement inside the harbour basin is dependent on the flow velocity in the main river 

(Langedoen, 1992) and density currents due to salinity differences (De Nijs, 2012). At 

Lekhaven, chloride concentrations inside the harbour basin are dependent on the exchange 

of water within the basin with water in the main river under influence of tidal movement. 

At Spijkenisserbrug, which is situated in the main river, this dependency does not occur, 

and the measured chloride concentration is that of the water in the main river.  

Although this distinct difference in dynamics of salt intrusion, due to the location of 

the chloride concentration measurement devices, the analytical models are very capable of 

predicting chloride concentrations at each of the measurement locations. Therefore, a depth-

averaged chloride concentration proves to be a good indicator of salinity under various 

conditions and at different measurement locations.  

 

Optimization of correlation between boundary conditions and chloride concentration only 

is performed on the dataset from spring 2011, as described in Section 2.2. This can possibly 

be improved by applying the training set used in model building in Section 3.1.1, as a wider 

range of events will be included.  

 

The correlation method, time lags and sampling interval are determined based on a single 

period of low discharges in 2011 (Figure 11). During this analysis period, the influence of 

discharge of the Lek on chloride concentrations is insignificant, resulting in a wide range of 

time lags (Figure 18 and Figure 19) and no increase in the correlation coefficients when 

added to the discharge of the Waal (Table 2Table 6). Therefore, the time lag of the discharge 

of the Lek is estimated based on time lags of the Waal and Meuse. For exact determination 
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of the time lag of the Lek, an analysis period with reasonable discharge of the Lek will 

provide a more data-based time lag.  

 

The determination of the training and validation dataset is done by selecting certain periods 

of low discharge, the hold-out method. Because of this methodology, the remaining 

observations assigned to the validation dataset are mostly obtained from shorter periods of 

drought (Figure 21). Influence of this hold-out method on model performance is unknown 

and can be examined with a comparison to a randomly selected training and validation 

dataset. Also, the size of both the training and validation dataset is user determined. This 

might influence the model performance and optimal computation, according to the model 

learning curve principle (Figure 49). A larger training dataset will, according to the principle, 

increase the model’s goodness of fit. It should however be noted that with increasing 

training dataset, the size of the validation dataset decreases. 

 

Figure 49. The learning curve principle. With increasing training set size the model validation score 

increases. 

Normalization of parameters is all performed to values between 0 and 1, except for wind 

setup, which is normalized between -1 and 1. This increases the range for wind setup 

compared to the other parameters. The Sobol’ sensitivity analysis compensates for varying 

ranges of input parameters when determining the sensitivity indices, as a range must be set 

for each parameter (Saltelli, et al., 2010). The difference in ranges is therefore not affecting 

the result of the sensitivity analysis. However, the parameter coefficients, as provided in 

Annex B to D, should not be compared directly as these are influenced by the range of the 

input parameters. 

 

The application of non-linear parameters regarding the tide and wind setup is performed to 

incorporate mixing processes influenced by these parameters. These non-linear parameters 

however do not have a direct physical substantiation. This makes interpretation of effects of 

these parameters more difficult. Also, the shape of the applied smoother step function is 

arbitrary, as this is based on expectations of effects. 

 

The discharge into the estuary of the Rhine-Meuse Delta is described with the inflow of 

freshwater from the Waal, Meuse and Lek. This discharge is however also influenced by the 

withdrawal and discharge of pumping stations along the rivers downstream of the 

discharge measurement locations. The withdrawal and discharge of these pumping stations 

R
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in not continuously measured during the analysis period described in Section 2.2. and 

therefore not incorporated in the present model. It was found that an underestimation of 

chloride concentrations at Lekhaven of 1000 mg/L would indicate a potential water 

withdrawal of 300 m3/s. Although this seems unrealistic, as the discharge ranged from 750 

to 1000 m3/s during that period, under- and overestimation of the predictive analytical 

models can be reduced by correcting the input discharge with water withdrawal or 

discharge by pumping stations.   

 

Although wind velocity and direction are measured at the mouth of the estuary, effects of 

wind on the water surface in the estuary are not included. As Savenije (2012) states, mixing 

inside the estuary is dominated by the salt- and freshwater flux. Therefore, mixing due to 

wind is not incorporated in order to decrease the number of input parameters.  

