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Preface 
In this document you find the final report of my master thesis about measurement densities in piping 

assessments. It provides the results of a research trajectory of about 1 year to finalize my master Water 

Management & Engineering and consequently my time as student. This wonderful period started back 

in 2009 at the Technical University of Delft and via the University of Linkoping it ends 7 years later in 

Twente, back at my roots.  

The last year has already been a transition from a student to working life. In September 2015 I started 

with my research at BZ Innovatiemanagement in Deventer. Soon the graduation process was combined 

with two days of work on other projects of BZ as well. This combination was a challenge and has 

resulted in a couple of months delay. However, it also offered me the opportunity to learn a lot about 

working as an advisor and the water safety sector in general. The extra Iead time made it also possible 

to put the research results in a better perspective. All together I consider my period at BZ as very 

valuable and want to thank my colleagues for this. First of all, my daily supervisor Wouter Zomer. Thank 

you for initiating the research topic, familiarizing me with the sector, help with defining the scope and 

underlying problem area, feedback, discussions and daily companion at the office. Most of all I want 

to thank you for helping me back on track when I had a major ‘graduation depression’. I also want to 

thank colleagues Sander Bakkenist, Caspar ter Brake and David Barmentloo. Your presence at the office 

was both fun and inspiring. 

Furthermore, I want to thank my UT supervisors Jord Warmink and Kathelijne Wijnberg. You both 

helped me to make this research much better and of an academic worthy level. Besides that, I want to 

highlight the great attitude of you during the entire graduation process. Although critically regarding 

the content, it was very easy making appointments and ask for your help. Especially Jord, your help 

meant a grade deal during my ‘graduation depression’. 

Finally, I can’t and won’t forget to thank my girlfriend Moniek. Thank you for all the effort in reading 

and revising my report. I am very grateful you did that and helped me get through the tough moments. 

What is left for now is to wish you pleasure reading the results of my research. I hope this research will 

be helpful in the challenges of protecting the Netherlands effectively against flood risks.   
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Summary 
Piping is a failure mechanism in which a water flow below a cohesive dike body causes erosion of soil 

particles. This can result in failure of the dike. In periodic safety assessments, the probability of failure 

due to piping is calculated and compared with the legal norms. In practice the so called detailed 

assessment is often used to estimate the piping safety in a semi-probabilistic approach. A model of 

Sellmeijer is used to calculate the water level that is critical with respect to piping. Most important 

parameters in the Sellmeijer models describe soil properties. In literature is found that piping is one of 

the most critical failure modes of dikes, largely influenced by uncertainties in those soil properties.  

Parameter values of the Sellmeijer model that are representative for a considered dike have to be 

estimated with use of measurements. Usually only a small number of local measurements is collected 

or available. Because of uncertainties about the (spatial) distribution of the parameters, a number of 

assumptions is made to make the strength assessment conservative. This is done to prevent unsafe 

situations in which the actual strength is smaller than the calculated resistance. Counterpart is that 

due to conservatism dikes can be rejected and reinforced while they had been meeting the norm if 

very detailed information was available.  Hypothesis is that higher measurement densities help to 

improve the assessments. The goal of this research is to quantify the effect of the density of point 

measurements on the accuracy of the strength assessment. 

A simulation is set up which enables a comparison between a reference strength and an assessed 

strength that is based on point measurements. A theoretical analysis is made possible by modelling 

soil properties as random fields. Monte Carlo is used to compare reference and assessed strength for 

uncertain soil conditions.  

The resistance of a dike to piping is varying along the length as a consequence of varying soil properties. 

The cross section of a dike section with the lowest resistance is of main interest and therefore defined 

as the reference strength. The assessed strength follows from characteristics value calculations based 

on uncertain measurement data. The error in a strength assessment is defined as the difference 

between reference and assessment. The magnitude of the error is dependent on the soil conditions. 

Because the soil conditions under a dike are uncertain, the error has a range of possible values. It is 

shown that this range of errors exist for every measurement density but can be decreased to some 

extent. The density till which the range can be decreased depends on the (unknown) variation pattern 

of the soil and the (unknown) measurement error. It is therefore not possible to conclude about an 

optimal measurement density without additional sources of information. 

It is also shown that the (unknown) variation pattern and measurement error determine the range of 

errors and the probability that an assessment underestimates or overestimates the actual strength. It 

is shown that for constant variation patterns the assessment is generally conservative as it intends to 

be. This means that it is not likely that the probability of failure is actually higher than calculated from 

the assessment. It is however likely that a dike is actually stronger than calculated. This can result in 

ineffective reinforcements. When it is expected that a dike is much safer than calculated, an increasing 

measurement density can favour the assessment outcome. The assessed strength becomes generally 

less conservative if the measurement density is increased. In some scenario’s this corresponds to an 

increased probability of overestimation as well. If an assessment overestimates the actual strength, it 

is possible that the dike fails before the normative load is exceeded. 

In this research is shown that the current assessment approach is not generally conservative. For some 

scenario’s it is well possible that the actual strength is smaller than calculated. It is identified that 

sudden weak spots are easily overlooked by the current approach. Increasing the measurement 

density has not always the intended effect of preventing this danger. 
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In the assessment measurements are used to estimate parameter distributions. From those 

distributions characteristic values are determined for which it is statistically likely that actual values in 

the field at least result in a smaller piping risk. More measurements help to describe the distribution 

of a parameter more accurately. The way the representative parameter value is selected from that 

distribution is however static, i.e. the method for determining a representative value from a data set 

is not influenced by measurement density. Therefore, still an error can be present between the 

estimated representative parameter value and the value at the weakest cross section. The density of 

measurements has no influence to this type of error. This means a range of errors exist for every 

measurement density, even for very high measurement densities. 

It is shown that if the actual strength is underestimated, this is often because unfavourable properties 

do not coincide while assumed they do. If the actual strength is underestimated, it is often because 

outliers are not captured by the assumed parameter distributions. By considering spatial variation 

explicitly, it is theoretically possible to get rid of inaccuracies by increasing measurement densities. It 

is shown that the density of measurements needs to be higher than the typical correlation length of 

properties to make sure the actual strength is not overestimated. Note that this only holds if 

measurement error is absent or very small. It is shown that errors due to measurement error can be 

reduced by averaging multiple measurements per location.  

It is concluded the current strength assessment based on point measurements and characteristic 

parameter values is unreliable for every measurement density. With a couple of measurements and 

unknown soil variation patterns, the error in an assessment can in theory be up to almost 100%. It is 

also concluded that due to static assumptions in the detailed assessment, relative errors can still be up 

to 50% at high measurement densities. In theory measurements might contain all information to make 

reliable assessments when spatial distribution is made explicit. But it is concluded that the required 

point measurement density is not feasible in practice. Because of the possible errors in an assessment 

based on point measurements, it is recommended to use additional sources of information in the 

assessment as well. It is recommended to study the possibility of (applying) volume covering 

measurements as it might provide information about variation patterns and identify possible weak 

spots. 

Where literature has been focussed on improved understanding and modelling of piping, this research 

has specifically highlighted the errors that can be made if model input is inadequate. It also shows that 

the use of point measurements inevitable results in uncertain model input. Therefore, this research 

supports existing initiatives in which is argued for the need of more data and information and/or 

alternative data and information in safety assessments. Additional data and information is needed to 

prevent unreliable assessments. An unreliable assessment can result in ineffective reinforcements or 

safety risks that are higher than accepted. 
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List of definitions 
 

Term/symbol Explanation 

Piping/backward erosion The formation of empty spaces/pipes below a water retaining 
structure resulting as the result of a seepage flow in which sediments 
are transported.  

d70 realisation The spatial distribution of d70 values along the dike section. A d70 
realisation is randomly acquired by input statistics mean, variance and 
correlation length. 

k realisation The spatial distribution of k values along the dike section. A k 
realisation is randomly acquired by input statistics mean, variance and 
correlation length. 

Strength realisation/ 
𝐻𝑐-realisation 

The spatial distribution of the critical head (resistance against piping) 
along the dike section. The 𝐻𝑐  realisation is acquired by combining 
the varying parameter realisations (d70 and k) in the model of 
Sellmeijer (2011).   

Reference strength/ 
𝐻𝑐,𝑟𝑒𝑓  

The minimum value of a 𝐻𝑐 realisation. The reference strength is the 
resistance to piping of a dike section as it presents the strength at the 
weakest cross section. 

Characteristic d70 value/ 
𝑝𝑑70  

The theoretical 95% lower boundary of the d70 distribution, assumed 
to be the representative d70 value of a dike section. 

Characteristic k value/ 
𝑝𝑘  

The theoretical 95% upper boundary of the k distribution, assumed to 
be the representative k value of a dike section. 

Assessed strength/ 
𝐻𝑐,𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑   

The 𝐻𝑐  value that is calculated with characteristic parameter values 
(d70 and k) using the model of Sellmeijer (2011). The assessed 
strength is a single critical head value that is assumed to be 
representative for a dike section. 

Error/ 
∆𝑥  

The difference between reference strength and assessed strength as 
ratio of the seepage length L. The error is expressed in the deviation 
of critical slope and therefore has the unity m/m or dimensionless. 

Accurate strength 
assessment/ 
∆𝑥≈ 0  

The assessed strength is (almost) equal to the reference strength: the 
error is (close to) zero. 

Underestimation 
∆𝑥> 0  

Positive error: the assessed strength is lower than the reference 
strength. 

Conservative assessment/ 
∆𝑥> 0  

Positive error: probability that a dike section is rejected while it 
actually meets the norm 

Overestimation/ 
∆𝑥< 0   

Negative error: the reference strength is lower than the assessed 
strength. 

Unsafe assessment/ 
∆𝑥< 0   

Negative error: probability that a dike section is considered safe after 
the assessment while it actually does not meet the norm. 
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1. Introduction 
This chapter introduces the research topic and summarizes it into a problem statement. The chapter 

is finalized with the goal and research questions of this research. 

1.1. Background 
Nowadays, the safety standards for primary flood defences have a legal status in the Netherlands, 

defined in the 1995 Flood Defence Act (in Dutch: Wet op de waterkering). The compliance of the 

defences to the safety standards needs to be verified by the water boards through periodic safety 

assessments (Schweckendiek, 2014). The legal procedures of the periodic assessment are described in 

the ‘Voorschrift Toets op Veiligheid’ (VTV) (in English ‘Regulation Safety Assessment’). Currently the 

VTV2006 is still valid, but the new VTV (VTV2017) is under development.  

In a safety assessment the strength of the dikes is determined in relation to the several failure 

mechanisms and compared to the norms. Non-complying defences are to be reinforced. Piping is one 

of the failure mechanism for which the safety is assessed.  

1.1.1. The piping failure mechanism 
The definition of piping is ‘the formation of empty spaces below a water retaining structure as the 

result of a concentrated seepage flow in which sediment particles are transported’ (Förster, van den 

Ham, Calle, & Kruse, 2012). A dike fails due to piping in case a head difference causes a water flow 

below the dike that, in case the flow is strong enough, causes the soil particles to erode. The 

progressing erosion ultimately results in the collapse of the dike (Kanning & Calle, 2013) 

Before a dike fails due to piping two conditions need to be satisfied: burst of the covering impermeable 

layer (called ‘uplift’) and pipes creating an open connection between the outside water and the inside 

area of the dike (Calle, van der Meer, & Niemeijer, 1999). A schematization of a developing pipe is 

given in Figure 1.  

Additional information about the piping mechanism is provided in Appendix 1. For an extensive 

description of the piping mechanism is referred to chapter 4 of the report ‘Zandmeevoerende Wellen’ 

(Förster et al., 2012). 

 

Figure 1 – illustration of the backward erosion/ piping process (Schweckendiek, 2014) 

1.1.2. Assessment of piping risk 
The principle of a safety assessment is as follows. Per considered dike section a limit state equation is 

worked out:  𝑍 = 𝑅 − 𝐿. In this equation R is the resistance of the dike and L the load on the dike. The 

limit state defines the critical state for failure, i.e. the loads on the dike equal the strength (Aguilar-

Lopez, Warmink, Schielen, & Hulscher, 2016). 

 

groundwater flow 
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The safety assessment consists of three types of assessments: simple, detailed and advanced. Within 

the safety assessment procedure, the so called ‘detailed assessment’ is most relevant (Förster et al., 

2012). It uses a semi-probabilistic approach in comparing load and resistance. Resistance is determined 

using a Sellmeijer model. Sellmeijer calculates the resistance in terms of ‘critical head difference’ (𝐻𝑐): 

the maximum water level difference over a dike that the dike can handle without piping to occur.  

The input parameters to calculate the 

critical head are uncertain and can be 

statically described as random variables: 

the parameters have a range of values 

according to a probability density 

distribution. Use of random input variables 

results in an output (𝐻𝑐) that is also a 

random variable. Combining this random 

resistance variable with a random load 

variable results in a probability of failure. 

This is referred to as probabilistic 

approach. The semi-probabilistic approach 

translates random input variables into 

deterministic input values. The result is a 

deterministic resistance value. The random 

load variable is also translated into a 

deterministic water level. Comparing the 

deterministic resistance with the 

deterministic load results in a statement 

about the possibility that load is higher 

than resistance. A partial safety factor is used in the determination of strength values to give this 

statement a certain reliability. 

The assessment specifies how the random variables are translated into deterministic values in a semi-

probabilistic assessment. That procedure implies a certain safety margin that consist of a conservative 

recipe to estimate deterministic input parameters in combination with use of partial safety factors. 

The recipe for determination of input parameters is analysed in the ‘problem definition’ section. 

More information about the procedure of the detailed assessment is given in Appendix 2. Background 

to the models (1989 and 2011) of Sellmeijer (including formulas) is provided in Appendix 3. 

1.1.3. Soil 
Piping takes place below the surface and is therefore very sensitive to ground conditions 

(Schweckendiek, 2014). Therefore, information about the soil is necessarily in assessing the risk of 

piping. 

The most parameters of Sellmeijer’s equations describe properties of the soil. The most important are 

the grainsize and permeability of the aquifer and the presence and depth of the covering clay layer 

(Kanning, 2012), (Schweckendiek, 2014). 

Properties of naturally deposited soils generally exhibit considerable spatial fluctuations. Magnitudes 

of these fluctuations are often such that they may have significant effects on the design of geo-

technical structures as dikes (Vrouwenvelder & Calle, 2003).  

Probabilistic approach:

Uncertainty in Sellmeijer’s input 
parameters.

Parameters described as random 
variables.

Strength described as random 
variable.

Random strength variable 
compared to random load. 

Probability of failure

Semi-probabilistic 
approach:

Uncertainty in Sellmeijer’s input 
parameters.

Parameters described as random 
variables.

Random variables translated into 
determinitisc values

Strength described as 
deterministic value

Deterministic strength compared 
to deterministic load

Strength exceeded by load: 'yes or 
no' 

Figure 2 – Probabilistic approach versus semi-probabilistic approach 
in water safety assessments 
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Within rather homogeneous deposits the uncertainty is called a continuous variability (see left 

stratification of Figure 3). Within rather homogeneous deposits minor geological details can cause 

variations in grainsizes and permeability. Since those are the main parameters, this would as well be 

very relevant for piping (Kanning, 2012). 

Main deposits in the Netherlands are often intersected with anomalies such as old river gullies that 

later have filled with sediments (right stratification of Figure 3). High permeability or very fine grains 

in anomalies cause a sudden weak spot. Dike stretches may perform well for many kilometres but can 

fail at those weak spots (Kanning, 2012).  

 

Figure 3 – Stratifications of the subsoil. Right a stratification with anomaly is presented (Kanning, 2012). 

The probability that an anomaly is present in the considered dike stretch depends on the geological 

history. This probability can be examined with use of local data sets and geological expertise as was 

the approach in Floris (Wiersma and Vonhoegen, 2011). 

1.1.4. Risk of piping in the Netherlands 
Until now, the semi-probabilistic approach is used as standard in safety assessments. However, a full 

probabilistic approach is desirable to make flood risk analysis possible (Nicolai, Vrouwenvelder, 

Wojciechowska, & Steenbergen, 2013). Currently there is a transition towards the probabilistic 

approach, i.e. reliability analyses. The projects Floris (Flood Risks) and VNK (Veiligheid Nederland in 

Kaart) are examples of this and calculated the probabilities of failure of each dike ring in the 

Netherlands (Vergouwe, 2014). 

From reliability analyses appeared that piping is one of the most critical failure modes of dikes. Piping 

reliability is largely influenced by uncertainties in ground conditions, especially by geo-hydrological 

properties such as the hydraulic conductivity of an aquifer. These properties are typically highly 

uncertain, which can lead to the related probabilities of failure being considerably high. 

(Schweckendiek & Vrouwenvelder, 2013) 

According to the calculations many dikes in the Netherlands should be reinforced. This notice has 

increased the attention for this specific failure mechanism significantly and initiated new research and 

investigation towards the piping problem. In the next section the problem of uncertainties causing high 

risks is considered in more detail. 

1.2. Problem description 
The safety assessment of piping is subject to many uncertainties. The uncertainties related to 

resistance are of interest in this research and can be subdivided in model uncertainty and model input 

uncertainty.  
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1.2.1. Errors due to schematization and modelling 
Models introduce uncertainty as they are only a simplified representation of the reality. A model can 

be inaccurate resulting in model bias, but a model can also be imprecise resulting in a model standard 

deviation. Model uncertainty can only be made explicit by comparing model predications with actual 

observed behaviour. 

A critical head calculation with Sellmeijer has to be applied on cross section level (see Figure 4). The 

Sellmeijer models are developed and tested for rather homogeneous subsoils. The use of that model 

therefore implies uniform soil properties within the cross section. In each cross section, parameters 

such as grainsize can only have a single value. Because single values for sand layer depth and clay layer 

depth are required, a simplified soil structure as in Figure 4 is implied.  

It is plausible that the uniformity assumption causes errors as the actual properties in the field are 

heterogeneous.  Literature as well as practical experience for example indicates that heterogeneity of 

grainsize in the cross section, increases resistance against piping due to parallel effects. This is an 

example of model bias. The estimated strength with the model is consistently incorrect because based 

on uniformity instead of heterogeneity. 

Model uncertainty is beyond the scope of this research because within the detailed assessment the 

model is given and not influenced by choices of the assessor such as data use. The uncertainty related 

to model input is however influenced by choices and knowledge of the soil. This is explained in the 

following sections. 

 

Figure 4 – Simplified cross section used in assessment, from Kanning (2012). 

1.2.2. Errors due to estimation of representative parameter values 
If a dike would be homogenous in length direction, it could be represented by one cross section. But 

because of different geometries and spatial variation of subsoil properties (see previous section), 

parameter values actually vary along the dike.  

To be able to assess an entire dike ring with more reliable results. The dike ring, is divided into smaller 

sections for which at least the geometry is considered uniform. Each section is characterized with one 

representative cross section and the strength of this cross section is evaluated with Sellmeijer 

(Ministerie van Verkeer en Waterstaat, 2007).  The calculated strength is assumed representative for 

the entire section. But obviously variations in strength are still present due to the heterogeneity of soil 

properties. As the dike is a series system, the representative cross section is ideally representing the 

weakest location of a particular dike section. However, the representative cross section is not certain 

but an estimate. And this estimate is mainly based on input from a couple of point measurements 
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(personal communication; Zomer, 2015). Point measurements provide only information about one 

specific position in the spatial domain and are subjected to measurement uncertainty. 

 A limited number of measurements introduces statistical uncertainty when estimating the probability 

density distribution of parameter values. A limited number of point measurements also introduces 

uncertainty about the spatial variation of parameter values. And furthermore measurement 

uncertainty is introduced as parameter values are translated from measurements. 

Those three types of uncertainties leave the possibility that the properties at some location along the 

dike section are different then assumed in the representative cross section. An unsafe situation occurs 

if the assumed cross section is more favourable than the weakest location. Strength is then 

overestimated. As the length of sections increases, the probability that a weak location is present but 

not captured by the measurements and cross section calculations, increases. This is referred to as the 

length effect or series effect. There are two main causes of length-effect: continuous fluctuations in 

space due to natural variability in resistance parameters and discontinuous fluctuations due to local 

anomalies.  

1.2.3. Limited information and dealing with uncertainties 
To make a critical head calculation on a representative cross section, local information about the dike 

properties is needed. Information about the soil normally becomes available by taking soil 

measurements (sampling). The number of samples that is used to determine representative soil 

parameter values is usually small. The safety assessment however relies on the limited information 

from those samples. Therefore, the assessment uses a conservative approach to deal with the 

uncertainties and decrease the probability that strength is overestimated: 

 Spatial distribution of parameter values is considered implicitly. This is referred to as the 

homogeneity assumption and a way to deal with uncertainty related to spatial variability. The most 

unfavourable parameter values with respect to piping are assumed to coincide at one location 

somewhere along the section. This approach provides no insight in the distribution of piping 

resistance along the dike section. Instead the strength of the entire section is assumed equal and 

represented by individual parameter values combined in one representative cross section.  

 

 To quantify the unfavourable parameter values, strength parameters are described as random 

variables. Random variables are described by a distribution type, a mu and sigma. Most parameters 

are assumed to have a normal or lognormal distribution. Mu and sigma are calculated from the 

available samples. At least three samples are required. A characteristic value calculation finds the 

upper or lower representative parameter value from the considered probability distribution. This 

value is assumed conservative. The combination of conservative parameter values in the 

representative cross section should assure that the actual strength along the entire section is at 

least higher than the estimated strength. 

 

 The estimated distribution type, mu and sigma are uncertain as long as the sample size is smaller 

than the population size.  The characteristic value calculation therefore results in an uncertain 

upper or lower representative value (statistical uncertainty).  To deal with statistical uncertainty a 

student-t factor is used. With a small number of data points, the sample mu and sigma have high 

probability to deviate from the population’s mu and sigma. The student-t factor helps to find a 

representative value that is at least as conservative as when many data points where used. The 

student-t factor decreases if the number of used samples increases.  
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In appendix 4 the formulas to calculate characteristic values are provided.  Notice that those classic 

statistical formulas are used under the assumption that measurements are as independent 

samples from an uncorrelated population. This means no spatial structure in measured values. 

However, this assumption does not fit the pattern of spatial distribution often visible in regional 

measurements sets (Calle, 2007) 

 With each parameter assigned a conservative value, the critical head of the representative cross is 

calculated using a Sellmeijer model. The critical head is then divided by two safety factors. Those 

factors account for model and schematization uncertainties. But they also account for 

uncertainties in model input that are not explicitly covered by previous two bullets. 

One of those uncertainties is measurement error. It means that the estimated parameter from 

the measurement may not be perfectly representing the property at the measured location. 

Especially the estimation of permeability is often related to high uncertainties due to 

measurement error (personal communication; Kanning, 2015).  

1.3. Problem statement 
In summary the following problem is identified with respect to the design and execution of a detailed 

piping safety assessment: 

 Previous collected data and information is often not stored or rarely used in (future) safety 

assessments.  

 (Additional) data collection by measurements is expensive and often limited to the required 

minima. Technically the minimum number of measurements is three to be able to make a 

characteristic value calculation. 

 Used measurements are characterized as point sources. They only provide information about a 

very small part of the subsoil. 

 Consequence is that strength assessments in piping safety assessments are made based on a 

limited amount of information. 

 To account for uncertainties arising from limited information, conservative assumptions and 

approaches are used to predict strength values. 

Within this practice many kilometres of dike have been rejected the last years on behalf of insufficient 

safety with respect to piping. Experts doubt whether the calculated safety is a correct representation 

of the actual safety. It is already acknowledged that the assessment of piping is subjected to many 

uncertainties. The discussion is supported by practical cases which show that calculations and 

observed behaviour often mismatch. The use of a small amount of data is recognized as one possible 

explanation. 

Usually only point measurements and cross-section calculations are available, whereas large 

uncertainties in the length-direction of the dike are present and possibly unaccounted for. Currently 

there is insufficient insight in the possible error of strength assessments as consequence of the existing 

uncertainties. It specifically lacks a quantitative analysis of the accuracy of assessments in relation to 

the quantity and quality of model input. 

1.4. Goal 
The goal of this research is to quantify the effect of the density of point measurements on the accuracy 

of the strength assessment. 

The accuracy is determined by comparing strength assessments based on a number of point 

measurements (uncertain input) to a reference situation in which high quality sampling is available 
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(certain input). Sampling of high quality is then defined as an extreme dense collection of error free 

point measurements. 

1.5. Research questions 
To be able to achieve the goal of this research the following four research question were posed: 

1. What is a representative model of a piping sensitive dike section? 
a) What is a representative geometry? 
b) What is are the representative (spatial) distribution of the important soil parameters? 

2. How does the density of measurements influence the accuracy of strength assessments using the 
semi-probabilistic assessment approach? 

3. How sensitive is the accuracy of strength assessments to assumed (spatial) distributions of soil 
parameters? 

4. Is it possible to increase the accuracy of strength estimations by using information of point 
measurements alternatively? 

Figure 5 provides a schematization on how the different research question relate to each other. 

 

 

Figure 5 – Relation between research questions   
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2. Methods 
The method used and assumptions made to be able to answer the research questions are described in 

this chapter. This chapter is subdivided in assumptions (section 2.1), approach (section 2.2) and scope 

(2.3). 

A simulation is set up to study the accuracy of strength estimations in assessments. The simulation 

captures important aspects of the detailed assessment and enables a comparison between an assumed 

reference strength and an assessed strength. The reference strength is calculated with complete and 

known assessment input data. The calculation of the assessed strength is subject to the uncertainties 

as described in section 1.2 problem definition.  

2.1. Assumptions of the simulation 
The next subsections describe the most important principles and assumptions of the simulation. The 

assumptions correspond with assumptions made in actual strength assessments in the field. 

2.1.1. The piping mechanism is captured by the calculation rule of Sellmeijer (2011). 
As mentioned before, only the effect of model input on the accuracy of assessments is analysed. The 

model of Sellmeijer (2011) is used because it is the Dutch default. With Sellmeijer (2011) the strength 

is quantified in terms of critical head or critical slope and determined by the appearance of parameters 

mentioned in the formulas. The updated formulas in the Sellmeijer model (Sellmeijer et al., 2011) are 

used because those are, next to the original formulas (1989), already the regularly used and legally 

prescribed from 2017. 

 

Each cross section is assumed to have uniform properties, which implies the research is restricted to a 

1D analysis. This assumption is motivated by the use of a Sellmeijer model which requires or assumes 

a uniform cross section. In addition, the complexity of the simulation is limited. In the 1D analysis the 

dike section consists out of a large number of small consecutive subsections with homogeneous 

properties. To each individual subsection Sellmeijer (2011) is applicable. The subsections have certain 

properties. How those are distributed along the dike section is explained in section 2.2 approach. 

2.1.2. The behaviour of individual parameters is statistically independent. 
There is no cross correlation between parameters. For most parameters this assumption is logical, 

however the grainsize and permeability are physically connected. A layer with small grains has less 

cavities than a layer with bigger grains resulting in a smaller permeability. In Förster et al. (2012) is 

explained that only the small top layer of a water transporting layer below a cohesive soil layer is 

subjected to piping. Therefore, the relevant parameter is the grainsize of the layer directly below the 

cohesive dike body. Contrary the complete water transporting layer is affecting the piping mechanism. 

And consequently the average permeability of the entire sand layer is the relevant. 

 

The assumptions on independence and uniformity in cross section, imply an aquifer layer of several 

sublayers. Each sublayer is uniform with respect to grainsize and permeability, but the properties per 

sublayer may vary (Figure 6). Then configurations are possible in which locations with small grainsizes 

(in the top sublayer) match with locations with high permeability’s (average of entire layer). Or vice 

versa. Permeability is still measured as one value per cross section: the average permeability over all 

sublayers. 
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Figure 6 – Schematization of independence assumption 

In piping reliability analyses, parameters are almost always modelled without cross-correlation. But 

Aguilar-López et al. (2016) demonstrate that cross correlation between relevant grainsize and relevant 

permeability is to some extend likely. The use of cross correlation decreases the probability of failure 

in full probabilistic approaches because there is a higher probability that small grainsizes are 

‘compensated’ by small permeability’s as well (and vice versa). In this study this would have increased 

the reference strength (see chapter 7 discussion). 

 

In the assessment practices, it is even common to use the proposed relation between d70 and k to 

determine k values from grainsize measurements (Förster et al., 2012). The procedure however also 

mentions that to determine k, grainsize samples from the complete sand layer should be used. To 

determine d70 only samples from the top layer are required. This supports the assumption of this 

research that different layering within the sand layer introduces independence, possibly resulting in 

unfavourable combinations of k and d70. 

2.1.3. Parameter can be estimated in-situ point measurements and can contain error 
It is assumed that a measurement always measures the relevant parameter but not always the correct 

value belonging to that parameter on that specific location due to measurement error. The relevant 

parameter value at each subsection can be obtained by one measurement per parameter. Practices in 

which k is estimated from grainsize distributions are not covered in this research because it is in conflict 

with the previous assumption (section 2.1.2). 

 

As mentioned before, the sand layer is assumed to consist out of several sub-layers. Only the d70 

values of the top layer are represented in the simulation. This corresponds to a reality in which sieve 

samples to determine d70 are always taken from the top layer. In the simulation, the average 

permeability of the entire sand layer is represented. This corresponds to a reality in which the bulk 

permeability at one location is measured in situ with one measurement by for example pumping test.  

The result of such analyses is one value for the average permeability at the cross section where the 

test is carried out. That groundwater flow is a 3D process influenced by a 3D varying permeability is 

not relevant for the measured permeability at that exact location. It however is relevant for the 

correlation of k values between sub-sections. This is handled in chapter 3. 

2.2. Approach 
In this research a theoretical analysis is carried out with use of artificial data generation. Relevant soil 

parameters are modelled as random fields. This approach is also applied in the PhD theses of Kanning 

(2012) and Schweckendiek (2014). In literature it is a common way to model unknown or uncertain soil 

properties. Subsoil properties then show random fluctuations in space but to some extend 
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autocorrelation as well. Autocorrelation function (correlogram), mean and variance of soil parameters 

determine the behaviour in space. The correlation length indicates to which extend a parameter is 

fluctuating around its mean value. The result of artificial data generation is shown in chapter 3. 

To quantify the accuracy of a strength assessment and the influence of measurement density, the 

following consecutive steps are performed in the simulation: 

1. Random field (RF) generation. For each considered parameter a data realisation is made. A data 

realisation is a random data set with autocorrelation, according to a predefined correlogram, mean 

and variance. The realisation represents a possible spatial distribution of the parameter’s values 

within a dike section. Each small subsection, as defined in section 2.1.1 is assigned a parameter 

value representing the property at that location. 

 

2. Application of the Sellmeijer (2011) model. The different data realisations of model parameters are 

used as input in the Sellmeijer model. This results in a realisation of resistance values along the 

dike section. The strength at each location is expressed in terms of critical head (𝐻𝑐). 

 

3. Determining the reference strength as the lowest critical head of a dike section. The minimum value 

of the 𝐻𝑐  realisation is called the reference strength. This is the 𝐻𝑐  value that corresponds to the 

location of the dike where the combination of parameter values is most unfavourable with respect 

to piping resistance.  

 

Note: The reference strength is the estimated strength if certain model input would be available. 

The reference strength is not to be confused with actual strengths in reality. Actual strengths of 

dikes can normally only be determined by loading them. As mentioned this research is only a 

theoretical analysis. 

 

4. Estimating the strength with a semi-probabilistic approach. First noise is added to the parameter 

realisations to represent measurement error. Then measurements are simulated by taking, for 

each individual parameter, a predefined number of values from the realisation with noise. With 

the measured values characteristic upper/lower values are calculated for each parameter. Those 

values are used in a representative cross section. Sellmeijer (2011) is applied on that 

representative cross section to obtain a representative critical head. This critical head is referred 

to as the assessed strength. An example calculation is given in appendix 4. 

 

5. The reference strength and assessed strength subtracted and divided by the seepage length. This 

difference in critical slope is called the error (∆𝑥) and is a measure for the performance/accuracy 

of the assessment, given the number of measurements 𝑥 that is used in the assessment. 

 

Critical heads increase with increasing seepage lengths. Therefore, the value of L influences the 

calculated difference between assessed critical head and reference critical head. By defining 

accuracy as the difference between assessed and reference divided by L, the value of L is of less 

importance. There is only a small influence left, caused by non-linearity of L. By minimising the 

influence of dike width, the results become more generally applicable. 

 

6. The previous steps are applied in a Monte Carlo Simulation. A large number of runs is made and in 

which randomly parameter realisations are generated. For each run the error is measured. 
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7. All error’s (one calculated error corresponding to one run) are statistically analysed. The mean, 

standard deviation, minimum, maximum and 95% confidence interval of the errors are calculated.  

 

8. Previous steps are repeated for several measurement configurations.  This enables an analysis to 

the effect of different measurement densities. 

In Figure 7 an overview of the simulation steps and the relation between them are given. In the 

simulation two loops are made. A Monte Carlo analysis is made to determine the error for many 

different soil configurations. A repetition is included to analyse the influence of measurements 

densities on the error. Result is a number of X error sets with each N values. 

 

Figure 7 – Overview of the different steps in the simulation. Start with a geometry and (spatial) distributions to obtain a dike 
section by RF generation. Given a measurement density a data set is obtained by sampling the dike section. From the dike 

section the reference strength is calculated. From the data set the assessed strength is determined. Both strengths are 
compared to find the error. N is the number of repetitions in the Monte Carlo analysis. X is the number of measurement 

densities for which the total MC analysis is repeated. In total X*N error values are obtained. 

2.3. Scope 
The analysis of accuracy is subjected to several modelling choices. The following scope is used: 

1. Geometry related parameters are fully correlated in length direction (uniform along the section). 

This uniformity is in practice quite easily reached when dividing a dike into dike sections. In this 

research only one dike section geometry is analysed. 

 

2. The analysis is limited to variation of the parameters grainsize (d70) and permeability (k). Other 

parameters are assumed ‘known’. This is done because grainsize and permeability are identified 

as the most important/sensitive parameters in the assessment model. Clay layer depth is normally 

quite sensitive as well because it influences both the parameters d and L (Calle et al., 1999). By 

neglecting covering clay layers, the relative importance of sand layer properties increase and it is 

not necessarily to make a 2D-analaysis. In chapter 3 is explained why an analysis without covering 

clay layer is still valuable/important and representative for actual situations. 
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3. The dike section used in the simulations is 1000 meters long. This is similar to the length used in 

the PhD theses of Kanning (2012) and Schweckendiek (2014) and shows good model performance 

in terms of calculation time. Other dike section lengths will be evaluated in the sensitivity analysis. 

 

Note: Typical dike stretch lengths are hundreds of meters till several kilometres. For example, dike 

ring 5 in the Netherlands has stretches from 340 meter to 2400 meter. Dike ring 17 in the 

Netherlands has stretches from 410 meter to 3050 meter. 

 

4. The dike is subdivided into a grid of 1000 subsection of each one meter. Because the grid size is 

much smaller than the section length and smaller than typical correlation lengths it is assumed the 

grid is sufficiently fine. Connection to practice: modelling subsections of 1 meter and 1000 

measurements over 1 km is very precise in perspective to what is common in practice.  

 

5. In the simulation, see step 6 of the previous section, 20.000 repetitions are made. This number is 

chosen to reach stability in the results. Because with 20.000 realisations stability in results is 

reached, almost all possible combinations of parameter value distributions (which are random) are 

assumed covered. 

 

6. The measurements densities that are analysed have respectively intervals of 500, 250, 200, 100, 

50, 40, 25, 20, 10, 5, 2 and 1 meter. The number of measurements and spacing between 

measurements is equal for considered subsoil parameters. It means the density of measurements 

is equal for every parameter. In practice the number of measurements of different properties 

might deviate. This is neglected to limit the number of configurations that could be analysed. 

Although some scope limitations are posed, the obtained results are useful because these can be 

extended to general concepts about measurement densities. This is showed in chapters 6, 7 and 8. 

Besides that the simulation captures the most important aspects of the piping assessment considering 

the use of measurements. In the research the effect of scope limitations and assumptions are studied. 

It is found out that the current scope is relevant to practice and actual situations. In the discussion 

(chapter 7) is reasoned that the influence of the assumptions to the general conclusions is minor.  
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3. Representative dike section model 
This chapter is related to the first research question: What is a representative model of a piping 

sensitive dike section? 

3.1. Introduction 
In construction of a representative model, focus has been on the representative geometry and 

representative statics to model the distribution and spatial variation of the soil parameters. The 

choices result in a set of input parameters that are used in the simulation. The data sets generated 

with this input are tested to check the performance of the model. 

Figure 8 provides a schematization of the considered dike, based on the assumptions and scope of the 

research as discussed in chapter 2.  

 

Figure 8 – Schematisation of dike section model 

3.2. Representative geometry 
Note that pipes develop easier for small seepage lengths; therefore, a typical piping sensitive geometry 

is expected to have a rather small dike body. In the Netherlands the seepage length is often increased 

by the presence of a consistent covering clay layer. This layer moves entrance and exit points away 

from the dike body. Lack of a clay layer increases the sensitivity to piping.  

Dike sections where the dike body width is determining the seepage length (in Dutch also known as 

‘schaardijken’) are in practice of main attention as the resistance is typically low (POV Piping, 2015). 

Especially at those places the aquifer related parameters d70 and k have major influence in 

determining whether piping is a threat or not.  

This research focusses on subsoil parameters of the water transporting layer in a piping sensitive 

geometry. Only variation in grainsizes and permeability’s are studied, therefore a simplified geometry 

is considered where, 

 A clay (cohesive and impermeable) dike body on top of an aquifer which consists of sandy sublayers 

(Figure 8). The combination of the clay and sandy sublayers makes the dike sensitive to piping as 

the clay layer prevents pipes from collapsing (Förster et al., 2012).  
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 Covering (clay) layers are absent outside (in Dutch so called ‘voorland’) and inside the dike (in 

Dutch so called ‘deklaag’). This means that the uplift mechanism can be ignored and the clay layer 

depth parameter d in the equation of Sellmeijer is zero. It represents a ‘schaardijk’ situation. 

 The seepage length L is directly determined by the width of the clay dike body and is constant 

along the length of the dike. It must be stressed that the purpose of this research is not about 

absolute quantification of accuracy but about quantifications of accuracy related to measurement 

densities. Therefore the actual choice of L is of minor importance. A common value of 30 meters 

is chosen (Calle et al., 1999).  

3.3. Representative (spatial) distribution 
In the previous section is indicated that soil characteristics play an important role in the piping 

resistance. Soil characteristics cannot be observed directly and are therefore uncertain. In literature 

random fields based on statistical parameters are used to model uncertain soil properties (REF). 

Because of randomness, each generated field is different. However, on average the random fields 

behave according to the input statistics. 

It appears very difficult to determine representative input statistics. Different geological backgrounds 

result in different typical fluctuation patterns in the field and little is known about the (spatial) 

distributions of soil properties as it lacks very fine maze soil investigations yet (Kanning, 2012), (de 

Visser, Kanning, Koopmans, & Niemeijer, 2015). However, some literature is available that provides 

statistical characteristics to describe spatial variations of parameters. Appendix 5 gives an overview of 

relevant literature and statistical characteristics. 

3.3.1. Reference scenario 
The statistical characteristics that are chosen to describe the spatial variations of parameters are listed 

in Table 1. This combination is from now on used and defined as the reference scenario input 

Table 1 – Representative parameter variances to use as ‘reference scenario’. 

Soil 
parameter 

Mean 
(𝝁)  

Standard deviation 
(𝝈)  

Correlation length 
(𝜹𝟎)  

Measurement error 
(𝝓)  

d70 2.00*10-4 [m]  0.30*10-4 [m] 180 [m] 0.15*10-4 [m] 

k  1.40*10-4 [m/s] 1.40*10-4 [m/s] 600 [m] 0.70*10-4 [m/s] 

 

With respect to Table 1 the following considerations are of importance: 

 Means, standard deviations and correlations lengths are educated guesses based on literature. 

The used statistical parameters are mainly based on the values used in the probabilistic analysis of 

piping in projects ‘Floris’ and project ‘VNK’ (PC-Ring calculations values). It is assumed that those 

variances are well representing the ‘average’ macro conditions of the aquifers as they are observed 

in the field in the Netherlands.  

 Measurement error is modelled as white noise. The variance is estimated to be 50% of the 

standard deviation used to describe spatial variations. This is based on rough indications from 

Kanning (2012) in which it was however unclear where the indicated variances refer to model 

input, model output, measured nugget effect, etc. Because it lacks of more sources that indicate 

magnitudes of measurement error, the 50% value should be considered as a first estimate. A 

percentage is used to make sure that parameters with high variations show high measurement 

errors as well. 
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 It is assumed that spatial fluctuation is well approximated by a Gaussian autocorrelation function, 

described by: 

 𝜌(𝑥)  = 𝑒
−(

𝑥

𝛿0
)

2

  

In which 𝜌(𝑥) is the correlation coefficient,  𝑥 is the Euclidian distance between two points and 𝛿0  

is the ‘correlation length’. The choice for a Gaussian autocorrelation structure is made following 

Kanning (2012) and Schweckendiek (2014).  

 d70 is modelled with a normal distribution. In literature it is common to model d70 as lognormal 

to prevent negative values and allow for larger grainsizes. Nonetheless the variance in this case is 

relatively small with respect to the mean, which means negative d70 values will not appear and 

the difference between normal and lognormal is very small. Besides, normal distributed data is 

more straightforward to model. 

 k is modelled with a lognormal distribution. This is necessarily to prevent negative values as the 

variance is in the same order as the mean. A lognormal distribution of k is very common in 

literature. 

3.3.2. Correlation structure to model soil fluctuation patterns 
There is limited literature available of scales of fluctuation of d70 and k. Especially horizontal scales of 

fluctuations are challenging, as sampling intervals are usually not sufficiently small (Kanning, 2012). 

However, the choices with respect to correlation have significant implications. Gaussian 

autocorrelation implies rather smooth fluctuation patterns. Smooth fluctuation seems to correspond 

to ‘within deposit variations’, because naturally deposits have developed very gradually. In contrary 

the Exponential autocorrelation function results in rather ‘abrupt’ fluctuations. This might be a good 

representation of geological details and/or interfaces between different deposits.  

The correlation lengths of d70 and k, give typical ranges in which those parameter values fluctuate. A 

correlation length of 180 meter for d70 implies that grainsizes show almost no fluctuation on short 

distances (0 – 50 meters). It is questionable if this is representative for Dutch practices.  Fine maze soil 

investigations in testing grounds show rather large fluctuations on small distances (0 – 10 meters) (de 

Visser, Kanning, Koopmans, & Niemeijer, 2015). However, strong fluctuations are related to fluvial 

deposits. There are found indications that Aeolian deposits show less fluctuations in grainsize. 

Especially those aeolian deposits contain the very fine grains that are sensitive to erosion.  

The correlation length of k is assumed to be 600 meter. This implies a rather constant appearance of 

permeability in dike sections of 1000 meter. The higher correlation compared to d70 is caused by the 

nature of the parameter k as a layer average, meaning that small scale variations are already averaged 

out. A correlation length of 600 meter in combination with a smooth correlation pattern is possibly not 

representative for situations with anomalies such as old river gullies. Those anomalies appear rather 

sudden in relatively homogeneous deposits. To model the possibility of a sudden high permeability, 

the correlation length should equal the typical width of an old river bed.   

Expert believe that the smallest correlation length of d70 is possibly zero (de Visser et al., 2015), (POV 

piping, Werkplaats Zwarte water, 2015). It means that d70 can behave as white noise. It is unknown 

whether d70 behaves as white noise due to measurement error, measurements from different 

(geological) layers or due to actual variation. Nevertheless, experts confirm that sand layers can be 

very heterogeneous, at least for some areas in the Netherlands. The smallest expected correlation 

length of k is equal to the dike width. This because k is influenced by a 3-dimensional flow pattern 

(personal communication, Kanning, 2015). 
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In the standard input configuration, it is chosen to model correlated soils with correlation lengths of 

respectively 180 meter and 600 meter. Based on literature and expert judgment a range of plausible 

correlation distances is tested in the sensitivity analysis (chapter 5) as well. 

3.4. Generation of correlated data series 
With the selected input configuration (Table 1), it is possible to provide the model with data. The 

generation of a correlated data set is based on normal distributed random signals and a correlation 

matrix which is based on an autocorrelation function (correlogram). To simulate measurement error, 

a white noise signal is added to the correlated data set obtaining a correlated noised signal. The 

following formulas are used: 

𝑨 = [𝑹 ∗ 𝑼] + 𝜇 + 𝑟𝑎𝑛𝑑𝑛(0, (𝜙)) 

𝑹 = 𝑟𝑎𝑛𝑑𝑛(0, 𝜎) 

𝑼 = 𝑐ℎ𝑜𝑙(𝑪) 

𝑪 = 𝑚𝑎𝑡[𝜌(𝛿0)] 

In which: 

 𝑨 is a correlated noised signal. 

 𝑹 is a ‘white noise’ signal with zero mean and a certain standard deviation.  

 𝑼 is the output of the function chol that performs a Cholesky transformation to the correlation 

matrix 𝑪.  

 The function randn is used to generate a random signal with a normal probability density 

function. 

 The function mat transforms the autocorrelation function into a correlation matrix according 

to the statistic 𝛿0 (‘correlation length’). 

 The statistic 𝜇 (mu) is used to shift the correlated data set to the wished mean.  

 The statistics 𝜎 (sigma) is used to generate a white noise signal with a certain standard 

deviation and zero mean. 

 The statistic 𝜙 (phi) is used to generate a white noise signal with a certain standard deviation 

and zero mean. 

The model input is chosen such that the output matches the representative parameter variances of 

Table 1. For d70 the generation of data is straightforward as the randn function is used to generate 

normal distributed data. However, in the generation of k data a transformation is needed. To obtain 

representative means and variances without negatives, the data is transformed to a log normal 

distribution. This is achieved by taking the exponential of normal distributed correlated data series. 

This transformation results however in a difference between input parameters and output parameters. 

Trial and error yielded that:  [𝑢𝑖𝑛 = 0 , 𝜎𝑖𝑛 = 0.85 ∗ 10−4] results in an output that matches the 

representative mean and variance of k. See also section 3.5 about ‘model output’. Figure 9 and Figure 

10 show the steps of the simulation in an example of respectively a d70 data set and a k data set. 
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Figure 9 – Transformation of random signal (=blue) to a 
correlated signal (=yellow) to a correlated signal with 
predefined mean (=red) to a correlated noised signal 
(=black). Simulated realisation: standard d70 configuration 
with measurement error. 

Figure 10 - Transformation of random signal (=blue) to a 
correlated signal (=yellow) to a strictly positive correlated 
signal(=red) to a strictly positive correlated noised signal 
(=black). Simulated realisation: standard k configuration 
with measurement error. 

These examples show that in both cases negative values are prevented. In case of d70 the white noise 

is of constant magnitude along the domain. However, in case of k the white noise is very small where 

the value of the correlated set is close to zero and much larger at locations where the value of the 

correlated set is higher. This is because the measurement error of k is the result of the same 

exponential transformation. This results in the logical situation that data values are in the same order 

of magnitude as the error. 

Examples of generated data sets are given in Figure 11 until Figure 14. In these examples a domain of 

3000m dike is considered to give overview of the variances and scales of fluctuation corresponding to 

the input statistics. Figure 12 and Figure 14 show that a large number of realisations ‘cover’ all kinds 

of possible variations. As a consequence of a random process each output is unique, although the input 

statistics are constant.  Therefore, a simulation with an extensive number of data realisations is a 

method to represent uncertainty in soil conditions. 

  
Figure 11 – 3 example data sets of d70, each as a different 
result of equal input statistics: in this case corresponding 
to the standard configuration.   

Figure 12 – result of 1000 random d70 data sets 
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Figure 13 – 3 example data sets of k, each as a different 
result of equal input statistics: in this case corresponding 
to the standard configuration.   

Figure 14 – result of 1000 random k data sets 

3.5. Output of data generation script 
Because a random data generation script is used, it is important to analyse a sufficient amount of data 

sets to obtain stable results. In this section the model performance of 20.000 random data sets (see 

chapter 2), consisting of 1001 values each, is analysed.  

3.5.1. Mean and variance 
Measuring over the complete data field of 2002000 data points, the d70 field has a mean and variance 

equal to the input values. Notice that it can indeed be concluded that the randomness has vanished 

after enough realisations. The mean and variance of the k field differs from the input. This is caused by 

the translation from standard normal distributed values to lognormal distributed values. In 

contradiction with the d70 field, the mean and variance of k are not completely stable after 20.000 

realisations (randomness has not completely vanished). The fluctuation range is limited to 0.1*10-4 m/s 

for both the mean and variance. This is assumed acceptable with the calculation time significantly 

increasing and the precision of the result hardly. 