5.3 Identifying salinity changes in the Port of Rotterdam 

Salinization at the selected measurement locations occurs on a daily frequency at Lekhaven 

and Spijkenisserbrug (Annex A) below a 1500 m3/s discharge of the Rhine. At Beerenplaat 

and Brienenoordbrug, salinization occurs during low discharges in combination with wind 

setup. Although salinization at these locations is not regarded as problematic, the 

measurement locations used in this study are selected because of the higher frequency of 

salinization compared to more upstream locations. Therefore, within the scope of this 

research salinity changes in the Port of Rotterdam are examined at the four selected 

measurement locations. However, the described methodology in Chapter 2 and Chapter 3 

may also be applicable to measurement locations further upstream in the estuary.  

 

The stated methodology in Chapter 4 is one of the many possible analysis methods of 

residuals computed post human intervention. As these residuals are not available yet, the 

optimal methodology for analysis of these residuals is yet unclear.  

For example, based on the systematic difference between low and high tide observations at 

Spijkenisserbrug, Brienenoordbrug and Beerenplaat, where chloride concentrations return 

to background concentrations of the Rhine during low tide, separate analysis is more useful.  

Difference in means, as described in Section 4.2 can be applied on high tide observations, 

while computing an exceedance frequency, based on a certain threshold, might provide 

more insight on changes during low tide.  

 

When assessing effects of human interventions to the estuary, such as deepening, which 

alter the morphology, some results may have to be revised, such as time lags. Cai et al. (2012) 

concluded that deepening of an estuary decreased the wave travel time due to an increased 

tidal amplitude. As wave travel time at each measurement location, indicated with the time 

lag, is assumed constant, the effect of alterations in the estuary on wave travel time is 

currently disregarded. The wave celerity in an estuary can be estimated by: 𝑐 = √𝑔ℎ, where 

𝑔 is the gravitational acceleration and ℎ is the water depth (Savenije, 2012). An increase of 

10 percent of the water depth, would result in a 5 percent increase in the wave velocity. 

However, the wave travel time is also dependant on the friction and discharge volume 

(Nguyen, 2008). Theoretically, if the wave travel time and, consequently, the time lag would 

decrease with 5 percent, this would result in a decrease of 5 minutes regarding the time lag 
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of the tide for Lekhaven. This would not affect results significantly as the cross-correlation 

function shows a wide peak of optimal time lags (Figure 14) and is followed by the tidal 

sampling in which a period of around 6.2 hours is considered. 

5.4 Benefits and other applications of model 

Developed models can be fairly easily implemented in real-time monitoring systems and 

applied for chloride concentrations predictions. Input parameters: astronomical tide, wind 

setup and discharge of the Waal, Lek and Meuse are easily accessible for daily application 

of the model, on collected measurements post deepening. The obtained residuals may be 

tested for deviation of the mean prior to deepening, as described in Section 4.1, at, for 

example, a monthly interval. This provides a regular update as indication of effects due to 

the deepening of the New Waterway and Botlek. A real-time implementation can also be 

used for further calibration of developed models, as performance of the models can be 

assessed on a continuous basis.  

 

Currently, the methodology is based on the semidiurnal tidal cycle observed at the Rhine-

Meuse basin. However, the sampling methodology, from peak-to-trough and trough-to-

peak, as described in Section 2.5, may also be applied to other tidal cycles, such as diurnal 

or mixed semidiurnal tidal cycles. This makes the developed methodology interesting for 

predicting chloride concentrations with an analytical model for other estuaries. 
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6 Conclusion and recommendations 

6.1 Conclusion 

6.1.1 Optimization of dataset 

Available measurements in the analysis period of 2011 to present, comprise the discharges 

of the Waal, Meuse and Lek and the water levels at the mouth of the Rhine-Meuse estuary, 

which are split in an astronomical tide and a wind setup component. Due to the non-normal 

distribution of these parameters, the Spearman R correlation is applied to asses changes in 

correlation with varying time lags.   

Optimal correlation between the water level at Hoek van Holland and the chloride 

concentration measurement locations Lekhaven, Spijkenisserbrug, Brienenoordbrug and 

Beerenplaat is found at a time lag of 110, 190, 200 and 280 minutes, respectively.  

Optimal correlation between the discharge of the Waal at Tiel and the chloride concentration 

measurement locations Brienenoordbrug, Beerenplaat, Lekhaven and Spijkenisserbrug is 

found at a time lag of 1000, 1100, 1150 and 1250 minutes, respectively. Regarding the Meuse 

discharge measured at Megen time lags of 1500, 1650, 1750 and 1900 minutes optimize the 

correlation with chloride concentrations at Beerenplaat,  Spijkenisserbrug, Brienenoordbrug, 

Lekhaven, respectively. Time lags of the discharge of the Lek could not be determined with 

the cross-correlation analysis and were determined based on expert judgement at 750, 900, 

160 and 1750 minutes for Brienenoordbrug, Lekhaven, Beerenplaat and Spijkenisserbrug, 

respectively. 

Analysis of the above stated input parameters and their relation to chloride concentrations 

at each measurement location, is best performed at the interval of the in- and outflow of the 

tidal wave. This is achieved by separating the tidal wave signal in a trough-to-peak and 

peak-to-trough section (Figure 20). Corresponding to each section the average discharge and 

wind setup are calculated. Regarding the through-to-peak section, the minimum chloride 

concentration and tidal water level are determined. For the peak-to-trough section, the 

maximum chloride concentration and tidal water level are determined. For inclusion of tide, 

the tidal sampling method proves to be an improvement over the 10-minute or hourly 

sampling interval. 

6.1.2 Predictive analytical model development 

At all four measurement locations the non-linear LassoCV model performs better than the 

linear OLS model (Annex D and Annex E). The highest factor of variance explained by the 

input parameters (R2) regarding the validation dataset, on which the model type is selected, 

is found at the most downstream measurement locations Spijkenisserbrug and Lekhaven 

(Table 23), on the Old Meuse and New Meuse, respectively. Further upstream at Beerenplaat 

and Brienenoordbrug, where the influence of the tidal wave decreases, the R2-value 

decreases. Also, the  normalized estimation error (NRMSE) increases, which is caused by 

relatively lower average observed chloride concentrations at these locations compared to 

other locations.   
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Table 23. Selected model type regarding each measurement location and corresponding model 

performance on validation dataset. 

Measurement location Model Validation dataset 

  R2 [-] RMSE [mg/L] NRMSE [-] 

Lekhaven non-linear 0.799 579.1 0.31 

Spijkenisserbrug non-linear 0.878 902.4 0.37 

Brienenoordbrug non-linear 0.699 413.1 0.69 

Beerenplaat non-linear 0.620 531.2 1.42 

 

With the use of the multi-step analyses a selection of parameters was determined to describe 

chloride concentration at each of the measurement locations (Table 24). Discharge of the Lek 

is not incorporated in any of the predictive analytical models, as it did not improve model 

performance on the validation dataset. The addition of parameters describing the 

autocorrelation of the input parameters (MWA) proves to be a valuable addition as salinity 

observations can be examined independently.  

Table 24. Overview of selected parameters, with the use of the multi-step analysis, to describe chloride 

concentrations at each of the four measurement locations. X indicates a selected parameter. 

Parameter name Lekhaven Spijkenisser

brug 

Brienenoordbrug Beerenplaat 

Astronomical Tide x x x x 

Discharge Waal x x x x 

Wind setup x x x x 

Discharge Lek     

Discharge Meuse x x x  

MWA Discharge Waal  x   

MWA Discharge Meuse x x x  

MWA Discharge Lek     

MWA Wind setup x x x x 

MWA Tide     

Tidal amplitude x x x x 

Smootherstep tide  x  x 

Smootherstep Wind setup x    

Smootherstep MWA wind setup x    

Smootherstep MWA tide   x  
 

All models were found to be sensitive to the set of parameters, astronomical tide, discharge 

of the Waal and wind setup. And far less sensitive to the discharge of the Meuse.  