Table 2 – Measured output values. Simulated field N=20000, standard input configuration, no measurement error. 

 d70 [m] k [m/s] 

𝝁𝑵 2.00*10-4 [1.41 – 1.46] *10-4 

𝝈𝑵 0.30*10-4 [1.45 – 1.52] *10-4 

𝝁(𝝈𝒏)𝑵 0.24*10-4 [0.55 – 0.59] *10-4 

 

Table 3 – Measured output values. Simulated field N=20000, standard input configuration with measurement error 

 d70 [m] k [m/s] 

𝝁𝑵 2.00*10-4 [1.55 – 1.59] *10-4 

𝝈𝑵 0.33*10-4 [1.88 – 1.95] *10-4 

𝝁(𝝈𝒏)𝑵 0.29*10-4 [0.99 – 1.03] *10-4 

 

Note: 𝜇𝑁 is the mean value of all data points, 𝜎𝑁 is the standard deviation of all data points, 𝜇(𝜎𝑛)𝑁 

standard deviation per data set averaged over all realisations. So the average standard deviation of a 

data set. 

Visualizations of the data in histograms (see appendix 6) show that indeed d70 data is normally 

distributed and k data is lognormally distributed. Analysis of statistics per location in the domain, show 
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the distribution of data is not affected by locations or boundaries. It is concluded the model functions 

well. 

3.5.2. Correlation  
Correlation is measured using the Method of Moments. To check for the overall average correlation of 

all realisations the unbiased correlation is calculated using the average mean and variance of the 

complete data set (i.e. average values over all realisations).  

Estimator of the correlation coefficient using Methods of Moments is described by (Lark, 2000). 

𝜌𝑧(𝛿) =
1

(𝑛 − 𝛿)𝑠2
∑(𝑧(𝑥𝑖) − 𝜇𝑧)(𝑧(𝑥𝑖+𝛿) − 𝜇𝑧)

𝑛−𝛿

𝑖=1

 

In which z is the parameter value at a certain location 𝑥𝑖 in the domain, (𝑛 − 𝛿) are the number of 

data pairs that have separation distance 𝛿 (‘lag’), 𝜇𝑧 is the mean of the set and 𝑠2 equals the sample 

variance. 

Using this formula, the measured correlation is compared with the correlogram (autocorrelation 

function) that was used as input for the correlation matrix. The results are presented in Figure 15 and 

Figure 16. Those figures show that on average the output correlation is equal to the input. 

  
Figure 15 – Correlation structure of d70 realisations. 
Simulated field: N=20000, standard configuration. 

Figure 16 – Correlation structure of k realisations. Simulated 
field: N=20000, standard configuration. 

The local variance of a data set is affected by correlation (Table 2 and Table 3). Because a single data 

set has a limited number of values and the values within the domain correlate with each other, there 

is not sufficient ‘fluctuation space’ to reach the input variance. Input variance is only reached when 

the ratio correlation length/domain length goes to zero. Local variance in a correlated set is therefore 

always smaller than input variance. Measuring the variance over all sets, can be seen as measuring the 

variance of 1 correlated set with a length of 20.000*1000 meter. Although correlation is present, the 

ratio correlation length/domain length then goes to zero and the measured output variance equals the 

input variance. 

More about the model output is given in appendix 6. 

3.6. Summary and conclusions 
The used dike section model consists of a piping sensitive geometry and data sets which describe 

aquifer parameters d70 (grainsize) and k (permeability) in the length direction of the dike. It is 

concluded that a dike is piping sensitive in a configuration with a cohesive and impermeable dike body 
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on top of a permeable sand layer. A small dike body and lack of a clay layer increases the sensitivity to 

piping and makes the aquifer properties d70 and k extra important in the determination of piping 

resistance. 

Aquifer properties, such as d70 and k, cannot directly be observed and are therefore considered 

uncertain. This uncertainty can be described by statistics: probability density distributions to indicate 

probable appearances and correlation lengths to indicate the variation of soil properties. The d70 and 

k data of the dike section model is generated randomly according to a probability density function and 

an autocorrelation function.   

It is concluded that uncertain soil parameters in the Netherlands cannot be described with one 

representative distribution and autocorrelation function. Therefore, first a reference scenario is 

described. Other (spatial) distributions are analysed in a scenario analysis. The selected statistical 

parameters for the reference scenario are mainly based on PC-Ring calculations. This means d70 data 

is distributed normal (CoV=0.15) and shows correlation (Gaussian) over a length of 180 meters. The k 

data is distributed lognormal (CoV=1) and shows correlation (Gaussian) over a length of 600 meters. 

The choices with respect to correlation imply smooth correlation patterns and are expected to 

correspond to large scale within deposit fluctuations. The repetition of data generation according to 

the input statistics results in many unique possible dike sections. Appropriate functioning of the model 

is demonstrated as the average output statistics of soil parameters complies with the input statistics. 
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4. The error in an assessment of the strength and the influence of 

measurement density 
 

This chapter is related to the second research question: How does the density of measurements 

influence the accuracy of strength assessments using the semi-probabilistic assessment approach? 

4.1. Introduction 
In the previous chapter a dike section is represented as a geometry combined with a set of parameter 

realisations. The parameter realisations describe the values of the individual parameter along the dike. 

Combining the parameter realisations in the model of Sellmeijer (2011) results in one strength 

realisation, which describes the strength along the dike.  

In the upcoming chapter the parameter realisations of d70, k and resulting 𝐻𝑐  realisation are used to 

quantify the accuracy for several measurement densities. In section 4.2. simulation results are 

provided. To illustrate the procedure, first the result of one arbitrary dike section and one 

measurement density is shown. Then it is shown that the accuracy itself is a random variable due to 

uncertain soil conditions. Multiple measurement densities are then compared and the result of the 

complete simulation is summarized in one bandwidth of errors. One complete simulation gives insight 

in the reliability of assessments and how this is related to measurement densities. In section 4.3 an 

analysis and explanation of the results is given. The chapter finalizes with a summary and preliminary 

conclusion. 

4.2. Simulation results 

4.2.1. Accuracy of a single strength assessment 
Figure 17 provides an arbitrary strength realisation with the reference strength and assessed strength. 

In this example the characteristic values are based on a measurement density of 3 per 1000 meter.  

 

The individual parameter realisations with calculated characteristic values that determine the assessed 

strength value, can be found in Appendix 7.   

 
Figure 17 – Visualisation of strength realisation, reference strength and assessed strength based on 3 measurements. 

The strength of a dike section is spatially varying (blue line). In the detailed assessment one strength 

value is assumed representative along the entire section (red line). The figure shows a difference 

between the assessed strength and strength realisation over the entire domain. The reference 
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strength, which is considered the representative strength value for this section, is higher than the 

assessed strength (blue arrow). For this specific section it appears that with uncertain input data (only 

three measurements prone to measurement uncertainty) a smaller strength is calculated than would 

have been calculated as the spatial distribution of properties would be completely known. 

The error in an assessment due to uncertain input is quantified by difference in critical slope 

(meter/meter or dimensionless): 

𝐸𝑟𝑟𝑜𝑟 = [𝑟𝑒𝑓𝑒𝑟𝑒𝑛𝑐𝑒 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ −  𝑎𝑠𝑠𝑒𝑠𝑠𝑒𝑑 𝑠𝑡𝑟𝑒𝑛𝑔𝑡ℎ]/𝐿  

𝐿 is the seepage length, equal to the width of the dike body. The applicability of the results is expanded 

by making them independent of the width of the structure; dividing by L and expressing the error in 

terms of critical gradient. 

The error can have three types of values: 

1.  𝐸𝑟𝑟𝑜𝑟 ≈ 0, the assessed strength is accurate. 

2. 𝐸𝑟𝑟𝑜𝑟 > 0, the assessed strength is conservative as the reference strength is underestimated. 

3. 𝐸𝑟𝑟𝑜𝑟 < 0, the assessed strength is unsafe as the reference strength is overestimated. 

4.2.2. Accuracy as a random variable  
In the previous section is illustrated how the error in an assessment is quantified. This is done for one 

possible strength realisation that was chosen arbitrary. In practice however, the strength and its 

variation along a dike section are uncertain. Monte Carlo is used to quantify the accuracy of multiple 

(random) strength realisations.  

Figure 18 shows the distribution of the error over the interval: −0.1 < 𝐸𝑟𝑟𝑜𝑟 <  0.1. The error 

depends on the variation of the strength parameters along the dike section. Since these are uncertain, 

the error is uncertain as well. 

 
Figure 18 – histogram of 𝑒𝑟𝑟𝑜𝑟𝑠 𝑖𝑛 𝑎𝑛 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡 𝑤𝑖𝑡ℎ 3 𝑚𝑒𝑎𝑠𝑢𝑟𝑒𝑚𝑒𝑛𝑡𝑠 𝑝𝑒𝑟 1000 𝑚𝑒𝑡𝑒𝑟 

The error of an assessment varies between the realisations. Beforehand it is unknown to which extend 

the assessed strength matches the actual strength, either an overestimation, accurate calculation and 

underestimation are plausible. Unfortunately, it is not possible to determine the exact error due to the 

lack of a reference strength in reality. The only available strength follows from the measurements and 

assessment.  
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The error related to a density of 3 per 1000 meter, equal to a 500-meter measurement interval (Figure 

18), resembles the shape of a normal distribution. The error cannot be quantified deterministically but 

a simulation provides information about the mean error and cumulative distribution values which 

make it possible to speak in terms of probabilities. For example (using Figure 18), the probability that 

the error is negative is about 2%.  

If the range of errors includes negative values, there is a probability that strength is overestimated: the 

section is actually weaker than is calculated with limited data. If the actual strength is below the 

normative load an unsafe situation can be the result. The section should be reinforced but there is a 

chance this is not noticed because from the assessed strength the conclusion is drawn the norm is met. 

In this case the probability of failure is higher than expected at possibly higher than allowed. 

The mean error value is defined as the expected error (bias) in the assessment method. For the 

considered characteristic value analyses based on a measurement density of 3 per 1000 meter, the 

expected error is 0.04 in terms of critical gradient (m/m). Which corresponds for the considered dike 

geometry to an expected underestimation of 1.2 meter in terms of critical head difference: the method 

is on average biased towards rather conservative strength estimations. The standard deviation of 

errors is a measure of consistency in the error, i.e. precision in the strength assessment. A high 

inconsistency means a wide range of possible errors and therefore a high uncertainty in the reliability 

of the strength assessment outcome. 

The standard deviation is good measure of consistency, but does not indicate to what extend 

assessments are conservative or unsafe. A 95% certainty interval solves this problem. Values above 

the upper boundary of the 95% interval represent errors for which one can state with 2.5% probability 

that the actual error is relatively more conservative.  For Figure 18 this upper boundary is 0.09, 

corresponding to an underestimation of 2.7m in terms of critical head difference. Values below the 

lower boundary of the 95% interval represent errors for which one can state with 2.5% probability that 

the actual error is relatively more unsafe.  For Figure 18 this lower boundary is 0.006, corresponding 

to an underestimation of 0.2m in terms of critical head difference. 

4.2.3. Influence of measurement density 
In the previous section is illustrated that the error is uncertain. This section elaborates on influence of 

the measurement density on the probability density distribution of the error. This is done by repetition 

of the Monte Carlo analysis for different measurement densities.  

Empirical probability density distributions of four selected measurement densities (corresponding to 

measurement intervals of 500m, 250m, 100m, and 10m) are presented in Figure 19.  
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Figure 19 – Error histograms 𝑜𝑓 4 𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑡 𝑎𝑠𝑠𝑒𝑠𝑠𝑚𝑒𝑛𝑡𝑠 

From each of 12 considered distributions, the mean, upper boundary and lower boundary of the 95% 

interval are determined and plotted against the corresponding measurement density. For convenience 

the measurement densities are presented on a logarithmic scale. The combination of the lower and 

upper boundary results in a bandwidth of errors that directly visualizes the influence of measurement 

density to the range of the possible error. 

More background about strength distributions is provided in appendix 8. It also provides a table with 

the average magnitudes of reference and assessed strength values (𝐻𝑐). 

The plot from Figure 20 summarizes the results of one complete model simulation and is referred as 

the reference result. 

 
Figure 20 – Mean and 95% bandwidth of errors for measurements intervals 500m --> 1m. The Error is defined as the 

difference in critical slope of either the reference and assessed strength and is therefore dimensionless (m/m). 

Considering the mean error (Figure 20), the following observations are relevant: 

 The calculated strength (assessment) decreases as the number of measurements increases. 

 The decreasing trend is levelling off and increased measurement densities have hardly 

influence after approximately 1 per 50 meter 
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 The expected error is positive at all measurements densities.  On average the assessment method 

underestimates the reference strength. 

Regarding the 95% bandwidth of errors, the following observations are considered relevant: 

 The range of errors becomes smaller up to approximately 1 per 100 meter. After that points only 

little changes are visible. Which means that from that point the influence of more measurements 

is minor. 

 The calculated strength values in the upper boundary of the bandwidth decrease as the 

measurement density increases. The trend is equal to the trend in the mean error. 

 The calculated strength values in the lower boundary of the bandwidth increase up to a 

measurement density of about 1 per 200 meter. At this density a trend reversal takes place. 

 

The result in Figure 20 is obtained from a simulation in which measured data points equally 

distributed along the domain. Appendix 9 provides the results of a simulation in which 

measurement locations are selected randomly from the domain. This increases the uncertainty for 

low measurement densities because the lower boundary shows a different trend. In the appendix 

is explained that it is favourable to place measurements at equal intervals if data is spatially 

correlated.   

 

 Unsafe situations are plausible as actual strength can be overestimated by an assessment (Figure 

19). Because calculated strength values are less conservative if a higher measurement densities 

are used, overestimation is even more likely in those cases. 

The effect of measurement error is visualized in Figure 21. Considering the situations with (black lines) 

and without (red lines) measurement error, the following observations stand out: 

 Including measurement error, calculated strength values (assessment) are even smaller than 

without measurement error.  

 
Figure 21 – Reference result in cases that 1) measurements are subjected to measurements and 2) measurements are error 

free 

4.3. Analysis and explanation 
In this section is analysed, explained and discussed how the differences between assessed and 

reference strength arise considering the semi-probabilistic assessment method. 
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4.3.1. Decreasing trend expected error 
On average, measurements density influences the characteristic value calculations in mainly two 

ways: 

 First, the decreasing trend of the expected error by increasing the measurement density is 

caused by an increase in the calculated characteristics values of d70 and decrease in the 

calculated characteristic values of k (Table 4).  

 Secondly, the measured variance (Table 5) affects the calculated characteristic values. On 

average the measured variance depends on the measurement interval and correlation length. 

If the measurement interval is larger than the correlation length, an extra measurement is on 

average adding new information about the range of the data and increases the measured 

variance. For measurement intervals that are equal or smaller than the correlation length, 

measurements are not completely independent.  

Note that because the largest measurement interval of k is already smaller than the considered 

correlation length, the measured variance of k decreases in the whole domain of considered 

measurement densities.  

Table 4 - Average of characteristics values for increasing number of measurements 

Number of 
measurements 

3 5 6 11 21 26 41 51 101 201 501 1001 

d70 e-4 1,24 1,42 1,46 1,54 1,57 1,58 1,59 1,60 1,60 1,60 1,60 1,60 

k e-4  13,0 4,65 4,07 3,26 2,97 2,92 2,84 2,80 2,77 2,75 2,75 2,75 

 

Table 5 – Average of measured sample variances for increasing number of measurements 

Number of 
measurements 

3 5 6 11 21 26 41 51 101 201 501 1001 

𝝁(𝝈)𝒅𝟕𝟎  *E-5 2,65 2,73 2,69 2,56 2,48 2,46 2,44 2,43 2,41 2,40 2,40 2,40 

𝝁(𝝈)𝒌  *E-5 8,28 7,14 6,85 6,26 5,94 5,87 5,78 5,74E 5,68 5,64 5,62 5,61 

 

4.3.2. Trend in uncertainty interval 
The upper boundary of the 95% confidence range shows the same trend as the mean error. Because 

high measured variance results in conservative characteristics values, the upper boundary of the 

bandwidth represents assessments for which measured variance is relatively high. When the measured 

variance is high, the effect of student-t factor is relatively strong. Furthermore, it represents situations 

where the measured variance is accidently high although the measurement density is small, resulting 

in a measured variance that can only decrease for higher densities (Table 6). A decreasing variance and 

decreasing student-t factor result in relatively less conservative assessments, i.e. a decreasing trend of 

the upper boundary. 

Table 6 - Measured variance in an example that is representative for a situation in which the assessment results in a small 
strength value (upper boundary of error range) 

Number of 
measurements 

3 5 6 11 21 26 41 51 101 201 501 1001 

𝝈𝒅𝟕𝟎 *E-5 5,11 3,83 3,70 3,12 2,95 2,91 2,85 2,82 2,78 2,75 2,74 2,74 

 

The lower boundary of the 95% confidence shows a more complicated trend. It represents situations 

where the measured variance is relatively small. When the variance is small, the influence of the 
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student-t factor in determination of the characteristic value is small as well. The trend is then 

dominated by the measured variance that is influenced by the measurement density. It appears that 

if the measured variance is accidently very small (or almost zero) for a small measurement density, the 

measured variance is expected to increase for higher densities as long as the measurement interval is 

larger than the correlation length. This effect results in a trend reversal in the lower boundary at the 

measurement interval that is typically equal to the smallest of correlation lengths of the different 

parameters. In this case an interval of 200m as this interval is closest to the correlation length of d70 

(180m). The trend reversal is more clearly visible in the result of a simulation without measurement 

error (Figure 21) because for that case the measured variance is not influenced by noise.  

4.3.3. Sources of uncertainty and influence of measurement density 
Different sources of limited (use of) information contribute to inaccurate assessments. In some cases, 

errors add up mainly resulting in larger underestimation of the actual strength. On the other hand, 

uncertainties might compensate each other. This possibly results in error values close to zero. Different 

sources of uncertainties are already introduced in chapter 1 and the contribution to the bandwidth of 

errors will be discussed in the following sections. 

Statistical uncertainty 

The assessment estimates the probability density distribution by an assumed distribution type (for 

example normal or lognormal) and measured mean and variance. The number of measurements 

influences the measured mean and variance. Measuring each value of the population means that the 

uncertainty related to the mean and variance becomes zero. The reduction of this statistical 

uncertainty results in a smaller range of errors for high measurement densities. 

Still a second source of statistical uncertainty is left because the characteristic value formula assumes 

that measurements can be considered as samples from an uncorrelated population (Calle E. , 2007). 

This means that parameter values in a data set are assumed to behave according a theoretical 

distribution. But the distribution in practice may deviate from that. In this research the assumed 

distributions in the characteristics value formula are actually equal to the data input distributions. 

However, if the considered dike section has a length in the same order as the present typical 

correlation length, the measured distribution might be significantly different then the theoretical 

probability density distribution. This is referred to as boundary effect. 

With boundary effects the actual mean and variance of a smaller section still not result in the actual 

representative parameter value. The errors in the assessment due to the boundary effect are 

independent of the measurement density. A part of the range of errors (still present for high 

measurement densities) is therefore explained. Further explanation and examples are given in 

appendix 10. 

Spatial variability 

Where (part of) statistical uncertainty can be decreased with more measurements the uncertainty 

related to spatial variability remains unchanged. This is because measured values are not connected 

to measurement locations. Measured values are only used to calculate representative parameter 

values that are assumed constant over the entire domain (see section as well 1.2.2). 

The spatial variability explains a large part of the bandwidth of errors. Multiple varying parameters 

make it possible that unfavourable values of one parameter are compensated. Due to compensation 

it is likely that the reference strength is underestimated in an assessment. Namely in the assessment 

is assumed that the strength is given by the combination of unfavourable parameter values.  
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In the detailed assessment the statistical upper or lower 95% characteristic values are used. This means 

in theory a probability of 5% that there is actually a more unfavourable value present. If unfavourable 

parameter values coincide at one location, it is possible that the calculated characteristics values are 

allow overestimation of the actual strength (negative error values).  

In the simulation no safety factor is applied. However, in practice a safety factor is prescribed in the 

detailed assessment to prevent that the assessed strength is higher than the actual strength. A safety 

factor accounts for the length effect. In Appendix 11 the effect of applying a safety factor is analysed. 

Furthermore, is shown that in general the same effect is obtained when smaller characteristics 

boundaries are used. For example, the statistical 99% lower boundary instead of 95% lower boundary. 

 

4.4. Summary and conclusions 
The reference strength is defined as the minimum resistance of a section. The resistance is varying 

along the dike section as a consequence of varying d70 and k parameters. The assessed strength 

follows from characteristics value calculations that are based on measurement. Measurements are 

taken from noised d70 and k sets to simulate measurement error. Per random dike section an error is 

found as the difference between reference and assessment. Because the soil conditions of a dike 

section are uncertain; the error is uncertain as well. For each measurement interval a range of errors 

is calculated which is combined in a bandwidth of possible errors. This bandwidth visualizes the 

accuracy of the assessment in relation to the measurement density. 

With respect to the influence of measurements, the main conclusion is found to be that the strength 

assessment with use of characteristic values is unreliable for every measurement density. This 

conclusion relates to the wide range of possible errors. Depending on the spatial appearances of soil 

properties, the assessment of the strength can be either accurate or inaccurate. In this chapter the 

accuracy of the reference scenario is considered. It is concluded that with respect to this reference 

scenario the characteristic value analysis is a conservative method because in most cases the assessed 

strength is smaller than the reference strength. This is also what the method intends to be to prevent 

that the actual probability of failure is higher than expected from uncertain data (overestimation).  

Because of this conservatism it is likely that actual safety is often underestimated in a safety 

assessment. It is shown that the conservatism (on average) decreases when the measurement density 

is increased up to a density of about 1 per 50 meter. At the same time this increases the probability of 

overestimation as well. It is therefore concluded that a higher measurement density does not always 

decrease the probability of failure.  

Because the strength assessment based on characteristic values is not accurate for the reference 

scenario, it is concluded that two type of unwanted situations are possible. When the load and 

resistance are close to each other there is a probability that the norm is not met but the dike is not 

reinforced because the actual strength is overestimated. When the load is smaller than the resistance 

there is a probability that the dike is still reinforced because the actual strength is underestimated.  
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5. Scenario analysis – influence of assumed (spatial) distributions  
 

This chapter is related to the third research question: How is the accuracy of strength assessments 

influenced by the representative variances of the soil parameters? 

5.1. Introduction 
The result in the previous chapter is obtained from a simulation with model input corresponding to 

the reference scenario. To be able to draw more general conclusions on the accuracy of strength 

assessments, a scenario- and sensitivity analysis is executed. Only the input related to measurement 

error, correlation structure and distribution (range of parameter values) is varied. Input is equal to the 

reference scenario if not mentioned differently.  

This analysis identifies how the results and conclusions of chapter 4 are if the most important model 

input is (chosen) differently.  

5.2. Measurement error 
It is plausible that the measurements of an assessment are subjected to measurement error. An 

assumption has to be made on the type and magnitude of the error because specific numbers about 

measurement error are absent (in literature). In chapter 2 a first estimate is made in which the 

measurement error is assumed to be a white noise signal equal to a fraction (phi) of the spatial 

variability of the parameter. Figure 22 and Figure 23 give example realisations for d70 and k data 

respectively with both three values of phi simulating none (black lines), minor (red lines) and major 

(blue lines) measurement errors. A higher value of phi means more noise. 

  
Figure 22 – Example of d70 realisation that is noised with 

𝜙 = 1 respectively 𝜙 = 0.2 
Figure 23 – Example of k realisation that is noised with 𝜙 =

1 respectively 𝜙 = 0.2 

Sensitivity analysis (see appendix 14) showed that the accuracy of assessments is sensitive to both 

measurement error in d70 and k data. For both parameters holds that an increasing measurement 

error results in more conservative strength. This is explained by the increasing variance in measured 

data. Because the variance in the actual data is less than measured, the characteristic value analysis 

underestimates actual representative parameter values.  

In Figure 24 two bandwidths are show to highlight two scenarios with respect to measurement error: 

 Measurement error is absent, phi = 0.  

 Measurement error is present, phi = 1 (with respect to phi is 0.5 in the reference input 

configuration), meaning that the noise variance is equal to the spatial variance.  
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Figure 24 – Comparison of simulation result with and without measurement error 

5.3. Correlation structure 
In this section the influence of the correlation structure of d70 and k is evaluated. The correlation of 

data is determined by the shape of the correlogram and the correlation length. 

5.3.1. Correlogram 
A Gaussian correlation structure is assumed to be representative to model spatial variations in d70 and 

k data (chapter 3). Alternatively, an exponential correlation structure can be used to generate data 

sets. Example correlogram of both Gaussian and Exponential autocorrelation functions are presented 

in Figure 25. The scale of fluctuation ‘𝛿𝑢’ is defined as the area below the function: 𝛿𝑢 =

∫ 𝜌𝑥,𝑥+𝛿(𝛿)𝑑𝛿
∞

−∞
 (Vanmarcke, 1983).  The scales of fluctuation in Figure 25 are equal and therefore 

Gaussian and Exponential correlation structures can be compared. 

 
Figure 25 – Gaussian and Exponential correlogram with a comparable scale of fluctuation. The correlation structure of white 

noise (uncorrelated) is plotted as reference. 

The exponential correlogram is steeper for small lags causing fluctuations to be less smooth than for 

Gaussian structures (white noise effects). Small scale and sudden variations in soil properties are 

therefore better described with exponential correlation. Figure 26 provides a Gaussian as well as 
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Exponential correlated data set. Both are based on the same random signal (the white noise in the 

same figure). 

 
Figure 26 –Gaussian and Exponential correlated data. Both based on the same data signal and equal scales of fluctuation 

Several data sets show that Gaussian correlated data needs more space to fluctuate and therefore 

shows on average less variance per data set (Table 7). This effect increases with increasing correlation 

lengths. 

Table 7 – Effect of correlation structure on average variance in data sets (1000 data points) with scales of fluctuation of 
320m (d70) respectively 1040m (k). The variance of white noise (uncorrelated) is given as reference. 

 𝝁(𝝈𝒏)𝒅𝟕𝟎 𝝁(𝝈𝒏)𝒌 
Gaussian 2.4E-5 5.7E-5 

Exponential 2.5E-5 7.6E-5 

White Noise 3.0E-5 1.5E-4 

The influence of correlation structure to the accuracy is illustrated in Figure 27. For now, measurement 

error is neglected to make the influence of correlation better visible. For exponentially correlated data 

the assessment is relatively less conservative. Exponential correlation results in more and faster 

fluctuation pattern. Actually the net correlation is less than for Gaussian correlation which is much 

smoother and needs more fluctuation space to reach the potential variation. This makes the 

probability of an actual weak parameter value to be present in the domain or coincide with a weak 

spot of another parameter higher in case of exponential correlation. It is noticed here that the 

probability of overestimation increases if soils fluctuate spatially. 

The effect of measurement density is more or less equal in both correlation structures with a 

decreasing uncertainty range towards a measurement interval that is equal to the typical correlation 

length. Because correlation is less dominant in exponential correlation, the trend reversal in the lower 

boundary is less striking than in case of Gaussian correlation. 
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Figure 27 – Influence of correlation structure to the bandwidth of errors. Measurement error is neglected in both 

simulations. 

5.3.2. Correlation length 
The correlation length determines to what distance data values influence each other within one data 

set. Figure 28 provides four data sets with different correlation lengths in case of Gaussian correlation. 

All four sets are based on the same input signal and a Gaussian structure to be able to make a 

comparison. Increasing the correlation length (in a limited domain length) means less fluctuation and 

a decreasing output variance compared to the input signal. The data sets in Figure 28 show that data 

with little correlation has typically a wider range than data with high correlation. If correlation is absent 

or small, is resembles white noise. The probability of extremes is then higher. 

 
Figure 28 – An example signal, prone to 4 different correlations lengths. 

The influence of (lack of) correlation to the error is illustrated in Figure 29. The figure provides the 

result of 2 different simulations both representing a different correlation scenario (measurement error 

is again neglected for this case). In the reference scenario standard correlation lengths of 180 (d70) 

and 600 (k) meter are used. The uncorrelated scenario represents a situation with the least correlation 
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considered plausible. From chapter 3 is known that this is 1m (d70) and 30m (k). Note a correlation 

length of 30m for k is assumed minimal as the dike width in this case is 30m. 

 

Figure 29 – Influence of correlation length to the bandwidth of errors. Measurement error is neglected in both simulations. 

The two bandwidths presented in Figure 29 show that lack of correlation results in relatively less safe 

assessments compared to the reference case. Analogue to the previous section this is explained by the 

increased probability that an outlier is present in the data or that unfavourable parameter values 

coincide at one location. Referred to as ‘length effect’. If properties have little spatial correlation, the 

95% characteristic lower or upper boundary are often not safe enough.  

High measurement densities have more effect in the uncorrelated case as the range of errors becomes 

smaller. With more measurements the precision of the assessment is increased significantly as the 

absolute range of the error can be decreased with about 70%. Errors due to the boundary effect are 

mainly absent in uncorrelated cases. Which means that it is more likely that correct estimation of mean 

and variance result in the actual 95% lower or upper characteristics (see section 4.3.3.). Application of 

a safety factor in an uncorrelated scenario can compensate the bias towards unsafe strength 

assessments. 

Dike section length 

The length of a dike section has the same influence to the accuracy as the correlation length. Long dike 

sections allow for more fluctuations and variance in the data, which increases the probability that 

unfavourable parameter values of combinations of parameter values appear (length effect). In fact, 

not the correlation length or dike section length is of importance, but the ratio between them. This 

ratio determines whether boundary effects take place that transform data distributions at limited 

domains. In appendix 13 simulation results for several dike section lengths are provided. 

5.4. Distributions of parameter values (range) 
In this section the sensitivity of the accuracy to the range of d70 and k values, determined by the model 

input mean and variance, is evaluated. 

5.4.1. Average grainsize 
In the standard input configuration an average d70 of 2.0E-4 meter and average k of 1.4E-4 meter per 

second is used. According to Table 8 this could be indicated as very fine or medium fine sand. Due to 

variation, the range of sands covers extremely fine to medium coarse sands as well. Piping sensitivity 
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is often related to fine sands as the resistance to erosion is small. However, dikes can be sensitive to 

piping as well as coarse sands are present. In de Visser et al. (2015) and Aguilar-Lopez et al. (2016) 

examples are given. 

Table 8 – Grainsizes, sand medians and permeability’s (meter/day) of different sand classes (Bot, 2011) 

Grainsize Sand median 
micro meter 

Without 
sludge 

Weak sludge 
containing 

Heavy sludge 
containing 

Extreme fine 63-105 3 2 0.5 

Very fine 105-150 6 4 1 

Medium fine 150-210 15 10 3 

Medium coarse 210-300 30 20 5 

Very coarse 300-420 55 35 10 

Extreme coarse 420-2000 250 150 50 

 

Sensitivity analysis (Appendix 16) shows that the influence of measurement density on the accuracy of 

an assessment is dependent of the input mean of d70. The error ranges show similar trends in 

simulations that represent finer or coarser grainsize situations. The absolute magnitude of errors is 

however affected. This is because equal absolute deviations at different magnitudes of d70 and/or k 

values have a different impact on the calculated strengths in absolute terms (non-linearity in Sellmeijer 

model). 

The bandwidths of different sand class scenarios are illustrated in Figure 30. A coarser sand scenario 

(Table 9), based on de Visser et al. (2015) and Aguilar-Lopez et al. (2016), is compared to the reference 

result (measurement error is again neglected). Only the means of d70 and k are increased while the 

relative variation (Coefficient of Variation) is kept constant. In Table 9 the average reference strength 

in terms of critical head is provided as well. This shows that the larger grainsizes result in increased 

piping resistance, although the increase in permeability, as a consequence of larger grains (Table 8). 

Table 9 – Statistics of two sand class scenarios, of which simulation results are provided in Figure 30 

 Reference ‘Coarse sand’ 

 mean CoV mean CoV 

d70 (m) 2.0E-4 0.15 3.5E-4 0.15 

k (m/s) 1.4E-4 1 3.0E-4 1 

Average reference strength – 𝑯𝒄  (m) 2.3 0.3 3.8 0.3 
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Figure 30 – Influence of average grainsize to the bandwidth of errors. Measurement error is neglected in both simulations. 

From Figure 30 is learned that existing inaccuracies are expanded. Positive errors get larger positive 

values, negative errors get larger negative values and accurate values are unaffected. Expansion of 

errors is because the same absolute difference between an actual representative parameter values do 

not result in the same absolute errors. A deviation at a dike with large grains and therefore more 

resistance to piping results in a higher error between reference strength and assessed strength than if 

that same deviation is present at a dike with small grains and a small resistance to piping. This is 

illustrated with a numeric example: 

 ‘Fine sands’ ‘Coarse sands’ 

𝐝𝟕𝟎𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐚𝐭𝐢𝐯𝐞  2.0E-4 4.0E-4 

𝐝𝟕𝟎𝐜𝐡𝐚𝐫𝐚𝐜𝐭𝐞𝐫𝐢𝐬𝐭𝐢𝐜  1.5E-4 3.5E-4 

𝐃𝐞𝐯𝐢𝐚𝐭𝐢𝐨𝐧𝐝𝟕𝟎  0.5E-4 0.5E-4 

Reference strength 2.92 7.71 

Assessed strength 1.95 6.39 

∆ (=Reference – Assessment) 0.97 1.42 

Error (=reference-assessment/L) 0.032 0.047 

∆𝐫𝐞𝐥𝐚𝐭𝐢𝐯𝐞 (=∆/reference) 0.33 0.18 

 

Note that the absolute error is higher for coarse sands. However, the relative error is smaller. Those 

effects are explained by the non-linear dependency of the strength to d70. 

Stronger dike sections due to larger grains or lower permeability’s have generally a wider range of 

possible errors. This accounts for all other parameters that determine the strength to piping 

(Sellmeijer’s model). For example, the seepage length L is considered. An error in the determination of 

the representative d70 value has more effect when the seepage length is longer and therefore the 

resistance to piping than if that same error is made at a dike with small seepage length and therefore 

a lower resistance. This is again illustrated with a numeric example: 
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 ‘Small dike’ ‘Wide dike’ 

𝐝𝟕𝟎𝐫𝐞𝐩𝐫𝐞𝐬𝐞𝐧𝐭𝐚𝐭𝐢𝐯𝐞  2.0E-4 2.0E-4 

𝐝𝟕𝟎𝐜𝐡𝐚𝐫𝐚𝐜𝐭𝐞𝐫𝐢𝐬𝐭𝐢𝐜  1.9E-4 1.9E-4 

𝐄𝐫𝐫𝐨𝐫𝐝𝟕𝟎  0.1E-4 0.1E-4 

𝐋  30 60 

Reference strength 2.92 5.34 

Assessed strength 2.72 4.97 

∆ (=Reference – Assessment) 0.20 0.37 

Error (=reference-assessment/L) 0.0066 0.0062 

∆𝐫𝐞𝐥𝐚𝐭𝐢𝐯𝐞 (=∆/reference) 0.068 0.069 

 

Note that the absolute difference increases but the relative error stays in this case more or less equal. 

This shows that the dependency of the piping strength to L is almost linear. This is not surprising as 

Sellmeijer (2011) actually calculates a critical gradient. Multiplying this gradient with L results in the 

critical head. However, the ratio D/L has also a small dependency in the calculation of the critical 

gradient. 

5.4.2. Field variance 
In the previous section the sensitivity to the average grainsize is analysed with a constant coefficient 

of variation. In this section the input variance is varied with a constant mean to analyse the sensitivity 

to the coefficient of variation (Figure 31). 

 
Figure 31 - Example realisations of d70 data generated with respectively 50% and 150% of the input variance in de standard 

configuration. 

Several simulations (appendix Xx) show that the bandwidth of errors is generally wider if the variation 

in data is relatively high. Small coefficients of variation result in a relatively small bandwidth.  

The effect of variation is illustrated with a reference and two example scenarios from which the input 

is based on the measured mean and variance in the d70 testing grounds of Veessen and IJzendoorn (de 

Visser et al., 2015). In all simulations the d70 data is assumed to have a lognormal distribution and for 

simplicity k is assumed constant at a value that is in accordance Bot (Table 8). Parameter statistics of 
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the three scenarios are provided in Table 10 and the bandwidths related to the different scenarios are 

presented in Figure 32. 

Table 10 – Statistics of 4 field variance scenarios 

 ‘Veessen’  ‘IJzendoorn’  Reference 

 mean CoV Minimum 
value 

mean CoV Minimum 
value 

mean CoV Minimum 
value 

d70 (m) 4.2E-4 0.5 3.8E-5 4.2E-4 0.25 1.3E-4 4.2E-4 0.15 2.1E-4 

k (m/s) 3.5E-4 0 - 3.5E-4 0 - 3.5E-4 0 - 

 
Figure 32 – Influence of field variance to the bandwidth of errors. Measurement error is neglected in both simulations. 

The increased bandwidth of errors is explained by the possible deviations between actual 

representative values and measured values. If the variance in data is high, the possible deviation of an 

extreme value estimation can be high as well.  

 

5.5. Relative error 
All the previous results are presented with absolute errors. Result is that the upper and lower 

boundaries of the uncertainty range depend on the reference strength and how this reference results 

from the (spatial) distribution of parameters. At dike sections with high reference strength values, 
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underestimation of strength (high positive error) is possible. In data sets with a relatively low reference 

strength, overestimation of strength (high negative error) is possible. It appears that if the 

measurement density is low, the relative error can be up to 100%. A relative error close to 100% means: 

 A dike section has a high reference strength of for example 5m in terms of critical head. With 

a measurement interval of 500m there is a probability that, due to statistical uncertainty, 

measurement error and spatial variability, an assessed strength in the order of 0.1m is found. 

So the error, difference between reference and assessment, is then in the same order as the 

reference strength. It means that if a strength value close to zero is found it cannot be stated 

that the section is actually sensitive to piping. In fact, it is possible that the resistance to piping 

is up to 100 times the assessed strength. But it is also possible that the assessment is accurate. 

 A dike section has a low reference strength, in the order of 0.1m critical head. With a 

measurement interval of 500m there is a probability that an assessed strength in the order of 

for example 5m is found. The error is then in the same order as the assessed strength. Which 

means that a dike which is considered insensitive to piping, can be in fact very sensitive to 

piping. 

Note that a reference strength of 0.1m is possible due to the random nature of the simulation. 

Dikes that are that sensitive to piping are most probably in reality already failed. However, this 

theoretical analysis does show that not only the absolute error can be high, but the relative error 

as well. Which is opposed to the intuitive idea that at weak sections a small error is made and only 

at strong section a high error is made. 

The high relative errors follow from the possible high variability in strength values within one dike 

section. With high measurement densities the upper boundary of relative errors can be brought 

back to about 50% due to a reduction of statistical uncertainty. 

5.6. Summary and conclusions 
Uncertain soil conditions are modelled with a set of statistical characteristics. Where a specific error 
depends on the soil conditions per dike section, the bandwidth of errors depends on the average 
assumed (spatial) distributions of the soil properties. From the sensitivity- and scenario analyses is 
therefore concluded that no general or absolute statements can be made about the expected 
bandwidth of errors.  

If in the detailed assessment, measurements are the only source of information, the average 
characteristics (distributions) are unknown. Therefore, the bandwidth of errors that needs to be 
considered is even wider than the single bandwidths calculated per individual scenario. It is concluded 
that the detailed assessment method is even more unreliable than was expected based on the results 
of the reference scenario. The total uncertainty is given by the combination of error bandwidths from 
a whole range of plausible soil condition scenarios.    

It is concluded that trends related to the influence of measurement density appear to be general, 
independent of the way soil parameters are(spatially) distributed. Next, the sensitivity analysis shows 
important trends in the influence of spatial autocorrelation. With decreasing correlation or increasing 
section length, the reference strength is generally smaller. This is mainly due to the increased 
probability that an outlier is present. Outliers are not always covered by the conservative assumptions 
in the strength assessment. Due to outliers it is well possible that the probability of failure is actually 
higher than expected. Therefore, it is concluded that the ratio correlation length/section length is 
important to consider in the assessment. Furthermore, the range of errors is generally smallest close 
to the measurement density that is equal to the typical correlation length. If correlation lengths of 
typical soils are known, this can give rough indications to what extend more measurements can be 
valuable in uncertainty reduction.  
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6. Usefulness of point measurements in increasing the accuracy  
 

Is it possible to increase the accuracy of strength estimations by using information of point 

measurements alternatively? 

6.1. Introduction 
In chapter 4 the influence of measurements on the accuracy of strength assessments is evaluated using 

the characteristic value analysis prescribed in the detailed level of the safety assessment. However, 

the safety assessment includes also an advanced assessment for which no specific criteria are given 

(Ministerie van Verkeer en Waterstaat, 2007). This advanced assessment provides the option to use 

data from point measurements alternatively.  

The advantage of the characteristic value approach is the ability to deal with small number of 

measurements. The disadvantage of a small number of measurements is the likely possibility of errors 

(chapters 4 and 5). Instinctively the most logical solution to improve the accuracy is to increase the 

amount of data. The analysis of chapter 4 however shows that with use of statistical descriptions to 

estimate representative parameters, only statistical uncertainty can be reduced. The other option to 

improve estimations is to use the point measurements alternatively. 

Chapter 6 is devoted to investigate on the potential of point measurements to reduce the range of 

errors and make estimations generally more reliable. 

6.2. Translation of measurements to representative calculation values 
In this section different approaches for using point measurements to estimate representative 

parameter values are evaluated. The following four approaches are tested: 

1. Characteristic value analysis 

Each data set is translated into a parameter specific characteristic value. The characteristic values 

are used to estimate one representative strength. This approach equals the standard detailed 

assessment as used up till now. 

2. Conservative value analysis 

Each data set is translated into a parameter specific characteristic value. But if one of the measured 

values is more unfavourable than the characteristic value, the more conservative measured value 

is used in the Sellmeijer model. 

3. Measured critical value analysis 

From each set the most critical value is derived (smallest measured in case of d70 and highest 

measured in case of k). The most critical of measured values is used in the Sellmeijer equation. 

4. Measured strength analysis 

Per location, a uniform subsection of 1-meter length, a set of one d70 and one k value is obtained 

by measurements. This set of parameter values is used in the Sellmeijer model to calculate the 

strength for that specific location/subsection. The measurement density determines how many 

locations along the dike section are evaluated. The location from which the combination of a d70 

and k measurement the smallest strength is calculated, is assumed representative for the 

considered dike section. This means that parameters are not considered individually, as in the 

other 3 approaches, but coherent to other parameters and specific locations. In this approach is 

looked how many subsections should be assessed to find the subsection that is representative for 

the entire section. In this measured strength analysis, the method to assess the strength is the 

same method as the reference strength is determined in this study.  
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In the following subsections the results of the four approaches are given. The analysis is made for a 

reference scenario (see chapter 3) with error free measurements. This means for now only statistical 

uncertainty and spatial variability are considered. In section 6.3 measurement error is explicitly 

considered. 

 

Figure 33 – bandwidth of errors for 4 different approaches to translate measurement into representative parameter values 

6.2.1. Characteristic value analysis 
The result of the approach based on characteristic value analysis is presented in plot 1 of Figure 33. 

The result is already extensively analysed in chapter 4. Here it functions only as a reference to the 

other approaches. 

 

6.2.2. Conservative value analysis 
The result of the approach based on conservative value analysis is presented in plot 2 of Figure 33. In 

this approach the individual measured values are considered explicitly. With increasing number of 

measurements, the probability increases that the most unfavourable value (or a value close to that) is 

measured. This method uses measurements explicitly to replaces optimistic characteristic values with 

more pessimistic values if those are actually measured.  It is shown that this method prevents 

overestimation as the lower boundary of the bandwidth reaches the value zero. 

Drawback of this method is the increased underestimation for high measurement densities with 

respect to characteristic value analysis. Because of spatial variability, the most critical values of 

individual parameters can underestimate the actual strength. In a characteristic value analysis this is 

less the case because only a 95% boundary is used. This effect is visible when comparing the upper 

boundaries of plot 1 and 2 of Figure 33. 

6.2.3. Measured critical value analysis 
The result of the approach based on measured critical value analysis is presented in plot 3 of Figure 

33. In this method no characteristic values are used. From each parameter set the most critical 

(unfavourable) value is selected. For a small measurement density, the probability that an unsafe value 

is selected is high as the available measurements are not a representative sample. For a high 
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measurement density, the probability of overestimation becomes (almost) zero. With the distribution 

of values completely described (instead of estimated by a shape, mean and variance) the actual critical 

values can be estimated with great accuracy. The statistical uncertainty, including boundary effect, 

vanishes for high measurement densities. 

In the detailed assessment the implicit assumption is made that critical parameter values appear at 

the same location. The measured critical value analysis gives insight in the range of errors as result of 

that assumption. At high measurement density there is no statistical uncertainty because from both 

d70 and k the most unfavourable values are known. However, that values do not have to coincide at 

one location. But because it is assumed they do, strength is underestimated in many assessments. The 

bandwidth of positive error values (underestimation) show that the assumption of coinciding 

unfavourable values is conservative. 

6.2.4. Measured strength analysis 
The result of the approach based on measured strength analysis is presented in plot 4 of Figure 33. In 

this method the strength is related to locations. In this way it is possible to banish out all uncertainties 

with increasing measurement density.  

At small measurement densities there is uncertainty about the distribution of strength values resulting 

in assessed strength overestimating the reference strength (unsafe). Because of the small size of the 

data set, it is likely that the taken sample is not representative for the entire section. With increasing 

number of measurements, the set becomes a more representative sample. The most unfavourable 

(minimum) strength value from a large set of strength values is an accurate estimation of the actual 

representative strength. 

 

Note that the actual representative strength is called the reference strength in this text and is actually 

defined as the minimum strength value of a dike section. So if the assessment finds this minimum value, 

the error compared to the reference strength is indeed zero. 

The d70 and k parameters are used to directly calculate the strength at each measurement location. It 

means only one relevant property (𝐻𝑐) is left to consider. Measuring 𝐻𝑐  values therefore only leaves 

uncertainty about the distribution of that single property. That uncertainty can be reduced by 

increasing the number of measurements. Therefore, the range of errors becomes zero for high 

measurement densities. 

The measured strength analysis might suggest to use that method in the assessment instead of the 

characteristic value method. Plot 4 of Figure 33 suggests that measurements are able to reduce the 

range of errors to zero from a measurement interval of approximately 50m. However, some drawbacks 

exist. In practice a few hundred meters is common (de Visser et al., 2015), therefore this interval is 

already quite small. Notice that in this case the measurements interval of 50m is smaller than the 

correlation lengths of the data. The hypothesis is that much smaller measurement intervals are needed 

to provide accuracy in situations where parameters show less or no spatial correlation.  

Secondly this method requires that the strength parameter is assigned to each specific location. As a 

consequence, each measurement location requires an accurate measurement of every relevant 

property. Only error free measurements result in error free strength values at each measurement 

location.  Therefore, it is necessarily to prevent or reduce measurement error.  
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6.3. Influence of measurement error to the accuracy 
This section studies the effect of measurement error in detail. First is analysed how measurement error 

influences the accuracy of assessments for the four different approaches. Secondly the possibility to 

use more point measurements to reduce uncertainty due to measurement error is evaluated. 

6.3.1. Effect of measurement error 
Figure 34 shows the influence of measurement error in the four different data use approaches. From 

the analysis is learned that measurement error results in increased inaccuracy, as well bias to 

underestimation and increased imprecision.  

 

Figure 34 – Influence of measurement error in four data use approaches 

Especially in an approach where measured values are explicitly used (approaches 2 and 3), the 

measurement error can result in the use of more pessimistic values than are actually present. In the 

measured strength analysis (approach 4), the measurement error causes inaccuracy and increasing 

conservatism at increasing densities because the probability that a too conservative strength value is 

measured increases with the number of measurements. 

Based on the previous section, the use of measured strength analysis argues for the importance of 

high measurement densities because then accurate assessments are possible. But when considering 

measurement error, it appears that even for very high measurement densities, assessments are not 

accurate (plot 4 of Figure 34). 

6.3.2. Reduction of measurement error 
The magnitude of measurement error in piping analysis is uncertain, especially with respect to k. 

Therefore, it is tried to deal with measurement error in a general applicable approach. Increasing the 

accuracy of measurement equipment is one possibility. However, the accuracy of equipment is beyond 

the scope of this study. Averaging out the random error by increasing the number of measurements is 

applicable and is further analysed.  

Averaging out error in in sections with uniform properties 

First assessments of completely uniform dike sections are analysed. In Figure 35 the result of this 

analysis is presented for two different data use approaches and two different magnitudes of 



50 
 

measurement uncertainty. In the upper plot the measured data points are simply averaged, resulting 

in a decreasing range of errors for increasing number of measurements. The slight average 

underestimation is caused by the logarithmic character of the k parameter. In the lower plot the 

measured data is used to calculate characteristic values. This plot shows that if the soil has uniform 

properties, measurement error causes structural underestimation when calculating characteristic 

values from measured data.  This means that in a scenario where properties are highly uniform, 

measurement error has major influence. From the measurements the idea can rise that the soil is 

heterogenic. With characteristic value calculation then safe lower or upper boundaries are calculated. 

These result in much smaller strength values than actually present. The probability of failure of the 

structure is then smaller than concluded from the assessment. Therefore, it is very important to 

question whether variance in measured data is because of spatial variation or measurement errors. 

 

  
Figure 35 – Effect of number of measurement in case of measuring at a homogeneous dike section with measurement error. 