6.1.3 Future application of predictive analytical models 

Application of the developed predictive analytical model must be performed on data 

gathered within the ranges of the input parameters used in the training and validation 

dataset. The proposed application of the t-test for analysing difference in mean residuals 

prior and post human interventions is a more extensive analysis compared to the z-score 

analysis applied in previous research, as the t-test incorporates the sample size and variance 

of both datasets.   

The developed chloride prediction models can be applied to analyse effects of human 

interventions on chloride concentrations within the Port of Rotterdam. Real-time 
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implementation of the models will facilitate continuous updates of these effects. A real-time 

implementation may also be applied to predict chloride concentrations, based on expected 

discharges of the Rhine and the astronomical tide, which are currently not available. 

6.2 Recommendations 

Based on this research on chloride concentrations in the Port of Rotterdam, 

recommendations can be made regarding the input of: boundary condition discharge, the 

applied methodology and the application of the model.  

 

Decreasing the uncertainty of the discharge must be performed. The largest uncertainty of 

the input boundary conditions lies in the discharge at each measurement location, due to 

the uncertainty of the discharge distribution within the estuary and lacking information on 

withdrawal or discharge at pumping stations. For decreasing the uncertainty, it is best to 

perform continuous discharge measurements in the New Meuse and Old Meuse. Although 

these will be influenced by tide, tidally averaged discharge data will provide valuable 

insights on the distribution along branches and make the use of regional discharge data or 

data on the withdrawal by pumping stations unnecessary. This would have the advantages 

that, in contrast to adding parameter such as upstream water withdrawal, it does not 

increase the amount of input parameters of the analytical models. Also, the dependence on 

the discharge limit below 1500 m3/s would no longer be present, increasing the application 

range of the methodology and the model.  

 

The selection of the training and validation datasets should be randomized. The application 

of a random determination of training and validation datasets is fairly easily applicable. 

 

Real-time implementation of the model is fairly easily executable and will facilitate further 

calibration. This directly makes it possible to analyse model performance on discharge above 

the current threshold of 1500 m3/s. Also, real-time implementation can be used for 

predictions of chloride concentrations based on predictions of the input parameters. 

Predictions of chloride concentrations are currently non-existent.  

 

Finally, the main recommendation is the application of the model to analyse the effect of 

deepening of the New Waterway and Botlek on chloride concentrations in the Port of 

Rotterdam, once the deepening has been fully completed.   
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Annex A Discharge Rhine and chloride concentrations 

On the north side of the system, on the New Meuse, when chloride concentration 

measurement are plotted against the Rhine discharge measurements at Lobith, three distinct 

states in the system show up (Figure 50). With discharges above 4850 m3/s at Lobith and 

wind setup below 15 cm, the tide causes no increased chloride concentrations at both 

measurement locations (stage 3 in Figure 50). Between Rhine discharge at Lobith of 2350 

m3/s and 4850 m3/s, intruding tide does not cause increased chloride concentrations at 

Brienenoordbrug but does at Lekhaven (stage 2 in Figure 50). Below a Rhine discharge of 

2350 m3/s at Lobith the intruding tide causes increased chloride concentrations both at 

Lekhaven and Brienenoordbrug (stage 1 in Figure 50).  

 

Figure 50. Chloride concentration measurements in the New Meuse and discharge at Lobith (with delay of 

1 day), filtered for situation with wind setup below 15 cm.  

On the south side of the system, on the Old Meuse, a similar classification can be made 

(Figure 51). With discharges above 6250 m3/s at Lobith and wind setup below 15 cm the tide 

causes no increased chloride concentrations at both measurement locations. Between Rhine 

discharge at Lobith of 3000 m3/s and 6250 m3/s, the intruding tide does not cause increased 

chloride concentrations at Beerenplaat but does so at Spijkenisserbrug. Below a Rhine  

discharge of 3000 m3/s at Lobith the intruding tide causes increased chloride concentrations 

both at Spijkenisserbrug and Beerenplaat. 

 

Figure 51. Chloride concentration measurements in the Old Meuse and discharge at Lobith (with delay of 

1 day), filtered for situation with wind setup below 15 cm. 
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The observations from Figure 50 and Figure 51 can be translated to an intrusion length of 

the salt wedge on the New Meuse and Old Meuse based on Rhine discharge measurements 

at Lobith (Figure 53).  