Notice that a lot of measurements are required to average errors and make precise assessments. 

Besides it is only useful to average measurements if measurement error is randomly and not biased. 
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Averaging out error in spatial variable soils 

From Figure 34 is concluded that measured strength analysis results in accurate assessment for high 

measurement densities. This accuracy vanishes when measurement error is included/considered. In 

this section is investigated whether error can be averaged out by taking multiple measurements per 

measurements location. 

Figure 36 shows that accuracy is generally improved when multiple measurements per location per 

parameter are taken. The errors become smaller and consistency higher. Because the k data is 

exponentially distributed the original standard configuration without measurement error cannot be 

reached completely. Also with high numbers of measurements per location the average of exponential 

noise is higher than the original data realisation. 

 

Figure 36 – Effect of multiple measurements per measurement location to average out measurement error (measured 
strength approach). 

6.4. Use of spatial correlation to increase the accuracy 
The probability of geo-technical failure depends for a significant part on random system effects, i.e. 

length effects, parallel system and series system effects. The structure of spatial correlation of soil 

properties is decisive for these effects (Vrouwenvelder & Calle, 2003). The spatial correlation in 

parameter values is not explicitly used in the current assessment. However, the safety factor partly 

accounts for the length effect. This section evaluates the possibility of using correlation lengths 

implicitly to increase the reliability of the strength assessment 

6.4.1. Influence of correlation 
The scenario analysis (chapter 5) already showed that the correlation in the d70 and k data affects the 

bandwidth of errors.  Therefore, it might be valuable to know on beforehand of an assessment whether 

the soil properties are expected to be more or less correlated. If the correlation length is in the order 

of the domain length (or higher), data is hardly fluctuating but it has a constant descending or 

ascending trend. Peaks are therefore often at the boundary of the considered domain (illustrated in 

Figure 37). Measurements at the boundary of the domain will most probably give a correct estimate 

of the range of the data. If the peak is not at the boundary of the domain, the error is at least small. 

With strong correlated properties, a measured critical value or measured critical strength analysis can 

therefore be preferred above a characteristics value analysis.  
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Figure 37 – 10 example data sets with a correlation length in same order as domain length (1000m) 

If the correlation length is small with respect to the considered domain, data is fluctuating heavily 

within that domain. It would be a coincidence if a couple of measurements, for example at the 

boundaries of the domain, resulted in an accurate estimate of the range. Then it fits better to collect 

measurements at more or less random locations and translate those into a characteristic value. A 

safety factor can then be applied to compensate the probability that the characteristic value is 

underestimating the actual critical value. This probability mainly depends on the fluctuation space 

which depends on the length of the considered domain. With the standard characteristics value 

analysis, the theoretical probability of exceeding the 95% characteristic value is 5% per fluctuation. A 

parameter with a correlation length of 1m, makes about 1000 fluctuations in a domain of 1000m and 

it is therefore almost certain that the critical value will exceed the characteristic value. The random 

uncorrelated data set of Figure 38 illustrates this. 

Besides the correlation length, the domain length influences the probability of exceeding the 

characteristic (lower) boundary. If the domain length is increased with a factor 10 (Figure 39), the 

probability of exceeding the characteristic boundary is increases ten times as well. Therefore, the ratio 

correlation length/domain length determines the probability of exceeding a boundary value.   

 

Figure 38 – Random uncorrelated data with 54 out of 1000 data points exceeding the 95% lower characteristics value 
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Figure 39 - Random data applied to a correlation length of 10m, with 50 out of 10000 data points exceeding the 95% lower 
characteristics value 

Knowledge of the correlation scale can be beneficial for the decisions made during the assessment as 

more information is available. However, it is not the key to accurate assessments. It only helps to 

estimate the expected bandwidth of error and to anticipate on that (see section 5.3 as well).  

6.4.2. Usefulness of measured correlation 
Although much is known about the effect of correlation, very little is known about existing correlation 

lengths in practice (Vrouwenvelder & Calle, 2003). Correlation of two data points can be expressed 

with a correlation coefficient which indicates about the similarity of two data values with a certain lag. 

This is easily determined between a couple of measurements. However, of interest is whether a certain 

correlation pattern is present in a larger domain, such as a dike section. The question rises whether it 

is useful to estimate this pattern with point measurements within an assessment.  

First of all, it is only possible to estimate the correlation length if the measurement interval is smaller 

than the correlation length. Furthermore, the measurement domain length has to be much larger than 

the present correlation length to be able to recognize that pattern. Finally, many measuring points are 

needed be able to average out possible measurement error. In conclusion: to make reliable 

estimations of correlation patterns, a very large and dense data set is required. And if this set is 

available, the statistic correlation length loses its value because representative values can also be 

observed directly from the measurement set. As with all statistical descriptions, they are only useful 

to make estimation if a small amount of data is available.  

However, the quantification of correlation lengths can be useful if a relatively large area is expected to 

show equal variation patterns. For example, a specific geomorphological deposit or geological unit. 

With a fine measurement grid a relatively small part of the area is then investigated and the presence 

or absence of correlation of the whole deposits is characterized by a representative correlation length.  

If correlation lengths can be estimated from other sources, such as geological maps, it makes sense to 

use this information the development of a measurement and data translation strategy. It is however 

not useful to estimate correlation lengths from measured data that is also meant to assess the 

strength. 

6.4.3. Quantification of correlation 
If a large data set is available, correlation within that set can be evaluated with the use of a 

correlogram. A correlogram provides the average correlation coefficients between all pairs of a data 

set for number of lags. From a correlogram the correlation length in a data set can be estimated.  
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In chapter 3, unbiased estimates of correlation coefficients are made to check the functioning of data 

generation. In an unbiased estimate the mean and variance are known and equal to the average or 

input mean and variance that accounts for a data set with infinite length. However, in practice only a 

biased estimate can be made. In a biased estimate the local measured mean and variance are used to 

estimate correlation. In that case the ratio of correlation length and domain length affects the 

measured correlogram. The measured correlation per section (method of moments) becomes on 

average smaller with respect to the input correlation predefined correlogram if the ratio correlation 

length/domain increases (0→ 1). This effect is illustrated in Figure 40 for a ratio of 0.1. 

   

Figure 40 – Left: Average correlogram using the unbiased estimate with Simulated field: N=2000, m=0, s=1 and 𝛿0=100 m.     
Right: Average correlogram using the biased estimate. Simulated field: N=2000, m=0, s=1 and 𝛿0=100 m 

Correlation lengts can be estimated as a fraction of the surface below a correlogram. Another way to 

estimate correlation lengths is to measure the correlation coefficient at one specific lag and estimate 

the autocorrelation function. For example the Gaussian autocorrelation function can be rewritten to 

derive the correlation length from a measured correlation coefficient: 

𝜌(𝑥)  = 𝑒
−(

𝑥

𝛿0
)

2

→ ln(𝜌𝑥) = − (
𝑥

𝛿0
)

2
→ √−ln(𝜌𝑥) =

𝑥

𝛿0
→ 𝛿0 =

𝑥

√−ln (𝜌𝑥)
  

One should be careful using the information of a correlogram as it presents average correlation 

coefficients. Sudden variabilities or different correlation regimes within a larger measurement domain 

are averaged and therefore invisible in one representative correlation length. For example:  A sudden 

anomaly, such as an old river bed, crosses a dike section with further strongly correlated properties in 

length direction. The soil is on average quantified as correlated and therefore a relatively high 

measurement density can be used to find representative parameter values. In that case the probability 

that the actual representative anomaly is missed, is very large. If due to the anomaly the section was 

quantified as uncorrelated, a characteristic value analysis with safety factor could have been logical. 

However, because of correlation in the majority of the section, the measured variance would be low, 

probably resulting in a too optimistic characteristics value. Therefore, average correlation lengths are 

only useful in areas with constant correlation patterns. 

6.5. Summary and conclusions 
In this chapter the accuracy of four different methods that translate measurements into a strength 

value are evaluated. It is concluded that the potential of a very dense measurement grid is insufficiently 

used as long as the measurements are only used to estimate probability density distributions of 

parameters individually. An alternative is to calculate strength values at small subsection level and 

consider spatial variation explicitly. The section representative strength is then defined as the weakest 



55 
 

of all measured subsections. In this approach an increasing measurement density has the following 

two advantages: 

 Ongoing increase of accuracy with increasing number of measurements. 

 Location specific insight in strength along the dike length that allows for customized analysis.  

It is concluded that these two advantages mainly/only count when measurement error is small or 

absent and the actual values of parameters can be measured accurately at each location. It is shown 

that by averaging multiple measurements per location, the inaccuracies caused by measurement error 

are reduced. Furthermore, it is concluded that the density of measurements needs to be higher than 

the typical correlation length to make accurate assessments. In cases of strong fluctuating soil 

properties, the measurement density should be in the order of meters to be sure that the most critical 

location is actually measured. It is concluded that the required point measurement density to prevent 

possible overestimation, is infeasible in practice. It is concluded that in general the probability of failure 

is smaller if limited measurements are translated in a strength estimate by use of the characteristic 

value analysis (standard detailed assessment).  

Knowledge of correlation patterns of soil properties can be useful to narrow down/decrease the range 

of errors. It is concluded that very large data set is required to make an unbiased estimation of the 

correlation pattern. It is concluded that it is not useful to estimate correlation length of a section while 

assessing the same section because the predictive value becomes irrelevant as many data is already 

available. However, correlation lengths become relevant if they can be assigned/linked to geologic 

units. The correlation length statistic has then predictive value which can be used to increase the 

accuracy of the assessment. 
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7. Discussion 
In this chapter the value the meaning of this research is discussed.  

7.1. Interpretation of the results 
The error that is quantified in this research is about the difference in what we think that is the strength 

if the data quality is optimal and what we think that the strength is if the data quality is limited. Data 

quality is in this case about quantity of measurements and noise of measurements. Insight in the error 

tells us something about how our view of safety depends on the quality of data. In this matter we 

assume that the view of safety is in better correspondence with reality as the quality of data is high. 

This because the view of reality is more detailed. The definition of the reference strength as the 

weakest cross section is in line with this assumption: the reference strength only tells what the 

representative strength of a longer section would be if every meter dike would have been assessed 

individually with error free parameter estimates. Therefore, the quantified error is an indication of 

possible differences between the assessment outcome and the reality. But notice that the actual 

differences can only be quantified when the dike is loaded. However, with the results of this study it is 

still possible to get insight in how the perception of safety is influenced by the way we assess our dikes 

with point measurements and conservative assumptions. Two interesting consequences of errors are 

considered in an example: 

The reference strength of a dike section is equal to the norm. For example, the critical water level is 

NAP +3m, corresponding to a probability of failure of 1/1000. With an assessment a critical water level 

of NAP +2m is found. For certain scenario’s this is a likely possibility according to the results of this 

study. The assessor thinks that the probability of failure is higher than allowed and decides to reinforce 

the dike with a berm of for example 20 meter. After reinforcement the actual resistance increases to 

a critical water level of about NAP +4m and the probability of failure of that section becomes much 

smaller than the norm.  Although it was not necessarily to reinforce based on the norms, it can be 

argued that at least the investment resulted in a very safe dike section.  

Unfortunately, a dike consists out of multiple sections and because a dike is a series system the 

weakest link determines the flood risk. Imagine that this dike consists out of two sections. So for the 

neighbouring dike section the same assessment is made. This section has a reference strength of NAP 

+2,8m, corresponding to a probability of failure of 1/800. From the assessment follows that the critical 

water level is NAP +3m as well. The results of this study show that it is a possibility that the reference 

strength is overestimated. The assessor considers this section as safe as from the assessment follows 

that the probability of failure is equal to the norm. Consequently, the probability of failure of the entire 

dike is 1/800, dominated by the weaker section. This not only means that the norm is not met, but also 

that the reinforcement of the first section is completely ineffective because it does not increase the 

safety level of the hinterland. 

This example shows a possible consequence of an unreliable assessment. The difficulty is that the 

errors can be in both overestimation (negative errors) as underestimation (positive errors) depending 

on the soil scenario. Positive errors mean that it is possible that a dike is reinforced unnecessarily. The 

range of positive errors determines to what extend it is likely that a difference between load and 

assessed strength can be caused by an error instead of an actual lack of strength. Consider an example 

in which the load is 1 meter higher than the assessed strength. If the range of errors lies between 0 

and 2 meter, the probability is 50% that the actual strength is at least as high as the load and that the 

reinforcement wat not needed to meet the norm. The relative influence of increased measurement 

density to the probability of unnecessarily reinforcement is illustrated in Figure 41.  
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Figure 41 – relative influence of increased measurement on the probability of (unnecessarily) reinforcement  

It shows that the probability that a section is unnecessarily reinforced decreases if a higher density is 

used. But it appears that the probability at a high measurement density is still in the same order as for 

a low density. Furthermore, the order is different for different scenarios and dependent on the ratio 

between strength and load. Therefore, it is not possible to generally quantify the probability of 

underestimating strength nor the probability of unnecessarily reinforcement.  

Within a detailed assessment more measurements can reduce the reinforcement task if the assessed 

strength is smaller than the load. In general, the assessed strength becomes less conservative when 

using more measurements.  

Negative errors mean that the reference strength is overestimated and the probability of failure is 

actually higher than calculated. Then it is possible that a section that should be reinforced, is not 

reinforced because it is considered safe. The range of negative errors determines to what extend it is 

likely that a difference between load and reference strength will not result in a reinforcement. 

Consider an example in which the load is 1 meter higher than the reference strength. If the range of 

errors lies between 0 and -2 meter, the probability is 50% that the assessed strength is equal or higher 

than the load. This means 50% chance that the dike is will fail before the normative load. The relative 

influence of increased measurement density to the probability of such an unsafe situation is illustrated 

in Figure 42. 



58 
 

 

Figure 42 - relative influence of increased measurement on the probability of failure before the normative load is exceeded. 

Where the probability of unnecessarily reinforcement decreases or is constant (Figure 41), the 

probability of failure before normative load is minimum at a certain density that depends on the 

correlation scale. This insight shows that if the correlation scale is unknown, it is not per definition 

useful to/you should not blindly increase the measurement density in order to decrease the probability 

of an unsafe situation.  

The order of probability that an unsafe situation occurs is different for different scenarios and 

dependent on the ratio between strength and load.  Therefore, it is not possible to generally quantify 

the probability of overestimation or probability of an unsafe situation.  

In summary, both the probability of unnecessarily reinforcement as the probability of failure before 

normative load are influenced by the density of measurements. The density with the smallest total 

range of errors results in the smallest combined probability of one of the two unwanted situations. 

Whether the probability of unnecessarily reinforcement or probability of failure before normative load 

dominates, depends on the soil scenario: 

In the reference results is shown that the assessments tend to underestimate the actual representative 

strength. So often dikes are actually stronger than expected. The validly of this result is supported by 

practices in which dike sections are clearly rejected in the assessment but not considered weak based 

on experiences with the pas (van Putten, 2013).  So, the difference between assessment outcome and 

expected safety based on experience can possibly be explained by uncertainty in model input. Note 

that model uncertainty and uncertainty in loads/inexperience with extreme loads can be debit to the 

discrepancy as well. 

Opposite situations in which sections are determined safe by the assessment but considered weak by 

practical experience are apparent as well. Cases exist in which sand boils are observed at relatively low 

water levels. This is a sign of increased piping risk, but from the assessment a safety factor of above 1 

is found. This might be explained by high fluctuation scales in soil parameters, because then the 

assessment tends to overestimate strength. However, when considering parallel effects due to 

heterogeneity, significant overestimation is not very likely (see section 7.3 of this chapter). An 

explanation is found in the presence of anomalies. Anomalies are not considered explicitly in this 

research. But it can be reasoned that in a trajectory with a constant variation pattern, a sudden weak 

spot in undetected by a characteristics value approach. If the weak spot is for example an old giver 

gully that is completely intersecting the dike width, a dangerous situation occurs. At that spot sand 
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boils might develop while the measured variance from the rest of the section might be too low to 

calculate a sufficiently conservative d70 or k value. This research mainly shows the likeliness of 

underestimation and unnecessarily reinforcements in soils with constant variation patterns. Insight in 

the characteristic value analysis and nature of point measurements argues that overestimation and 

increased probability of failure is likely in case anomalies are present. Note that the importance of the 

measurement density is actually minor: for every density a range of errors exist and it is unknown of 

the estimated strength overestimates or underestimates and to what extent. Tco estimate the piping 

risk adequately it is much more important to identify the variation pattern of the important soil 

parameters and identify the presence of anomalies. 

7.2. Expansion of the research scope 
In this research the scope is limited to the analysis of uncertainties in parameters d70 and k. Within a 

simple geometry without covering clay layers (‘schaardijk’ concept) one other parameter, the sand 

layer depth D, is considered spatially variable in the assessment. This means that the value of D 

contains the same type of uncertainties as d70 and k. The parameter D is however neglected because 

it has a rather small influence to the sensitivity of a dike to piping. The effect of incorporating this extra 

uncertain parameter in relation to d70 and k is showed in Figure 43. 

 

Figure 43 – Contribution of d70, k and D to the bandwidth of errors in a standard input configuration. Input of D: 
mean=15m, standard deviation=3m, correlation=200m (according to PC-Ring calculations) 

Most obvious is that the influence of D to the error is very small with respect to the influence of k and 

d70 which again confirms the relative importance of that two parameters in the piping assessment. 

From the figure also follows that the bandwidth of errors increases and the assessment is on average 

more conservative when more parameters are considered. This is because the probability that 

unfavourable conditions coincide then decreases.  

In practice, at many potentially piping sensitive dikes a covering clay layer is (partly) present. The clay 

layer is of influence to the Sellmeijer model parameters d and L. Especially the determination of a 

representative L value is often subject of discussion (POV piping; werkplaats Zwarte Water, 2015). 

Because the presence, depth and continuity of a clay layer are uncertain, a conservative attitude is 

common to the contribution of covering clay to the resistance. But if covering clay is actually present 

it can result in significant increase of the seepage length. It is expected that uncertainty related to clay 

covers can cause significant deviations between estimated strength and actual strength.  
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Incorporation of more uncertain parameters results in less precision and more bias to conservative 

assessments. It is expected that this also accounts for parameters L and d as those are as well 

determined with measurements and characteristic value analyses. However, quantifying the effects of 

clay cover is relatively complicated because a 2D analysis is necessarily. Next, the determination of a 

reference strength is not straightforward as a representative seepage length is not per definition 

captured in one cross section anymore.  

7.3. Validly of the reference strength 
In this research is focused is on errors due to uncertain model input. Other uncertainties such as model 

and schematization uncertainties are neglected. In this section is discussed how the definition of the 

reference strength can be of influence to the error in the assessment. 

The reference strength is constantly defined as the most unfavourable combination of independent 

parameters within a limited domain. Parameters are assumed to vary only in the length direction 

implying uniformity within cross sections. How the combination of independent parameters results in 

a strength value is captured by the model of Sellmeijer. The use of a model introduces model 

uncertainty: reality is possibly different than the model representation. The accuracy of the original 

Sellmeijer model (1989) has been studied past years, which resulted in improved versions of the 

original model. However, the only way to quantify model uncertainty is by comparing model 

calculations with actual performance of dikes (when loaded). In conclusion, there is no proven better 

alternative to calculate a critical head value then by Sellmeijer.  

However, there is a major discussion point concerning the use of a Sellmeijer model in this research. 

The models are developed and calibrated in small scale laboratory tests and the relation between 

parameters and piping resistance is determined empirically for rather homogeneous sands. 

Consequently, the use of the model implies more or less uniform cross sections. The resistance of a 

dike section is then indeed given by the smallest value of d70. The uniform cross section assumption 

is permanently made in this research and seems reasonable when d70 is correlated in space (see Figure 

48). Problem is that cross sections are not uniform when grainsizes are highly variable in space. So in 

scenarios with small correlation length, the uniformity assumption is not feasible (see Figure 45). If a 

cross section is not uniform, the resistance to piping is not automatically determined by the smallest 

value of d70. 

Kanning and Calle (2013) described a theory in which the resistance is determined by the largest d70 

in the erosion path. The strength of a section is then defined as the weakest link: the path in which 

erosion takes place easiest.  The representative d70 to use in the Sellmeijer model is defined as the 

minimum of the largest d70 of every possible erosion path. This would mean that next to a length 

effect also a parallel effect is present. Which means that high variability in d70 has also a positive 

contribution to the strength. The concept of parallel effects due to heterogeneity is more and more 

recognized in the field of piping risks (personal communication with van Beek & Koelewijn, 2015), 

(personal communication with Blinde, 2015). 

In a 1D analysis, correlation scale has clear influence to the bias in assessments. When a property is 

quickly fluctuating, the probability of an unfavourable parameter value increases. This results in 

general in smaller reference strengths. However, if those quick fluctuations also appear in the width 

of the dike, the probability increases that somewhere in the representative erosion path larger grains 

are present. Result is that reference strengths are possibly higher than expected. This is of influence 

to the bandwidth of errors and the influence of correlation length to this bandwidth (see the sensitivity 

of correlation length in chapter 5). 
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A 1D analysis suggests that it depends on the soil conditions whether the characteristics value analysis 

tends to overestimate or underestimate the strength. To capture parallel effects a relatively simple 2D 

simulation is set up in which the concept of erosion paths is incorporated in determination of the 

reference strength (analogue the weakest link analysis of Kanning, 2012). In a 2D simulation the 

variations both in the length direction as the width of the dike are explicitly considered. The used 2D 

simulation is in principle equal to the standard simulation (see chapter 2) except for the determination 

of the reference strength. For simplicity k is taken constant and the strength is given by the weakest 

erosion path of a 2D d70 field, see Figure 45 until Figure 47 for 2D fields.  The 2D simulation results are 

given for correlation lengths of 180 meter and 1 meter are given in Figure 48 and Figure 49. Correlation 

lengths are equal in both length as width direction. In the same figures the results in case of uniform 

cross sections are given for comparison.  

The results of Figure 48 and Figure 49 provide an indication of the expected errors if heterogeneity is 

contributing to the strength. It results in the hypothesis that the correlation in d70 is of inverse 

influence to the bias in the assessments then was expected based on the 1D analysis. More variability 

results in increased reference strength and therefore decreased probability of failure. Based on 

chapter 5 it was expected that lack of correlation would result in overestimation of strength by an 

assessment. This could be dangerous because the probability of failure is then higher than expected. 

However, a simple 2D analyses suggests that the opposite might be the case. Lack of correlation results 

in underestimation of strength which means that the probability of failure is much smaller than was 

expected based on the assessment. 

 
Figure 44 – Example d70 field (2D) with correlation length=1m (in both x and y) 

 
Figure 45 – Example d70 field (2D) with correlation length=10m (in both x and y) 
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Figure 46 – Example d70 field (2D) with correlation length=100m (in both x and y) 

 
Figure 47 – Example d70 field (2D) with correlation length=200m (in both x and y) 

Appendix 17 shows the influence of 2D modelling to the distribution of reference strength and assessed 

strength (measurement density is 1 per 1 meter) for several correlation lengths. Appendix 18 shows the 

influence of 2D modelling to the bandwidth of errors for several correlation lengths.  

 

Figure 48 – Bandwidths of errors in case d70 is varying with a correlation length of 180m in both x and y direction. Results of 
both the standard 1D simulation and developed 2D analysis show the influence of parallel effects in correlated soils. 
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Figure 49 – Bandwidths of errors in case d70 is varying with a correlation length of 1m in both x and y. Results of both the 
standard 1D simulation and developed 2D analysis show the influence of parallel effects in uncorrelated soils 

Because k is representing a layer average permeability, heterogeneity within a cross section will not 

directly influence the character of this parameter. However, calculating strengths with single k values 

does not completely justify that groundwater flow leading to erosion is actually a 3D process 

(Vandenboer, van Beek, & Bezuijen, 2014).   

Finally, the independency of properties is discussed. In determination of the reference strength no 

cross correlation between d70 and k is modelled. It is questionable how realistic this is since small 

grains usually cause low permeability. But to what manner does permeability in the lower sand layers 

influence the force on grains in the top layer? 

Aguilar-Lopez et al. (2016) discusses cross correlation. They show cross correlation is likely to be 

present and expected to decrease the probability of failure. In this research cross correlation would 

imply increase underestimation of actual strength by the assessment. Which means a smaller 

probability of failure is present than calculated. Note that the assessment assumes complete 

independence of properties. Especially when properties are uncorrelated the reference strengths will 

increase strongly as the probability that unfavourable parameter values correspond will decrease. 

Remark: some cross correlation is implied by the fixed and coupled input means of d70 and k. This 

prevents to some extend that very large grains occur at locations with very low permeability. 

7.4. Simplified assessment 
In this research a simplified semi-probabilistic assessment is simulated. The limitations in representing 

an actual detailed assessment are discussed here. 

Measurement intervals are assumed constant and equal for both k and d70 measurements. In practice 

the number of measurements per parameter can deviate (see appendix 20) and the positioning of 

measurements along the dike is not per definition with equal intervals between measurements (see 

appendix 9). 

To schematize a representative cross section and estimate piping resistance, multiple sources of 

information can/should be used (ENW, 2012). In the simulation only one source of information is used, 

namely parameter values based on measurements. So actually only one degree of freedom, the density 

of measurements, is analysed. Furthermore, the assessment is not static as considered in this research 
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but dynamic as the understanding of the dike and subsoil increases while assessing it. In reality 

measurements are reviewed and not blindly entered to a formula. In addition to static formulas, also 

static approaches are analysed in this research. In chapter 4 only characteristic value analysis is used, 

also in case of high measurement density. In practice it is more likely that the approach of data use 

depends on the collected information and measured parameter values. 

More design choices mean more uncertainties which might increase the probability of an error 

between the actual strength and assessed strength. On the other hand, multiple errors can omit each 

other. In addition, it is reasoned that if more information is available upfront to an assessment, 

measurements can be used more effectively and possibly more accurate assessments can be made. 

Within the assessment procedure, also measuring is simplified. The measuring of k values is less 

straightforward as presented in this research. It is presented as point measurements that represents 

one k value. In reality the k values are often estimated from samples (d60 and d10) out of the entire 

sand layer. In that method some correlation between k and d70 is assumed. It is not straightforward 

to measure k values in situ. In this research the complexity of measuring accurate k values is neglected 

and all uncertainties are discounted in the measurement error. The measurement error is arbitrarily 

chosen. 

In an actual assessment correlation between d70 and k is ruled out for sake of conservatism. The lower 

characteristic value of d70 has to be combined with the upper characteristic value of k. But when k is 

estimated from sand fractions (d10 and d60 measurements) some correlation is implied. The selection 

of k samples from all over the sand layer is not always guaranteed. Whether this implicit correlation is 

representative for reality or not is not known. This possible error is however not analysed in this 

research but could have influenced the error range. For example, if fine sands are on top of coarse 

sands, the use of d70 samples from the top layer to estimate k can result in significant error as a too 

optimistic permeability is considered.  

7.5. Contribution to literature 
In existing literature is mainly focussed on improved understanding and modelling of piping, amongst 

others (van Beek, 2015), (Robbins, Sharp, & Corcoran, 2015), (Vandenboer, van Beek, & Bezuijen, 

2014), (Kanning, 2012), (Förster et al., 2012). In literature is also focussed on the improvement of 

reliability analysis of piping, for example (Aguilar-Lopez et al., 2016), (Schweckendiek, 2014). 

Furthermore, attention is paid to the influence of spatial correlation and determination of correlation 

scales (de Visser, Kanning, Koopmans, & Niemeijer, 2015), (Vrouwenvelder & Calle, 2003). So research 

has been done to describe mechanisms that influence the probability that piping occurs. The ability of 

models to describe actual processes as realistic as possible has been of primary focus.  

As consequence of the legal safety assessment, a broad discussion has been ongoing about the actual 

safety risks with respect to piping. Many kilometres of dikes have been rejected based on the existing 

piping models and assessment procedures. There has been discussion about the correctness of 

assessment outcomes in representing actual piping risks (Vrijling, et al., 2009), supported by cases in 

which practical knowledge about the safety is in contradiction with the official assessment (POV piping; 

werkplaats Zwarte Water, 2015. 

Additional research towards the piping problem was needed in order to reduce the gap between actual 

risks and estimated risks. It has amongst others resulted in full probabilistic reliability analyses, 3D 

erosion modelling, the weakest path theory and an updated/improved Sellmeijer model. Furthermore, 

there is consensus in literature that high calculated piping risks might be (partly) due to high 

uncertainties in model input and corresponding conservative assumptions. Although identified, this is 
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not jet supported by academic research. With this study a first step is made in the quantification of 

errors between estimated risks and actual risks. Specifically, to the errors that can be made if model 

input is inadequate. The results of this study show that the probability of failure of a dike due to piping 

might be underestimated in some cases. In those cases, the legal norm might not be met. However, in 

other cases the probability of failure is overestimated resulting in reinforcements while the dike 

section actually meets the norm. 

This research also shows that the use of point measurements inevitable results in uncertain model 

input. Therefore, this research contributes to initiatives, such as coordinated by Stichting FloodControl 

IJkdijk, in which is argued for the need of more data and information and/or alternative data and 

information in piping risk analyses. 
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8. Conclusions and recommendations 
In this chapter the answer to each research question is provided. Based on the drawn conclusions 

recommendations are given with respect to data use and further research. 

8.1. Research questions 
 
1. What is a representative geometry and soil characteristics of a piping sensitive dike section? 
 
It is concluded that a dike is piping sensitive in a configuration with a cohesive and impermeable dike 
body on top of a permeable sand layer that is in connection with outside water. Pipes develop easier 
for small seepage lengths; therefore, a typical piping sensitive geometry has a rather small dike body. 
The seepage length is increased by the presence of a consistent covering clay layer moving entrance 
and exit points away from the dike body. Lack of a (consistent) clay layer increases the sensitivity to 
piping. 

Uncertain soil characteristics and spatial variation can be described by probability density distributions 
and scales of fluctuation. In this research the statistical variables used in PC-Ring are followed to 
describe a reference scenario. The result of other representative distributions and correlation patterns 
are analysed in a scenario analysis to determine the influence of modelling choices.  

It is not straightforward to describe generally representative soil characteristics because of different 
geological backgrounds and morphological units. In addition, little is known about soil variations on 
small scale because extensive data is missing. Recent extensive piping reliability analyses have 
calculated piping risks with correlation lengths that are estimated by experts and match with theory 
regarding large scale variations within rather homogeneous deposits. Some testing grounds with fine 
grids of d70 measurements, show no significant spatial correlation in grainsizes. Experts confirm that 
sand layers can be very heterogeneous, at least for some areas in the Netherlands. In conclusions, 
there is disagreement about the spatial correlation in soil characteristics that should be considered to 
analyse piping risks.  

 

2. How does the density of measurements influence the accuracy of strength assessments using the 
approach described in the detailed assessment level? 

Given the reference scenario, it is concluded that the assessment biases to conservative assessments 
and measurements decrease this bias to some extent. With a minimal measurement density of 3 per 
1000 meter an expected error in the assessed strength of 1.4m underestimation of critical head is 
found. At a measurement density of 1 per 10 meter the expected error decreases to 0.6m 
underestimation of critical head. A decrease in the order of 50%. Next, it is concluded that the assessed 
strength value is not always close to the actual representative strength because a range of possible 
errors is found for every measurement density. Increase of measurement density decreases the range 
of errors to some extend due to reduction of statistical uncertainty. But at dense grids, density of 1 per 
10 meter and denser, the range of errors is constant between accurate and 1.3m underestimation of 
critical head. For comparison, the average strength of the considered dike sections is 2.3m critical 
head.  

The characteristics value approach is able to translate limited data into low (conservative) strength 
assessments that tend to underestimate the actual representative strength. The approach is not meant 
to translate high measurement densities into accurate assessments (error range of zero, close to zero). 
Although statistical uncertainty is reduced when using higher measurement densities, the assessment 
will not find representative parameters values consistently. Due to the use of static assumptions in the 
assessment method, the increased information about the (spatial) soil distributions stays unused.  
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3. How sensitive is the accuracy of strength assessments to assumed (spatial) distributions of soil 

parameters? 

It is concluded that the bandwidth of errors depends on the average statistical characteristics of the 
soil parameters. When the average statistical characteristics are uncertain, the actual bandwidth of 
errors is much wider.  When point measurements are the only source of information in the assessment, 
the expected bandwidth of errors is given by the combination of bandwidths from a whole range of 
plausible scenarios. 

It is concluded that no general quantitative statements can be made about the bias in the assessments 
and range of possible errors. Due to the combination of statistical uncertainty, boundary effect, 
measurement error and spatial variability, relative errors up to almost 100% are possible. The scenario 
analysis shows that the range of possible errors depends on the actual representative strength, 
determined by the actual (unknown) spatial distribution of properties.  

It is concluded that the influence of measurement density is independent of the average characteristics 
of soil parameters. Assessments generally become less conservative due to extra measurements and 
the error range to some extend smaller due to reduction of statistical uncertainty. By reducing 
statistical uncertainty, the range of possible relative errors can be decreased to about 50%.  

Finally, it is concluded that due to the length effect assessments tend to be relatively unsafe at dike 
sections with small correlation lengths. This notice is mainly of importance with respect to k. With 
respect to d70 it is likely that parallel effects are present as counterforce to the length effect. 
Furthermore, it is concluded that the range of errors is generally smallest for the measurement density 
that is somewhat higher than typical correlation length. If correlation lengths of typical soils are known, 
this can give rough indications to what extend increase of measurement density can be valuable in 
uncertainty reduction. 

 

4. Is it possible to increase the accuracy of strength estimations by using information of point 
measurements alternatively? 

With location specific measurements it is possible to decrease errors due to spatial variability and 
statistical uncertainty. Random measurements errors can also be reduced by averaging multiple 
measurements per location. It is concluded that in theory it is possible to make accurate strength 
assessments with use of point measurements by making the density of measurements high in relation 
to the correlation length. It is concluded that to be certain that the error in the assessed strength is 
small, measurement densities are needed that are not feasible in practice. The use of point 
measurements does not justify the spatial variability of soil properties and related uncertainty about 
piping risks. Furthermore, the use of point measurements does not justify inaccuracies as result of 
measurement error.   

To conclude about the potential of point measurements, different data use methods are evaluated. In 
both characteristic value analyses as measured critical value analyses, parameters are considered 
individually. This means that only uncertainty about the probability density distribution of parameters 
is reduced with increasing measurement densities.  Measuring strength per location makes it possible 
to reduce errors due to spatial variability as well.  

With high measurement densities it is possible to estimate statistical descriptions of parameters 
accurately. But at the same time, it is then possible to directly allocate strength values to many 
locations. But even with a large data set it is not straightforward to predict the strength accurately. 
Pipes develop on microscale and a point measurement is in principle only giving information about one 
specific location in the spatial domain. So the mechanism that is looked for is in principle as small as 
the size of the used observations. Spatial correlation of relevant properties determines how dense 
measurement grids should be to find reliable strength estimations. 
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The correlation length is a statistic that is not explicitly used in the detailed assessment. With high 
densities of point measurements, it is possible to estimate correlation lengths, but only if correlation 
length is much smaller than the measurement domain. It is concluded that quantification of correlation 
length is only useful to characterize larger deposits or geologic units. With knowledge of the correlation 
patterns upfront to the assessment, the range of possible errors can be narrowed. 

8.2. Recommendations 
First it is recommended to acknowledge that estimation of piping risks based on point measurements 

is unreliable because of a large range of possible errors in strength assessments. With characteristic 

value analysis (detailed assessment), errors in the same range as the actual strength or assessed 

strength are possible. Therefore, it is recommended not to rely solely on information from point 

measurements.  

It is shown that the error in a strength assessment is location specific, i.e. depends on the local soil 

variations. Therefore, it is recommended to use customized above standardized assessments. It is 

recommended to use all available information (dynamically) to divide trajectories into sections and to 

develop a measurement plan. Information about variation scales, correlation patterns and possible 

anomalies should always be considered.  

Assessing piping risks is mainly about identification of weak locations in the length direction of the 

dike. It should be noticed that the nature of point measurements does not justify existing spatial 

variations and the possibility of anomalies. It is recommended to use alternative techniques and 

additional information as well to locate possible weak spots and use traditional point measurement to 

quantify soil properties at those locations. 

With point measurements accurate assessments can be made if the density is high enough and 

measurement error is ruled out. The number of measurements that would be needed is not considered 

plausible in practice. Instead it is recommended to consider surface covering or volume covering 

measurements because of its potential to provide insight in the variation of a certain property at high 

density. Besides that, possible measurement error is relative, which increases the accuracy in 

identification of actual weak spots. 

It is recommended to do further research into the possibilities of (using) surface covering or volume 

covering measurements. With respect to the k parameter it might be valuable instead of permeability 

measurements (monitoring well, pumping test) at an interval that is smaller than the width of possible 

gullies (Schweckendiek, 2014). With respect to the d70 parameter it might be valuable to characterize 

heterogeneity (de Visser et al., 2015) and identify/rule out anomalies with fine sand fractions that cross 

the dike width in full length. 

Experiments showed that dikes fail later than expected based on the current theoretical knowledge. 

In practice this is visible at water boards that in theory have to reject many kilometres of dike while 

practice shows many of these dikes are fine (van Putten, 2013). Because discrepancy between assessed 

strength and actual representative strength is likely (showed in this research) it is recommended to do 

additional research in case of doubt. Monitoring and use of sensors is a possibility/shows to be 

promising (van Putten, 2013), (Koelewijn, Pals, Sas, & Zomer, 2010), (Sluis, Sirks, Koelewijn, & Veenstra, 

2016). For extensive information about monitoring is referred to Kennisplatform Dijkmonitoring 

(www.dijkmonitoring.nl). 

It has been reasoned in literature that behaviour of soil is determined by mechanisms on microscale. 

Therefore, it can be questioned whether it is possible to measure the (all) relevant/representative 

parameters. Because soil bodies are so heterogeneous and complex it is hardly possible to estimate the 

http://www.dijkmonitoring.nl/
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behaviour with models and model input completely accurately. To increase insight in behaviour it could 

be useful to consider the monitoring of output parameters as well. In case of piping for example 

measuring of increased seepage during high water. In case of macro stability for example measuring 

movement of the dike body during high water.  

This research has been a first step in the quantification of possible errors when assessing the risk for 

piping with limited data and information. From an academic perspective it would be interesting to 

extend this research to a more sophisticated 2D/finite elements analysis. It is recommended to focus 

on a more realistic determination of the reference strength, in which parallel effects (d70), 3D 

groundwater flow (k) and covering clay layers (d and L) are incorporated as well. It would be of interest 

to compare this reference strength with assessed strengths from both a random finite element analysis 

as with the characteristic value analysis and Sellmeijer model. Both assessment methods subjected to 

the limitations of point measurements model input. 

In this research is shown that soil conditions have impact on the safety of dikes with respect to piping. 

Mainly about the correlation scales of soil properties and presence of anomalies much 

uncertainties/unknowns exist. It is recommended to increase the insight in the spatial variations and 

anomalies with respect to geographic locations in the Netherlands.  
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1. The piping failure mechanism 
The occurrence of piping is related to several factors (Ministerie van Verkeer en Waterstaat, 2007): 

 The head difference over the dike. The head difference causes pressure difference resulting in high 

water pressures in the sand layer below the dike (if this sand layer is in connection with the outside 

water). 

 The thickness and permeability of the water transporting layer (sand layer) under the dike body. 

These parameters determine the magnitude of flow through the sand layer as a result of head 

difference. Higher flows increase the risk of sand particles to move. 

 The seepage length: distance between entry point and exit point. A longer seepage length means 

a lower pressure gradient and increased resistance preventing sand particles to move. 

 The thickness and volumetric weight of the covering (clay) layer above the permeable sand layer. 

Such a layer prevents water to flow towards the surface and therefore increases the seepage 

length. If the water pressure in the sand layer is high enough this layer can burst (uplift) causing 

water to flow from under the dike to the surface. If the flow is strong it can start to transport sand 

particles from below the dike towards the surface. 

 Grainsize distribution. Especially of importance at the exit point. Finer materials have lower 

resistance against internal erosion as the flow is better able to move these particles. 

 The presence and dimensions of a ditch. A ditch is possibly a weak spot in the covering clay layer 

as the layer is thinner there (uplift). The ditch functions often as the exit point of the seepage flow. 

 

Usually only the cross section is used to visualize piping (see example in Figure 50). In reality after the 

occurrence of uplift a water boil is created causing a three dimensional flow pattern towards the boil. 

If the flow is strong enough erosion starts. The channel develops from inner side to outer side but also 

in the length direction of the dike depending on the grain distributions below the blanket layer. The 

channel can also develop in depth, but collapses cause it to continue just below the blanket layer which 

is usually cohesive. The sand layer thickness D below the blanket layer is not important for the 

resistance (because only in the top layer channels can develop), but is important for the development 

of flow patterns and flow velocity (Kanning, 2012). 

 

Figure 50 – typical cross-section of a piping sensitive dike (Kanning, 2012). 



76 
 

2. The legal assessment of piping risks 
Three levels of assessment are possible to determine the safety of a dike against the piping failure 

mechanism: 

 A simple global check in which mainly the geometry of the dike is considered. 

 A detailed check in which the safety is checked according to the model of Sellmeijer (Sellmeijer, 
1989). 

 An advanced assessment in which the local (sub) soil is modelled in detail or in which a probabilistic 
analysis is carried out. No explicit procedures exist when performing an advanced assessment, but 
it has to sufficiently convincing in proving the safety of the assessed dike (Ministerie van Verkeer 
en Waterstaat, 2007). 

If from the global check it appears the dike might be unsafe the detailed check is carried out. If this 

check is does not lead to the conclusion the dike is safe, it is possible to do an advanced assessment. 

For every step, from global to advanced, the number of input parameters and needed amount of data 

increases (Ministerie van Verkeer en Waterstaat, 2007).  

In the safety assessment the detailed check is most used. For this purpose, a semi-probabilistic 

approach is used, in which stochastic parameters related to strength are translated to characteristic 

calculation values (Förster, van den Ham, Calle, & Kruse, Onderzoeksrapport zandmeevoerende 

wellen, 2012). The procedure is as follows: 

 First a dike ring is split into several small dike section based on (sub) soil characteristics 

 From every stretch a representative cross section is made. This cross section holds the information 
to calculate the resistance of that dike section: for piping the critical head difference or critical 
slope is calculated as strength indicator. 

 To make a representative cross section, (local) information about the dike geometry and subsoil is 
needed. The subsoil information becomes available by doing (additional) measurements. Because 
of spatial variability of soil characteristics within the assessed dike stretch, the measured strength 
parameters differ from place to place. 

 Strength parameters (for example grain size, seepage length, sand layer thickness and clay layer 
thickness) are therefore translated into random variables (based on at least 3 sample points). Most 
parameters are assumed to have a normal or lognormal distribution. Some parameters can hardly 
be measured; in that case nominal values are assumed (safe conservative values). 

 From the random distributions, characteristic values are calculated based on statistical analysis. 
This means a value is chosen such that with 95% certainty the actual values in the field are more 
favourable with respect to piping. 

 With each parameter assigned a characteristic (assumed safe) value, the critical head is calculated 
using the calculation rule of Sellmeijer. 

 The critical head is divided by partial safety factors to account for (model) uncertainties and the 
translation of dike cross section safety to dike ring safety. 

 The ‘corrected’ critical head is compared to the head difference (load) as determined from the 
norm. The norm provides a water level that is exceeded with a certain frequency. 

 If the strength is less than the load, the dike section is determined ‘unsafe’. Each section needs to 
be determined ‘safe’ in order to conclude a dike ring to be ‘safe’. 
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3. Piping model of Sellmeijer 
To determine the possibility of piping several models can be used, varying from simple calculation rules 

to complex 3D finite element methods. A very simple and often used model to do a first check is the 

empirical calculation rule of Bligh (based on a critical average gradient). A more detailed physical model 

is developed by Sellmeijer. This calculation rule of Sellmeijer is most often used in detailed piping 

assessments. To have a safe situation the critical head calculated with the models should be higher 

than the effective head difference over a dike (Förster, van den Ham, Calle, & Kruse, 

Onderzoeksrapport zandmeevoerende wellen, 2012). 

The model of Sellmeijer is the more ‘sophisticated model for the determination of the critical water 

level. The Sellmeijer model is prescribed in the detailed assessment of dike safety towards piping. The 

model is an equilibrium model that checks if a critical situation is developed. The idea behind the 

model, validated with observations, is that the piping channel can reach an equilibrium if it not passes 

half the leakage length. Sellmeijer considers the occurrence of sand boils still as a possible safe 

situation as the piping channel can reach an equilibrium and stops developing. The safety of a structure 

when observing a sand boil can therefore not exactly be indicated. The critical head according to 

Sellmeijer (1989) is calculated by: 

∆𝐻𝑐 = 𝛼𝑐𝐿 (
𝛾𝑝

𝛾𝑤
− 1) (0.68 − 0.1 ln(𝑐))𝑡𝑎𝑛𝜃𝑅 > 0  

𝛼 = (
𝐷

𝐿
)

(
0.28

(
𝐷
𝐿

)
2.8

−1

)

 

𝑐 = 𝜂 ∗ 𝑑70 (
1

𝜅𝐿
)

1
3

 

 

𝜅 =
𝜐

𝑔
𝑘 

 
In which: 
𝐿 is leakage/seepage length 
𝐷is sand layer thickness 
𝛼 included limited thickness of the sand layer 
𝑐 incorporates the erosion resistance of the sand layer 
𝛾𝑝 is wet soil weight 

𝛾𝑝 is water weight 

𝜃𝑅 is the rolling friction angle 
𝜂 is the White’s constant 
𝑑70 is the 0.70 grain size fractile of the sand 
𝜅 is the intrinsic permeability 
𝜈 is the kinematic viscosity 
𝑔 is the gravitational acceleration 
k is the permeability 

 

Adjusted model 
In the context of the research program Sterkte en Belastingen van waterkeringen, a new 
comprehensive research towards piping and heave is carried out in order to identify the uncertainties 
within the current assessment procedures. The results are described in the report Zandmeevoerende 
wellen (Förster et al., 2012) and have suggested a renewed and improved calculation rule of Sellmeijer. 
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They also state that the rule of Bligh is no longer applicable as it can overestimate the safety. The 
adapted Sellmeijer model calculates the critical head according to (Sellmeijer et al., 2011): 
 
∆𝐻𝑐 = 𝐿 ∗ 𝐹𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 ∗ 𝐹𝑠𝑐𝑎𝑙𝑒 ∗ 𝐹𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 

 

𝐹1 = 𝐹𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑐𝑒 =
𝛾𝑝

𝛾𝑤

{𝜂 tan(𝜃)} 

 

𝐹2 = 𝐹𝑠𝑐𝑎𝑙𝑒 =
𝑑70𝑚

√𝜅𝐿
3 (

𝑑70

𝑑70𝑚
)

0.6

 

 

𝐹3 = 𝐹𝑔𝑒𝑜𝑚𝑒𝑡𝑟𝑦 
𝑀𝑆𝑒𝑒𝑝

=
 𝐹(𝐺) 

𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑑𝑖𝑘𝑒
=

 0.91 ∗ (
𝐷

𝐿
)

0.28

(
𝐷
𝐿

)
2.8

−1
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In which: 
 
𝑑70𝑚 is the average 𝑑70 of the in small scale trial applied types of sand for which this formula is fitted: 

𝑑70𝑚 = 2.08 ∗ 10−4 [m]. 

This adjusted rule is supposed to be used for safety assessments in the Netherlands from now on. 

Parameter (estimations) 
In relation to the uplift and piping problem the following categories of parameters are present in the 

piping model: 

 Hydraulic boundary conditions: water levels with a certain exceedance frequency that have to be 

retained safely. 

 Construction dimensions (geometry). 

Often construction dimensions can be distracted from (old) design specifications. 

 Structure of dike body and subsoil and geo-hydrologic system (are water transporting layers in 

contact with outside water and the head (‘stijghoogtes’) in these layers). 

Information about this often follows from a first global soil investigation. 

 Material characteristics. 

 Geo-hydrologic characteristics. 

The models of Sellmeijer hold more information than the average gradient models and thus require 

more data. When using the calculation model of Sellmeijer some explicit estimates are required 

(Technische Adviescommissie voor de Waterkeringen, 1999): 

 Permeability of the sand layer 

 70-percentilevalue of the grain size distribution (d70) 

 thickness of sand layer and the development of it below and beside the dike 

 Specific parameter indications: ‘the White’s constant’, ‘the rolling friction angle’. These are very 

hard to determine with measurements; therefore, nominal prescribed values are used (partly 

based on laboratory tests). 

Grain size distribution 

The grain size distribution influences the stability of grains in the potential pipe. Therefore, it is 

important to know specifically the grain size distributions just below the impermeable layer close to 
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the exit point. Samples can best be taken close to the dike toe (inside of the dike). In de piping 

formula a conservative estimation (low representative value) of d70 should be used. 