 

 

Figure 52. Intrusion of salt wedge based on Rhine discharge measured at Lobith with wind setup at Hoek 

van Holland below 0.15cm. 
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Annex B Lekhaven - model parameter coefficients 

Parameter Coefficients LassoCV model 

Tide 5227.9 

Discharge Waal -4262.2 

Wind setup 0 

Discharge Meuse -403.7 

MWA wind setup 853.2 

MWA discharge Meuse -941.2 

Tidal amplitude -310.9 

Tide * Discharge Waal -3056.0 

Tide * Wind setup -862.7 

Tide * Discharge Meuse 0 

Tide * MWA wind setup 1645.9 

Tide * MWA discharge Meuse -756.7 

Tide * Tidal amplitude -444.5 

Discharge Waal * Wind setup 0 

Discharge Waal * Discharge Meuse 0 

Discharge Waal * MWA wind setup 0 

Discharge Waal * MWA discharge Meuse 0 

Discharge Waal * Tidal amplitude 0 

Wind setup * Discharge Meuse 0 

Wind setup * MWA wind setup -246.2 

Wind setup * MWA discharge Meuse 0 

Wind setup * Tidal amplitude 0 

Discharge Meuse * MWA wind setup 0 

Discharge Meuse * MWA discharge Meuse 0 

Discharge Meuse * Tidal amplitude 0 

MWA wind setup * MWA discharge Meuse 0 

MWA wind setup * Tidal amplitude 0 

MWA discharge Meuse * Tidal amplitude 0 

Smootherstep Wind setup 1820.7 

Smootherstep MWA wind setup  1120.9 
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Annex C Spijkenisserbrug - model parameter 

coefficients 

  

Parameter linear OLS model non-linear LassoCV model 

Tide 6818.9 3250.9 

Discharge Waal -7235.9 -1648.8 

Wind setup 2719.9 2633.5 

Discharge Meuse -2103.9 0 

MWA discharge Waal 1518.5 14.2 

MWA wind setup 2071.3 1732.0 

MWA discharge Meuse 623.1 0 

Tidal amplitude 222.5 -67.9 

Tide * Discharge Waal  -10001.8 

Tide * Wind setup  2406.8 

Tide * Discharge Meuse  -3364.3 

Tide * MWA discharge Waal  0 

Tide * MWA wind setup  1261.4 

Tide * MWA discharge Meuse  -3117.8 

Tide * Tidal amplitude  1671.2 

Discharge Waal * Wind setup  0 

Discharge Waal * Discharge Meuse  0 

Discharge Waal * MWA discharge Waal  0 

Discharge Waal * MWA wind setup  -856.9 

Discharge Waal * MWA discharge Meuse  0 

Discharge Waal * Tidal amplitude  0 

Wind setup * Discharge Meuse  0 

Wind setup * MWA discharge Waal  0 

Wind setup * MWA wind setup  3984.1 

Wind setup * MWA discharge Meuse  0 

Wind setup * Tidal amplitude  -2804.9 

Discharge Meuse * MWA discharge Waal  0 

Discharge Meuse * MWA wind setup  -1725.6 

Discharge Meuse * MWA discharge Meuse 0 

Discharge Meuse * Tidal amplitude  0 

MWA discharge Waal * MWA wind setup 0 

MWA discharge Waal * MWA discharge Meuse 0 

MWA discharge Waal * Tidal amplitude  0 

MWA wind setup * MWA discharge Meuse 0 

MWA wind setup * Tidal amplitude  0 

MWA discharge Meuse * Tidal amplitude 0 

Smootherstep Tide   7435.2 
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Annex D Model development Brienenoordbrug 

Results of the multi-step analysis regarding the linear and non-linear model are provided in 

Figure 53 and Figure 54. An overview of the selected parameters is provided in Table 25. 

 

Figure 53. Result of multistep analysis of linear model regarding Brienenoordbrug. 

 

Figure 54. Result of multi-step analysis of nonlinear model regarding Brienenoordbrug 
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Table 25. Select parameters for both models based on the outcome of the multi-step analysis. 

Parameter name linear OLS model nonlinear LassoCV model 

Astronomical Tide x x 

Discharge Waal x x 

Wind setup x x 

Discharge Lek   

Discharge Meuse x x 

MWA Discharge Waal   

MWA Discharge Meuse x x 

MWA Discharge Lek   

MWA Wind setup x x 

MWA Tide   

Tidal amplitude x x 

Smootherstep tide   

Smootherstep Wind setup   

Smootherstep MWA wind setup   

Smootherstep MWA tide  x 

 

 

 

Figure 55. Model performance on the training dataset (top panels) and the validation dataset (bottom 

panels). 
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Based on the outperformance of the nonlinear LassoCV model over the linear model, the 

sensitivity analysis is only performed on the nonlinear model (Figure 56). 

 

Figure 56. Result of sensitivity analysis of non-linear LassoCV model. 

Table 26. Parameter coefficients of nonlinear LassoCV model 

Parameter Coefficients LassoCV model 

Tide 6252 

Discharge Waal 0 

Wind setup 0 

Discharge Meuse 0 

MWA wind setup 161 

MWA discharge Meuse 0 

Tidal amplitude 0 

Tide * Discharge Waal -6767 

Tide * Wind setup 2215 

Tide * Discharge Meuse -891 

Tide * MWA wind setup 694 

Tide * MWA discharge Meuse -1532 

Tide * Tidal amplitude 18 

Discharge Waal * Wind setup 0 

Discharge Waal * MWA discharge Meuse 549 

Discharge Waal * Tidal amplitude 0 

Wind setup * Discharge Meuse -240 

Wind setup * MWA wind setup 1180 

Wind setup * MWA discharge Meuse 0 

Wind setup * Tidal amplitude 0 

Discharge Meuse * MWA discharge Meuse 0 

Discharge Meuse * Tidal amplitude 0 

MWA wind setup * MWA discharge Meuse 0 

MWA wind setup * Tidal amplitude 0 

MWA discharge Meuse * Tidal amplitude 0 

Smootherstep tide 205 

http://www.hydrologic.com/


Predictive analytical model for chloride concentrations in the Port of Rotterdam 

 hydrologic.com  79 

Annex E Model development Beerenplaat 

Results of the multi-step analysis regarding the linear and non-linear model are provided in 

Figure 58 and Figure 59. An overview of the selected parameters is provided in Table 28. 

 

Figure 57. Result of multistep analysis of linear model regarding Beerenplaat. 

 

 

Figure 58. Result of multistep analysis of non-linear model regarding Beerenplaat. 
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Table 27. Select parameters for both models based on the outcome of the multi-step analysis. 

Parameter name linear OLS model nonlinear LassoCV model 

Astronomical Tide x x 

Discharge Waal x x 

Wind setup x x 

Discharge Lek   

Discharge Meuse   

MWA Discharge Waal   

MWA Discharge Meuse   

MWA Discharge Lek   

MWA Wind setup x x 

MWA Tide x  

Tidal amplitude  x 

Smootherstep tide  x 

Smootherstep Wind setup   

Smootherstep MWA wind setup   

Smootherstep MWA tide   

 

 

 
 

 

Figure 59. Model performance on the training dataset (top panels) and the validation dataset (bottom 

panels). 
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Based on the outperformance of the nonlinear LassoCV model over the linear model, the 

sensitivity analysis is only performed on the nonlinear model (Figure 54Figure 56). 

 

Figure 60. Result of sensitivity analysis of non-linear LassoCV model. 

 

Table 28. Parameter coefficients of nonlinear LassoCV model 

Parameter Coefficients LassoCV model 

Tide 0 

Discharge Waal -1305.4 

Wind setup 0 

MWA wind setup 0 

Tidal amplitude 0 

Tide * Discharge Waal 0 

Tide * Wind setup 4781.5 

Tide * MWA wind setup 1804.5 

Tide * Tidal amplitude 303.4 

Discharge Waal * Wind setup 0 

Discharge Waal * MWA wind setup 0 

Wind setup * MWA wind setup 2587.1 

Wind setup * Tidal amplitude 0 

MWA wind setup * Tidal amplitude 0 

MWA discharge Meuse * Tidal amplitude 0 

Smootherstep Tide 663.5 
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