Permeability 

The permeability of the sand layer is a very sensitive parameter in the piping mechanism. But acquiring 

reliable estimation of the permeability is a problem, in which the effect of heterogeneity in the sand 

layer plays a difficult role. In the piping formula a conservative estimation (high representative value 

of the layer’s average) of the permeability should be used. In the assessment practice usually 

estimations based on TNO-ground water maps or estimations based on grain size distributions are 

used. The ground water maps are probably conservative (deeper sand layers, less fine grains, more 

permeable) while the grain size relation is probably optimistic (from sand samples in the top of the 

layer, which are usually fine and less permeable) (Förster, van den Ham, Calle, & Kruse, 

Onderzoeksrapport zandmeevoerende wellen, 2012). 

The permeability can be estimated based on grain size distribution samples. In TAW (1994) a procedure 

is described to calculate the permeability based on samples of the sand layer. In the Netherlands 

almost all water transporting sand layers consist out of sand with a D60/D10 ratio smaller than 10. The 

Dutch sand is relatively fine-grained and uniform, varying between 150 and 350 micro meter. The 

uniformity (D60/D10) lies between de 1.5 and 3 (Förster, van den Ham, Calle, & Kruse, 

Onderzoeksrapport zandmeevoerende wellen, 2012). 

Furthermore, it is possible to obtain estimates of the permeability with in situ tests as the ‘pumping 

test’, the ‘falling head test’ and the use of monitoring wells. In the piping mechanism in situ test are 

preferred over estimates from grain size distribution samples. This is because the local permeability is 

not so important compared to the ‘bulk’ permeability of the entire sand layer (TAW, 1994).  

Effective head 

The calculated critical head is compared with the effective head in order to determine the possibility 

of piping to occur. This effective head is the difference between the outside water level and the inside 

(ground) water level. If a ditch is present the water level in this ditch is used, otherwise the surface 

level at the inside of the dike is considered (Ministerie van Verkeer en Waterstaat, 2007).  

In case of a covering impermeable layer (blanket layer) at the inside of the dike the piping mechanism 

is affected. This is modelled as a reduction of the effective head difference: ∆𝐻𝑒 = ∆𝐻 − 0.3 ∗ 𝑑. In 

which 𝑑 is the thickness of the impermeable layer. The thickness of the blanket layer is difficult to 

estimate due to variability and local excursions as ditches and gravel pits (Kanning W. , The weakest 

link - Spatial Variability in the Piping Failure Mechanism of Dikes, 2012). 
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4. Characteristic value analysis 
Sampling 
Samples are taken from noised correlated realisations to simulate measurements. Characteristics 

value calculations are made for the following measurement configurations: 

Configuration: 1 2 3 4 5 6 7 8 9 10 11 12 

No. 
measurements 

3 5 6 11 21 26 41 51 101 201 501 1001 

Measurement 
density [1/m] 

500 250 200 100 50 40 25 20 10 5 2 1 

 

The example realisations in Figure 51 show measurement configurations 1, 4 and 9 for example 

realisations of d70 and k. 

 

Figure 51 – Simulation of d70 and k measurements according to 3 different measurement configurations (No. of 
measurements). Simulation based on standard input configuration with measurement error 

 

Formulas for characteristic value calculations 
In this section the used formulas for characteristic value calculations are given. Parameter related 

samples are represented by the symbol 𝑝.  

Normal distributed data 

Because the variance of d70 data is relatively small, it is assumed that d70 is normally distributed. In 

case of relative small variations or if a normal distribution of the property is assumed. For d70 the 

lower boundary of the data set is representative for piping. The related characteristic value is 

calculated according to: 

𝑝𝑐ℎ𝑎𝑟,𝑑70 = 𝑚𝑒𝑎𝑛(𝑝) − 𝑡95 ∗ 𝑠𝑡𝑑(𝑝)     Equation 1 



81 
 

Lognormal distributed data 

Permeability data sets show relative high variances. TAW (1999) and Deltares (2002) advise to 

consider high variable data to be lognormal distributed. In this study the k values are in fact 

lognormal distributed and show relatively high variances. For the k parameter the upper boundary of 

the data set is representative for piping. The characteristic upper value is then calculated according: 

𝑝𝑐ℎ𝑎𝑟 = exp [𝑚𝑒𝑎𝑛(ln 𝑝) + 𝑡95 ∗ 𝑠𝑡𝑑(ln 𝑝)]    Equation 2 

Instead of the mean and variance of the sample values, the mean and variance of the natural 

logarithmic of the sample values are used 

Parameters 

The characteristic value of a sample is calculated with the mean and standard deviation (std) of the 

sample set. The mean is a measure of the expected value of the parameter. The standard deviation is 

a measure for the variation of the parameter values around the mean. The third parameter is the 

student-t factor. Which is determined by the number of used measurements N and the required 

certainty interval. In case of piping the 95% interval is always used (Technische Adviescommissie voor 

de Waterkeringen, 1999). The student-t factors are given in the following table: 

N-1 1 2 3 4 5 6 7 8 9 10 

𝒕𝑵−𝟏
𝟎.𝟗𝟓  6.314 2.920 2.353 2.132 2.015 1.943 1.895 1.860 1.833 1.812 

N-1 11 12 13 14 15 16 17 18 19 20 

𝒕𝑵−𝟏
𝟎.𝟗𝟓  1.796 1.782 1.771 1.761 1.753 1.746 1.740 1.734 1.729 1.725 

N-1 21 22 23 24 25 26 27 28 29 ∞ 

𝒕𝑵−𝟏
𝟎.𝟗𝟓  1.721 1.717 1.714 1.711 1.708 1.706 1.703 1.701 1.699 1.645 

 

The student-t factor is a statistical scalar to find a certain value from a probability density 

distribution. In case of piping, the value is searched for which the probability that the actual value is 

more favourable is at least 95%.  

Example realisation with characteristic value calculation 
In this section the characteristic values and resulting strength assessment is visualized with an example 

run. Figure 52 shows an example of a d70 realisation as the result of the standard input configuration. 

Next to the data realisation the minimum present d70 value is highlighted. Furthermore, the 

characteristic value as calculated based on three measurements is visualized. This is done for situations 

with measurement error (noised) and without measurement error (error free) This gives, for this 

typical example, insight in the influence of measurement error on assessments/calculations of 

representative parameters: in this case the characteristic d70 value. 

Figure 53 shows the same but now for an example realisation of k. In this case the maximum value is 

searched for so the characteristic value is the theoretical upper 95% boundary based on the (three) 

measurements. For this figure the logarithmic scale is used. Because of the marginal sensitivity of the 

strength to D variations, no figure is related to the D parameter. However, the characteristic value 

calculation is in the same analogy as for d70. 

Figure 54 gives the resulting strength realisation. The reference strength and assessed strength are 

visualized. The assessed strength (error free) is based on characteristic value inputs that are calculated 

using measurements without measurement error. The assessed strength (noised) is based on 

characteristic value inputs that are calculated with measurements subjected to measurement error.  
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Because measurements of d70, k and D are taken at the same locations, the actual strength at the 

three locations is measured. Because three locations are not representing the whole dike section, 

characteristic value calculations are normally used. Because for each parameter in principle a 

‘conservative’ calculations value is used (95% upper/lower boundaries), the combination of 

conservative values leads to a theoretical ‘weak spot’ where all properties are possibly unfavourable. 

Figure 54 shows that it is possible that the predicted ‘weak spot’ is not present in the considered 

section. It is possible that weak locations in terms of d70 are for example counteracted by strong 

locations in terms of k. However, in this specific case the underestimation of strength is also caused by 

too conservative characteristic values of both k and d70 individually. As can be seen in Figure 52 and 

Figure 53. The numbers and calculated values related to this example runs are presented in Table 11 

and Table 12. From the figures and tables is learned that measurement error can also improve the 

accuracy of a representative value assessment (see k realisation). Furthermore, this example shows 

that the measured strengths as combination of parameter measurements per location can give 

valuable insight. The minimum measured strength is in this case (almost) equal to the reference 

strength. The assessed strength based on individual characteristic parameter values however, is 

underestimating the reference strength by almost one meter. 

 
Figure 52 – Schematisation of a characteristic d70 value calculation based on 3 measurements; and the influence of 

measurement error on the calculation outcome. Example realisation based on standard input configuration. 

 
Figure 53 – Schematisation of a characteristic k value calculation based on 3 measurements; and the influence of 

measurement error on the calculation outcome. Example realisation based on standard input configuration. 
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Figure 54 – Example of a strength (in terms of Hc) realisation with schematised the influence of measurement error on the 

assessed strength. Underlying data realisations have standard input configuration. 

 

Table 11 – Numbers/calculation related to the example realisations in Figure 52 and Figure 53 

 d70 k 

Measurements (noised) 2,29E-04 2,14E-04 1,63E-04 8,75E-05 2,52E-04 5,03E-04 

Measurements (error free) 2,19E-04 2,09E-04 1,62E-04 8,69E-05 1,44E-04 6,99E-04 

Mean measurements (noised) m=2,02E-04 m=2,81E-04 

Mean measurements (error 
free) 

m=1,97E-04 m=3,10E-04 
 

Std measurements (noised) s=3,44E-05 s=2,09E-04 

Std measurements (error free) s=3,09E-05 s=3,38E-04 

Student-t factor t=2.92 t=2.92 

formula p=m-(t*s) p=exp(m(ln met)-(t*s(ln met))) 

Characteristic value (noised) p=1,01E-04 p=2,91E-03 

Characteristic value (error 
free) 

p=1,07E-04 p=4,93E-03 

 

Table 12 - Numbers/calculation related to the example strength realisation in Figure 54. 

 Hc (m) 

Measured strength (noised) 4,15 2,75 1,44 

Measured strength (error free) 3,89 3,25 1,26 

Minimum measured strength (noised) 1,44 

Minimum measured strength (error free) 1,26 

Reference strength 1,26 

Assessed strength (noised) 0,40 

Assessed strength (error free) 0,37 
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5. Representative variances 
Overview of literature mentioning statistical parameters to represent distributions of soil properties 

d70 and k: 
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6. Model output 
Because a random data generation script is used, it is important to analyse a sufficient amount of data 

sets to obtain stable results. In this section the model performance of 20.000 random data sets, each 

as a set of 1001 values, is analysed.  

Mean and variance 

Measuring over the complete data field of 2002000 data points, the d70 field has a mean and variance 

equal to the input values: randomness is averaged out. The mean and variance of the k field differs 

from the input. This is caused by the translation from standard normal distributed values to lognormal 

distributed values. In contradiction with the d70 field, the mean and variance of k are not completely 

stable after 20.000 realisations (randomness is not completely averaged out). The fluctuation range is 

limited to 0.1*10-4 m/s for both the mean and variance. With the calculation time significantly 

increasing using more data sets, this range is considered acceptable. 

Table 13 – Measured output values. Simulated field N=20000, standard input configuration – no measurement error. 

 d70 [m] k [m/s] 

𝝁𝑵 2.00*10-4 [1.41 – 1.46] *10-4 

𝝈𝑵 0.30*10-4 [1.45 – 1.52] *10-4 

𝝁(𝝈𝒏)𝑵 0.24*10-4 [0.55 – 0.59] *10-4 

 

Table 14 – Measured output values. Simulated field N=20000, standard input configuration + measurement error 

 d70 [m] k [m/s] 

𝝁𝑵 2.00*10-4 [1.55 – 1.59] *10-4 

𝝈𝑵 0.33*10-4 [1.88 – 1.95] *10-4 

𝝁(𝝈𝒏)𝑵 0.29*10-4 [0.99 – 1.03] *10-4 

 

Note: 𝜇𝑁 is the mean value of all data points, 𝜎𝑁 is the standard deviation of all data points, 𝜇(𝜎𝑛)𝑁 

standard deviation per data set averaged over all realisation. So the average standard deviation of a 

data set. 

d70 data 
In Figure 55 histograms of the simulated d70 field are presented. The left figure is a histogram of the 

complete field, comprising 20.000*1001 values. The middle and right figures are histograms at 

locations x=0 and x=1000, comprising both 20.000 values. 

   
Figure 55 – Histograms of 20.000 d70 realizations. Simulated realisations according to standard input configuration 

These figures show that the d70 realizations are normally distributed as was planned in the model set-

up. It also shows that the values at the boundaries of the model are normally distributed and that no 

negative d70 values appear. 



86 
 

Figure 56 and Figure 57 present a typical example of the average mean and variance of d70 values over 

all realizations for each location. Because this mean and variance have a very small deviation range 

along the domain it is concluded the model is not affected by location. This represents a theoretical 

equal probability of a value to occur for each location within the domain. 

  
Figure 56 – Mean of d70 over 20.000 realizations for each 

location in the domain. Simulated field: standard 
configuration. 

Figure 57 – Standard deviation of d70 over 20.000 
realizations for each location in the domain. Simulated 

field: standard configuration. 

k data 
In Figure 58 histograms of the simulated k field are presented. The left figure is a histogram of the 

complete field, comprising 20.000*1001 k values. The middle and right figures are histograms at 

locations x=0 and x=1000, comprising both 20.000 values. 

   
Figure 58 – Histograms of 20.000 k realizations of 1001 vales. Simulated field: standard configuration. 

These figures show that the k realizations are log normally distributed as was planned in the model 

set-up. And that this is the case at the boundaries of the model as well. It shows that negative do 

indeed not occur.  

Figure 59 and Figure 60 present a typical example of the mean and variance of d70 values over all 

realizations for each location. Because this mean and variance have a very small deviation range along 

the domain it is concluded the model is not affected by location. This represents a theoretical equal 

probability of a value to occur for each location within the domain. 



87 
 

  
Figure 59 – Mean of k over 20.000 realizations for each 

location in the domain. Simulated field: standard 
configuration. 

Figure 60 – Standard deviation of k over 20.000 
realizations for each location in the domain. Simulated 

field: standard configuration. 

Correlation structure 

Correlation is measured using the Method of Moments. To check for the overall average correlation of 

all realizations the unbiased correlation is calculated using the average mean and variance of the 

complete data set (i.e. average values over all realisations).  

Estimator of the correlation coefficient using Methods of Moments is described by: 

𝜌𝑧(𝛿) =
1

(𝑛 − 𝛿)𝑠2
∑(𝑧(𝑥𝑖) − 𝜇𝑧)(𝑧(𝑥𝑖+𝛿) − 𝜇𝑧)

𝑛−𝛿

𝑖=1

 

In which (𝑛 − 𝛿) are the number of data pairs that have separation distance 𝛿 (‘lag’), 𝜇𝑧 is the mean 

of the set and 𝑠2 equals the sample variance. 

Using this formula, the measured correlation is compared with the correlogram (autocorrelation 

function) that was used as input for the correlation matrix. The results are presented in Figure 15 and 

Figure 16. 

  
Figure 61 – Correlation structure of d70 realizations. 
Simulated field: N=20000, standard configuration. 

Figure 62 – Correlation structure of k realizations. 
Simulated field: N=20000, standard configuration. 

 
Influence of model boundaries 
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The ratio correlation length/section length (from now on referred to as 𝛿0/𝑥′) influences the model 

output. If the correlation length is not much smaller than the model length, the measured variance 

within a realisation is affected. 

First, because of correlation the highest or lowest value of a realization is mostly found at the 

boundaries of the domain. This is independent on how the domain is chosen. If for example a domain 

of 1000 meter is randomly selected from a much larger domain, still de maximum/minimum values of 

the smaller domain within the larger domain are most of the cases at the boundaries. 

   
Figure 63 – Histogram of locations of 

observed d70 minima over all 
realizations. Simulated field: 

N=20000, standard configuration. 

Figure 64 – Histogram of locations of 
observed k maxima over all 
realizations. Simulated field: 

N=20000, standard configuration. 

Figure 65 – Histogram of test run. 
Simulated field: N=20000, 𝝁=0, 𝝈=1, 

𝜹𝟎=5 and 𝒙′=3000 

A test run, see Figure 65, shows that when the ratio 
𝛿0

𝑥′ → 0 the minima/maxima of realizations are 

uniformly distributed along the domain. 

The variance, represented with the standard deviation, can be measured in 2 ways. First as the 

deviation of values from the ‘global average’ and second as the deviation of values from the ‘local 

average’. The global average is defined as the mean of the entire set including 1001 values multiplied 

with 20.000 realizations. However, each realization has also an own mean which is defined as local 

mean.  

Within one realizations the mean differs from the average mean over all realizations. Considering the 

mean of one realizations the local variance is the standard deviation from one realization. This 

standard deviation can be averaged with all other local variances. Within one realization the variance 

is affected by correlation. Because a realization has a limited number of values and the values within 

the domain correlate with each other, there is not sufficient ‘fluctuation space’ to reach the underlying 

mean and variance. Complete variance can only occur if the ratio c𝛿0/𝑥′ goes to zero. Therefore the 

local variance in a correlated realization is always smaller than the global variance. Measuring the 

variance over all realization can be seen as measuring the variance of 1 correlated series with ‘infinite’ 

length (all individual lengths are added up). Then, although the correlation is present, the ratio 

correlation length/domain length goes to zero and the measured variance equals the underlying 

variance. 
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7. Example realisation 
The combination of a d70 and k realisation result (by applying the model of Sellmeijer) in one strength 

realisation. The combination of actual representative parameter values results in the reference 

strength: the minimal strength of a realisation. The actual representative values are the parameter 

values at the weakest location, i.e. the location where the reference strength is determined. The 

combination of calculated characteristic values results in an assessed strength, assumed constant for 

one dike section. 

+ 

= 
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8. Strength distributions 
In Table 15 an overview of some main strength parameters is provided. From 20.000 runs the average 

the reference strength and several assessed strengths are calculated. On average (over all 

measurement configurations) the reference strength is underestimated by 0.5 meter in the standard 

configuration and 0.8 meter in de standard configuration with measurement error.  

Table 15 – Main strength parameters calculated of a simulation with standard input 

Property Explanation measurement 
error neglected 

with measurement 
error 

𝝁𝑯𝒄 
𝝁𝒊𝒄

 
Field mean of all Hc values consisting out 
of 20.000 runs of each 1001 values 

𝐻𝑐 = 3.4 𝑚 
𝑖𝑐 = 0.113 

𝐻𝑐 = 3.4 𝑚 
𝑖𝑐 = 0.113 

𝝁𝒓𝒆𝒇 Mean of 20.000 reference strengths 𝐻𝑐 = 2.3 𝑚 
𝑖𝑐 = 0.077 

𝐻𝑐 = 2.3 𝑚 
𝑖𝑐 = 0.077 

                                                                                                                                                          𝝁𝒑𝒓𝒆 Mean of 20.000 assessed strengths per 
measurement interval 

  

500 meter 𝐻𝑐 = 1.0 𝑚 
𝑖𝑐 = 0.033 

𝐻𝑐 = 0.8 𝑚 
𝑖𝑐 = 0.027 

250 meter 𝐻𝑐 = 1.4 𝑚 
𝑖𝑐 = 0.047 

𝐻𝑐 = 1.2 𝑚 
𝑖𝑐 = 0.040 

100 meter 𝐻𝑐 = 1.7 𝑚 
𝑖𝑐 = 0.057 

𝐻𝑐 = 1.4 𝑚 
𝑖𝑐 = 0.047 

50 meter 𝐻𝑐 = 1.9 𝑚 
𝑖𝑐 = 0.063 

𝐻𝑐 = 1.5 𝑚 
𝑖𝑐 = 0.050 

1 meter 𝐻𝑐 = 2.0 𝑚 
𝑖𝑐 = 0.067 

𝐻𝑐 = 1.6 𝑚 
𝑖𝑐 = 0.053 

𝑯𝒄(𝝁𝒐𝒖𝒕𝒑𝒖𝒕) 

𝒊𝒄(𝝁𝒐𝒖𝒕𝒑𝒖𝒕) 

Hc as calculated with the output mean of 
d70 (=2.0e-4), k(=1.4e-4) and D(=15) 

𝐻𝑐 = 2.9 𝑚 
𝑖𝑐 = 0.097 

𝐻𝑐 = 2.9 𝑚 
𝑖𝑐 = 0.097 

 

To provide more insight in the influence of measurement intervals, probability density functions 

(histograms) of the reference strength and assessed strengths related to 5 measurement intervals are 

made. The results are presented in Figure 66 for standard input. 

The figures show that the total of runs provide a range of reference strengths and assessed strengths. 

With decreasing measurement intervals, the probability density functions shift towards the reference 

strength. But the difference between a measurement interval of 50 meter or 1 meter is limited. 

Furthermore, the difference between reference strengths and assessed strengths, even if the 

measurement interval is 1 meter, stays significant. This result is even more obvious if measurement 

error is simulated as well (Figure 66). In the case with measurement error the distributions of 

assessments are even further off from the distributions of the reference strengths. 
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Figure 66 – Result of Monte Carlo analysis: overview of density distribution of the reference strength and assessed strengths 
as result of five different measurement configurations. Simulation based on standard input configuration. 

Where Figure 66 gives an overview of the reference strengths and assessed strengths individually, 

Figure 67 provide probability density distributions of the difference between reference and assessed 

strengths (as calculated for each run apart). Those figures show clearly the effect of measurements on 

the accuracy of assessments. 

 

Figure 67 – Result of Monte Carlo analysis: overview of density distributions of the difference between reference strength and 
assessed strengths as result of six different measurement configurations. Simulation based on standard input configuration 
with measurement error. 
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9. Specified vs random measurement locations 
In the standard case the analysis is made with fixed distances between the measurements. These 

distances are varying from 500 meters (3 measurements in case of a 1000-meter section length) to 1 

meter (1000 measurements in case of a 1000-meter section length). 

Next to equal measurement locations and density configurations for each realization, it is possible to 

analyse the case where measurements are taken randomly along the domain. In Figure 68 (standard 

configuration) and Figure 69 (standard configuration with measurement error) the result of this 

analysis is plotted. To make a comparison possible the case of specified measurement locations 

(standard case) is plotted as well in the same figure (black is standard case, red is deviating case).  

With the numbers of measurements increasing the cases merge. This is because also in the approach 

of random measurements, eventually all locations are measured (locations can only me measured 

once in this set up). Only for low number, the randomness appears in increased bandwidths. This is 

caused by an increase in the number of runs where the strength is overestimated.  

In the case with measurement error this effect is less. That is explained by the random character that 

measurement error already implies.  

 

Figure 68  – Comparison between an approach in which fixed and equal measurement intervals are used and an approach in 
which measurement locations are random. Realisations based on standard input configuration, no measurement error 
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Figure 69  – Comparison between an approach in which fixed and equal measurement intervals are used and an approach in 
which measurement locations are random. Realisations based on standard input configuration with measurement error 

The effect that specified measurement locations and intervals result in smaller error bandwidths for 

small measurement densities is explained by correlation in the d70 and k data. Due to correlation in a 

relatively small domain, extreme values within a set are often found at the boundaries of the domain. 

Therefore, a relatively large measurement interval results in a high measured variance and 

conservative assessment. While with random measurement locations it is possible that measurement 

result in in very small range of values: measured values can be accidently almost the same. This is 

especially the case if measurement locations are close to each other in a correlated soil. The variance 

of that measurement set is then very small, possibly resulting in a relatively unsafe assessment. 
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10. Boundary effect 
In case all values of a data set (realisation) are known, the calculated mean and variance are the actual 

mean and variance of that set. Using a data set that has a perfect normal density function, the 

characteristic value calculation would give the actual 95% boundaries.  

Considering the d70 data sets it is expected these are indeed normally distributed because a normal 

distributed data generator is used. But because of correlation and a random generator in combination 

with limited domain length it is possible that the distribution is deviating from the distribution of input 

values. The exact underlying input properties are not reached at smaller domains because of boundary 

influence. In Figure 70 an example realisation is presented. The data is correlated and standard 

normally distributed. In the figure the average of the complete set (5000 values) and averages of 

subsets (of 1000 values) are pictured. It is noticed that even if the correlation length/domain length is 

relatively small (
𝛿0

𝑥′ ≪ 1), the output mean is not necessarily equal to the input mean. This deviation is 

for local averages sometimes even higher.  

 

Figure 70 – Difference between global and local averages. Used input configuration: 𝜇 = 0, 𝜎 = 1, 𝛿0 = 50 

With respect to characteristic value calculation, next to the mean also the variance of the data is of 

importance. Of special interest here is the way peaks in the data set contribute to the calculated 

variance of a data set. In a data set with limited length (compared to the correlation length), it is 

possible that the observed minimum and maximum are not evenly far off from the mean. This is 

illustrated for the fourth subsection in Figure 70. This means that calculated variance might not be a 

good representation of a local peak, either the maximum or the minimum. 

In case of d70 data, a high maximum increases the variance of the total set and therefore will decrease 

the characteristic 95% lower boundary. If the minimum value is then less far off from the average than 

the maximum, the result is an overestimation of the minimum present d70 value. The opposite may 

also occur if the variance is too little to account for local minima. This results in underestimation of the 

actual present d70 value. Both cases are illustrated in Figure 71 with an example realization and 

characteristic value calculation where influence of measurement error is ignored for the moment.  
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Figure 71 - 2 example realizations of d70 to show cases of under- and overestimation. In both examples the same calculation 
procedure is followed.. Realisations based on standard input configuration, no measurement error. 

Permeability data sets show relative high variances. TAW (1999) and Deltares (2002) advise to consider 

high variable data to be lognormal distributed. In this study the k values are in fact lognormal 

distributed and show relatively high variances. Instead of the mean and variance of the sample values, 

the mean and variance of the natural logarithmic of the sample values are used. In this approach 

boundary effect are also present when data is correlated. Analogous to the analysis of d70, two cases 

in which k is overestimated/underestimated are presented in Figure 72. 

  
Figure 72 – 2 example realizations of k to show cases of under- and overestimation. In both examples the same 

calculation procedure is followed. Realisations based on standard input configuration, measurement error is neglected. 

 

To show what characteristic value calculations actually do, an example realization of an uncorrelated 

d70 data set is presented in Figure 73. About 5% of the values exceed the 95% upper boundary and 5% 

of the values drop below the 95% lower boundary. This means that in uncorrelated data many peaks 

along the domain are present, while in correlated data the number of peaks is smaller. Uncorrelated 

soil parameters result in more possible weak spots within the domain beyond the 95% boundary that 

is assumed to be the conservative boundary. 
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Figure 73 – Example realization of uncorrelated d70 data set (right) and uncorrelated k data set (left) 
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11. Safety level 
Safety factor 
In the detailed assessment the critical strength is corrected with a partial safety factor: 

 Safety criterion follows: ∆𝐻 ∗ 𝐹𝑠 ≤ 𝐻𝑐     , [1.2 ≤ 𝐹𝑆 ≤ 1.6]. This means that the situation is safe if 

the load is smaller than the calculated resistance divided by the safety factor. In the analysis this 

is represented by dividing the assessed strengths by the safety factor before those are subtracted 

from the reference strengths. 

 Average difference and confidence interval shifts upwards. Unsafe assessments, for as far as they 

were present, are banned out. 

 Simulations with safety factors of 1, 1.2 and 1.6 are presented in Figure 74 for the standard input 

configuration. 

 

Figure 74 – influence of safety factors on average difference between and 95% confidence interval of reference and assessed 
strength. Simulation with standard input configuration and measurement error. 

Xx% characteristic upper/lower boundary 
In Figure 75 is illustrated what the effect of a certain characteristic boundary is. In the assessment 

usually a 95% lower boundary is used to estimate the characteristic value of d70. This is compared 

with the bandwidth of errors when a 99% lower boundary is used.  

Figure 75 presents the bandwidths of errors for which standard input is used to generate data sets. 

Figure 81 presents the results in case d70 is uncorrelated. 
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Figure 75 – influence of characteristic lower/upper boundaries: comparison between characteristic 95% lower d70 boundary 
and characteristic 99% lower d70 boundary. Simulation: only variations in d70, standard input, measurement error neglected.

 

Figure 76 – influence of characteristic lower/upper boundaries: comparison between characteristic 95% lower d70 boundary 
and characteristic 99% lower d70 boundary. Simulation: only variations in d70, uncorrelated, measurement error neglected. 
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12. Influence of seepage length 
The error is defined as the difference between reference and assessed strength relative to the seepage 

length. Therefore, the bandwidth of errors is hardly influenced by the chosen seepage length (Figure 

77). But in terms of critical water level, the bandwidth of errors is much more influenced. Soil and 

measurement conditions that result in an error, result in an increased error if the seepage length is 

increased (Figure 78). This is because a higher actual strength allows for higher absolute deviations, 

 

 

Figure 77 – influence of seepage length L to the bandwidth of errors 

 

Figure 78 – influence of seepage length to the absolute deviation of reference and assessed strength in terms of critical 
water level (m). 
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13. Influence of dike section length 
The bandwidth of errors shifts downwards in the error domain if the section length is increased. This 

is explained by the length effect. The length effect states that a probability of an unfavourable 

combination of soil properties increases if more fluctuation are present. The number of possible 

fluctuations is given by the correlation length and domain length. When the domain length is increases, 

the probability of overestimation increases. Unfavourable combinations are more likely to be present 

and are undetected in the assessments. 

 

Figure 79 – Influence of section length if d70 (180m) and k (600m) are strongly correlated. 

 

 

Figure 80 – Influence of section length if d70 (1m) and k (30m) are hardly correlated. Cases in which a safety factor of 1 
respectively 3 is applied to the assessed strengths before compared with the reference strength. 
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14. Influence of measurement error 
In Figure 81 the result of the sensitivity analysis towards 𝜙 is presented. Four subfigures are presented. 

In 3 subfigures the sensitivity of the model outcome to variations in phi related to only respectively 

d70, k or D data. For example, in case of the sensitivity to measurement error in d70 data, the 

magnitude of measurement error of d70 data is varied while the error in k and D data is set zero. In 

the lower right subfigure, the result is presented of an analysis in which measurement error of all three 

parameters is varying combined.  

  

  

Figure 81 – Overview of model sensitivity with respect to 𝝓: representing the magnitude of measurement error as 
fraction of the spatial variability. 
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15. Influence of correlation length 
Varying d70 correlation length 
First the sensitivity of the model outcome to the correlation length used to simulate d70 data is 

evaluated. The correlation lengths of k is kept constant (standard input) 

The sensitivity is tested for 5%, 10%, 15%, 20%, 25%, 50%, 75%, 100%, 125% and 150% of the 

correlation length of d70 in the standard configuration: 

Measurement error neglected 

The result of the analysis for the simulations without noise, so no measurement error, is presented in 

Figure 82. The measured output statistics are presented in Table 16. 

Table 16 – Measured d70 output with respect to varying d70 correlation length input. Simulation based on standard input 
configuration, measurement error neglected. 

d70 correlation 𝟓% 10% 15% 20% 25% 𝟓𝟎% 75% 100% 125% 150% 

𝜹𝟎,𝒊𝒏𝒑𝒖𝒕 [m] 9 18 27 36 45 90 135 180 225 270 

𝝁𝑵 [𝟏𝟎−𝟒 𝒎]  2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00E 

𝝈𝑵 [𝟏𝟎−𝟓 𝒎]  3,00 2,99 3,00 3,00 3,00 2,99 3,01 3,01 3,0 3,00 

𝝁(𝝈𝒏)𝑵 [𝟏𝟎−𝟓 𝒎] 2,97 2,93 2,91 2,88 2,84 2,68 2,54 2,39 2,26 2,14 
 

  

Figure 82 – Sensitivity of model to correlation in d70 data. Standard input configuration, no measurement error,  
𝜹𝟎(𝒅𝟕𝟎) is varying between 5% and 150% of the standard input value (180m). 

The green line in the left plot is equal to the base case as the correlation length for that simulation is 

equal to 100% of the standard configuration. It can be noticed that the shape and magnitude of the 

95% confidence interval is hardly changing with varying correlation scales. However, the bandwidth 

shifts downwards meaning in more runs strength is overestimated instead of underestimated. For a 

correlation length of for example 9 meter, the average difference (reference-assessment) is even 

negative for high measurement densities. 

Measurement error considered 

The result of the analysis for the simulations with noise, so with measurement error, is presented in 

Figure 84. The measured output statistics are presented in Table 17. 

Table 17 – Measured d70 output with respect to varying d70 correlation length input. Simulation based on standard input 
configuration and measurement error. 
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d70 correlation 𝟓% 10% 15% 20% 25% 𝟓𝟎% 75% 100% 125% 150% 

𝜹𝟎,𝒊𝒏𝒑𝒖𝒕 [m] 9 18 27 36 45 90 135 180 225 270 

𝝁𝑵 [𝟏𝟎−𝟒 𝒎]  2,00 2,00 2,00 2,00 2,00 2,00E 2,00 2,00 2,00 2,00 

𝝈𝑵 [𝟏𝟎−𝟓 𝒎]  3,00 3,00 3,00 3,00 3,00 3,35 3,35 3,36 3,35 3,36 

𝝁(𝝈𝒏)𝑵 [𝟏𝟎−𝟓 𝒎] 3,32 3,30 3,27 3,24 3,21 3,09 2,97 2,86 2,76 2,66 

 

  

Figure 83 – Sensitivity of model to correlation in d70 data. Standard input configuration with measurement error,  
𝜹𝟎(𝒅𝟕𝟎) is varying between 5% and 150% of the standard input value (180m). 

For the simulation with noise data mainly the same effects are observed. The simulation with noise 

results in less overestimation.  

Varying k correlation length 
Secondly the sensitivity of the model outcome to the correlation length used to simulate k data is 

evaluated. The correlation lengths of d70 is kept constant (standard input). 

The sensitivity is tested for 5%, 10%, 15%, 20%, 25%, 50%, 75%, 100%, 125% and 150% of the 

correlation length ok k in the standard configuration. 

Measurement error neglected 

The result of the analysis for the simulations without noise, so no measurement error, is presented in 

Figure 85. The measured output statistics are presented in Table 18. 

Table 18 – Measured k output with respect to varying k correlation length input. Simulation based on standard input 
configuration. 

k correlation 𝟓% 10% 15% 20% 25% 𝟓𝟎% 75% 100% 125% 150% 

𝜹𝟎,𝒊𝒏𝒑𝒖𝒕 [m] 30 60 90 120 150 300 450 600 750 900 

𝝁𝑵 [𝟏𝟎−𝟒 𝒎/𝒔]  1,43 1,43 1,43 1,44 1,44 1,43 1,44 1,43 1,43 1,45 

𝝈𝑵 [𝟏𝟎−𝟒 𝒎/𝒔]  1,48 1,47 1,48 1,47 1,48 1,48 1,46 1,46 1,48 1,47 

𝝁(𝝈𝒏)𝑵 [𝟏𝟎−𝟒 𝒎
/𝒔] 

1,33 1,24 1,17 1,10 1,05 0,84 0,68 0,56 0,48 0,42 
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Figure 84 – Sensitivity of model to correlation in k data. Standard input configuration, no measurement error,  𝜹𝟎(𝒌) is 
varying between 5% and 150% of the standard input value (600m). 

The same trend is visible as for d70. Small correlation lengths shift the bandwidth downwards to more 

overestimation and less underestimation of strength. It can furthermore be noticed that the model is 

less sensitive to changes in case of high correlation lengths (right plot) than to changes in case of small 

correlation lengths (left plot). 

Measurement error considered 

The result of the analysis for the simulations with noise, so with measurement error, is presented in 

Figure 86. The measured output statistics are presented in Table 19. 

Table 19  – Measured k output with respect to varying k correlation length input. Simulation based on standard input 
configuration and measurement error. 

k correlation 
-with noise 

𝟓% 10% 15% 20% 25% 𝟓𝟎% 75% 100% 125% 150% 

𝜹𝟎,𝒊𝒏𝒑𝒖𝒕 [m] 30 60 90 120 150 300 450 600 750 900 

𝝁𝑵 [𝟏𝟎−𝟒 𝒎/𝒔]  1,57 1,57 1,57 1,56 1,56 1,57 1,58 1,57 1,57 1,59 

𝝈𝑵 [𝟏𝟎−𝟒 𝒎/𝒔]  1,89 1,90 1,89 1,89 1,89 1,88 1,93 1,89 1,92 1,91 

𝝁(𝝈𝒏)𝑵 [𝟏𝟎−𝟒 𝒎
/𝒔]  

1,74 1,64 1,57 1,49 1,44 1,23E 1,1 1,00 0,94 0,89 
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Figure 85 – Sensitivity of model to correlation in k data. Standard input configuration with measurement error,  𝜹𝟎(𝒌) is 
varying between 5% and 150% of the standard input value (600m). 

For the simulation with noise data the same effects are observed. As is the case for the standard 

configuration, the simulation with noise results in less negative differences. For small correlation 

lengths this effect is less striking than for d70 data. 

Combining variation of d70 and k correlation lengths 
Finally, the sensitivity of the model outcome to simultaneously changing correlation lengths is 

evaluated. The sensitivity is tested for 5%, 10%, 15%, 20%, 25%, 50%, 75%, 100%, 125% and 150% of 

the correlation lengths in the standard configuration. 

Measurement error neglected 

The result of the analysis for the simulations without noise is presented in Figure 86. The y-axis is 

shifted downwards 0.02 to be able to capture the negative differences better in the plot. 

  

Figure 86 – Sensitivity of model to correlation lengths. Standard configuration, no measurement error,  𝜹𝟎(𝒅𝟕𝟎), 𝜹𝟎(𝒌) 
are varying between 5% and 150% of the standard input values (d70=180, k=600). 

Measurement error considered 
The result of the analysis for the simulations with noise is presented in Figure 87.  

  

Figure 87 – Sensitivity of model to correlation lengths. Standard configuration with measurement error,  𝜹𝟎(𝒅𝟕𝟎), 𝜹𝟎(𝒌) 
are varying between 5% and 150% of the standard input values (d70=180, k=600). 



106 
 

Also in the combined analysis more or less equal effects as in the previous figures can be observed. 

The model outcome is less sensitive close to the standard configuration than for correlation lengths 

much smaller than the standard configuration. Furthermore, it should be noticed that the magnitude 

of the 95% confidence interval becomes slightly smaller with decreasing correlation lengths. This 

mostly account for smaller measurement intervals. Associated with this is the shape of the lower 95% 

boundary. For small correlation lengths the advantage of extra measurements (smaller measurement 

intervals) is present for all measurement strategies. While for high correlation lengths extra 

measurements result in equal or even decreased precision (see low measurement intervals at the right 

plot of Figure 86 for example). 
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16. Influence of data distributions (range) 
The sensitivity is tested for 50%, 75%, 100%, 125% and 150% of the standard deviation in the 

standard configuration. Mention that the magnitude of measurement error increases along with 

increasing parameter variance. This is because the value of noise input variance is 0.5 of the data 

variance input value. 

Input mean of d70 
 
Table 20 – Measured d70 output with respect to varying d70 mean parameter input. Simulations based on standard input 
configuration and standard configuration with measurement error. 

d70 mean No noise Noised (𝝓𝒊𝒏𝒑𝒖𝒕 = 𝟎. 𝟓 ∗ 𝝈𝒊𝒏𝒑𝒖𝒕) 

 50% 75% 100% 125% 150% 50% 75% 100% 125% 150% 

𝝁𝒊𝒏𝒑𝒖𝒕,𝒅𝟕𝟎 [𝟏𝟎−𝟒 𝒎]  1,00 1,50 2,00 2,50 3,00 1,00 1,50 2,00 2,50 3,00 

𝝁𝑵 [𝟏𝟎−𝟒 𝒎]  1,02 1,50 2,00 2,50 3,00 1,02 1,50 2,00 2,50 3,00 

𝝈𝑵 [𝟏𝟎−𝟓 𝒎]  2,71 2,97 3,00 2,99 3,01 3,01 3,33 3,35 3,36 3,36 

𝝁(𝝈𝒏)𝑵 [𝟏𝟎−𝟓 𝒎] 2,18 2,38 2,39 2,39 2,40 2,57 2,85 2,86 2,86 2,87 

 

  
Figure 88 - Sensitivity of model to mean of d70 data. 
Standard input configuration, measurement error 
neglected,  𝜇(𝑑70) is varying between 50% and 150% of the 
standard input value (2e-4). 

Figure 89 - Sensitivity of model to variance in d70 data. 
Standard input configuration with measurement error,  
𝜇 (𝑑70) is varying between 50% and 150% of the standard 
input value (2e-5). 

 

Input variance of d70 
 
Table 21 – Measured d70 output with respect to varying d70 variance parameter input. Simulations based on standard input 
configuration and standard configuration with measurement error. 

d70 variance No noise Noised (𝝓𝒊𝒏𝒑𝒖𝒕 = 𝟎. 𝟓 ∗ 𝝈𝒊𝒏𝒑𝒖𝒕) 

 50% 75% 100% 125% 150% 50% 75% 100% 125% 150% 

𝝈𝒊𝒏𝒑𝒖𝒕,𝒅𝟕𝟎 [𝟏𝟎−𝟓 𝒎]  1.50 2.25 3.00 3.75 4.50 1.50 2.25 3.00 3.75 4.50 

𝝓𝒊𝒏𝒑𝒖𝒕,𝒅𝟕𝟎 [𝟏𝟎−𝟓 𝒎] 0 0 0 0 0 0.75 1.13 1.50 1.88 2.25 

𝝁𝑵 [𝟏𝟎−𝟒 𝒎]  2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 2,00 

𝝈𝑵 [𝟏𝟎−𝟓 𝒎]  1,50 2,25 3,00 3,75 4,48 1,68 2,51 3,36 4,19 5,00 

𝝁(𝝈𝒏)𝑵 [𝟏𝟎−𝟓 𝒎] 1,20 1,80 2,40 2,99 3,57 1,44 2,15 2,86 3,57 4,26 

 



108 
 

  
Figure 90 - Sensitivity of model to variance in d70 data. 
Standard input configuration, measurement error 
neglected,  𝜎(𝑑70) is varying between 50% and 150% of the 
standard input value (3e-5). 

Figure 91 - Sensitivity of model to variance in d70 data. 
Standard input configuration with measurement error,  
𝜎(𝑑70) is varying between 50% and 150% of the standard 
input value (3e-5). 

 

Input variance of k (and mean correspondingly) 
 

Table 22 - Measured k output with respect to varying k variance parameter input. Simulations based on standard input 
configuration and standard configuration with measurement error. 

k variance No noise Noised (𝝓𝒊𝒏𝒑𝒖𝒕 = 𝟎. 𝟓 ∗ 𝝈𝒊𝒏𝒑𝒖𝒕) 

 50% 75% 100% 125% 150% 50% 75% 100% 125% 150% 

𝝈𝒊𝒏𝒑𝒖𝒕,𝒌 [𝟏𝟎−𝟒 𝒎]  0,43 0,64 0,85 1.07 1.28 0,43 0,64 0,85 1.07 1.28 

𝝓𝒊𝒏𝒑𝒖𝒕,𝒌 [𝟏𝟎−𝟒 𝒎] 0 0 0 0 0 0,22 0,32 0,43 0,54 0,64 

𝝁𝑵 [𝟏𝟎−𝟒 𝒎]  1,10 1,23 1,44 1,76 2,26 1,12 1,29 1,58 2,03 2,77 

𝝈𝑵 [𝟏𝟎−𝟒 𝒎]  0,49 0,88 1,51 2,56 4,33 0,56 1,06 1,94 3,58 6,80 

𝝁(𝝈𝒏)𝑵 [𝟏𝟎−𝟒 𝒎] 0,22 0,37 0,57 0,88 1,32 0,34 0,61 1,01 1,69 2,85 

𝝈𝑵/𝝁 0,45 0,72 1,05 1,45 1,92 0,50 0,82 1,23 1,76 2,45 

𝝁(𝝈𝒏)𝑵/𝝁 0,20 0,30 0,40 0,50 0,58 0,30 0,47 0,64 0,83 1,03 

 

  
Figure 92 - Sensitivity of model to variance in k data. 
Standard input configuration, no measurement error,  𝜎(𝑘) 
is varying between 50% and 150% of the standard input 
value (8.5e-5). 

Figure 93 - Sensitivity of model to variance in k data. 
Standard input configuration with measurement error,  
𝜎(𝑘) is varying between 50% and 150% of the standard 
input value (8.5e-5). 
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Input mean of k (and variance correspondingly) 
 

Table 23 - Measured k output with respect to varying k mean parameter input. Simulations based on standard input 
configuration and standard configuration with measurement error. 

k variance No noise Noised (𝛟𝐢𝐧𝐩𝐮𝐭 = 𝟎. 𝟓 ∗ 𝛔𝐢𝐧𝐩𝐮𝐭) 

 50% 75% 100% 125% 150% 50% 75% 100% 125% 150% 
𝝁𝒊𝒏𝒑𝒖𝒕,𝒌 [𝟏𝟎−𝟒 𝒎]  -0,42 -0,21 0 0,21 0,42 -0,42 -0,21 0 0,21 0,42 
𝝈𝒊𝒏𝒑𝒖𝒕,𝒌 [𝟏𝟎−𝟒 𝒎] 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 0,85 
𝝁𝑵,𝒌 [𝟏𝟎−𝟒 𝒎]  0,94 1,16 1,44 1,78 2,20 1,03 1,27 1,58 1,95 2,41 
𝝈𝑵,𝒌 [𝟏𝟎−𝟒 𝒎]  0,97 1,19 1,51 1,84 2,27 1,25 1,53 1,94 2,37 2,93 
𝝁(𝝈𝒏)𝑵,𝒌 [𝟏𝟎−𝟒 𝒎] 0,37 0,46 0,57 0,70 0,87 0,66 0,81 1,01 1,24 1,55 

 

  
Figure 94 - Sensitivity of model to mean in k data. Standard 
input configuration, no measurement error,  𝜎(𝑘) is varying 
between -0,42 and 0,42 of the standard input value (0). 

Figure 95 - Sensitivity of model to mean in k data. Standard 
input configuration with measurement error,  𝜎(𝑘) is 
varying between -0,42 and 0,42 of the standard input value 
(0). 

 

Combined: varying input variance of d70 and k 
The sensitivity is tested for 50%, 75%, 100%, 125% and 150% of the variance in the standard 

configuration. 

  
Figure 96 – Sensitivity of model to variance in data. Standard 
configuration, no measurement error,  𝜎(𝑑70), 𝜎(𝑘), 𝜎(𝐷) 
are varying between 50% and 150% of the standard input 
values (d70=3e-5, k=8.5e-5, D=2). 

Figure 97 – Sensitivity of model to variance in data. 
Standard configuration with measurement error,  
𝜎(𝑑70), 𝜎(𝑘), 𝜎(𝐷) are varying between 50% and 150% of 
the standard input values (d70=3e-5, k=8.5e-5, D=2). 
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17. Influence of 2D d70 modelling to distribution of reference and 

assessed strength 

 
Figure 98 – Influence of parallel effects: Only d70 varying, correlation length of 1m. 

 
Figure 99 – Influence of parallel effects: Only d70 varying, correlation length of 10m. 

 
Figure 100 – Influence of parallel effects: Only d70 varying, correlation length of 180m. 
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18. Influence of 2D modelling of d70 to the bandwidth of errors 

 
Figure 101 – Influence of parallel effects: Only d70 varying, correlation length of 1m. 

 

 
Figure 102 – Influence of parallel effects: Only d70 varying, correlation length of 10m. 

 

 
Figure 103 – Influence of parallel effects: Only d70 varying, correlation length of 180m. 
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19. Deviating measurement numbers for d70 and k. 
In the standard model set-up, the number of measurements is equal for d70, k and D in each 

measurement configuration. However, in practice it might be well possible that the number of 

measurements per parameter deviate. Furthermore, it is interesting to know whatever the influence 

of more measurements to individual parameters is. Therefore 19*19 measurement configurations are 

tested in which the number of d70 and k measurements deviate from each other. The result of this 

analysis is presented in Figure 104 and Figure 105 for respectively the standard input configuration 

and standard input configuration with measurement error. For convenience D is not considered here. 

As the influence of D already appeared minor this will hardly affect the results. 

For this analysis the magnitude of 95% confidence boundary is used as a measure of accuracy. From 

the figures it can be seen that only increasing either the number of d70 or k measurements without 

increasing the number of measurements of the other parameter has less or no effect. For example, 

using 3 d70 measurements and 20 k measurements results in the same accuracy as only 3 d70 and k 

measurements. In case of measurement error extra k measurements have some effect as possible 

errors are better averaged out. Vice versa the effect is more or less the same. An increasing number 

of d70 measurements has way more effect as the number of k measurements 5 or 6 instead of 3. 

Striking from this analysis is the inaccuracy that stays with higher number of measurements. For 

example, the accuracy that is reached with 21 d70 and 21 k measurements is, in terms of 95% 

confidence interval, more or less equal 10 d70 and 10 k measurements (for the case without 

measurements error even less measurements are needed to obtain the same accuracy). Investigation 

of higher measurements numbers reveals that the accuracy will not increase significantly. 

  
Figure 104 – effect of certain combination of d70 and k 
measurements on magnitude of 95% certainty interval. 

Simulated field: N=5000, standard configuration, no 
measurement error 

Figure 105 – effect of certain combination of d70 and k 
measurements on magnitude of 95% certainty interval. 
Simulated field: N=5000, standard configuration with 

measurement error 

 



113 
 

 

Figure 106 -  3D plot of mean error and 95% bandwidth of errors for deviating combinations of measurement numbers. 
Reference scenario, no error 

 

Figure 107 -  3D plot of mean error and 95% bandwidth of errors for deviating combinations of measurement numbers. 
Reference scenario, including measurement error 

 

 


