OPTIMAL TOLL DESIGN IN DYNAMIC TRAFFIC NETWORKS, USING A PATTERN SEARCH APPROXIMATION ALGORITHM

Ties Brands
Goudappel Coffeng BV
PO Box 161, 7400 AD Deventer, The Netherlands
Tel. +31 (0)6 45532616
Fax. +31 (0)570 666888
Email: t.brands@alumnus.utwente.nl

Eric C. van Berkum
University of Twente
Centre for Transport Studies
PO Box 217, 7500 AE Enschede, The Netherlands
Tel. +31 (0)53 4894886
Fax. +31 (0)53 4894040
Email: e.c.vanberkum@ctw.utwente.nl

Dirk H. van Amelsfort
Goudappel Coffeng BV
PO Box 161, 7400 AD Deventer, The Netherlands
Tel. +31 (0)570 666804
Fax. +31 (0)570 666888
dvamelsfort@goudappel.nl

Submission date: 13th of November, 2008

Word Count
4715 words
6 Tables * 250 = 1500
3 Figures * 250 = 750

Total words 6965
ABSTRACT

The design of an optimal road pricing scheme is not a trivial problem. Following the Dutch government’s kilometre charge plans, this paper focuses on the optimization of link based toll levels differentiated in space and time. The optimal toll level design problem is formulated as a bi-level mathematical program. In the upper level we minimize an objective function, e.g. the average travel time in the network, using a fixed number of price categories. At the lower level a dynamic traffic assignment model is used to determine the effects of differentiated road pricing schemes on the traffic system. Focus of the paper is on the upper-level where optimal toll levels are approximated. In the optimization procedure different variants of a pattern search algorithm are tested in a case study. Inspection of the solution space shows that many local minima exist, so the selection of the initial solution becomes important. In the case study however it appears that in all local minima the value of the objective function is almost the same, indicating the fact that many different toll schemes result in the same average travel time. The case study is also used to test the performance of the different variants of the pattern search algorithm. It appears that it is beneficial to change more variables at a time and to use a memory to remember where improvement of the objective function has been made.
INTRODUCTION

Within the world of traffic engineering, road pricing is considered as a measure that may alleviate several problems in the current transport system: congestion, environmental damage, use of unsustainable recourses, use of space, etc. Some successful practical cordon based applications of road pricing exist (for instance Singapore, London, Stockholm). The Dutch government plans to develop a link based, time, space, and vehicle type differentiated toll system. Thus the amount of toll a car driver has to pay depends a.o. on the number of kilometres driven, but also on the time of travel, the route chosen, and the vehicle. Main goal of this system is to achieve a fairer system where heavy users of the transport system pay more than occasional users, and where the toll-level follows demand: the higher demand, the higher the price. Further, with a toll system as proposed also other objectives may be met. Model studies have shown that as a result of toll measures problems concerning congestion, CO$_2$ and air quality can be alleviated. Now this paper addresses an important question: given a network and a demand, what is an optimal toll scheme to reach a certain policy objective.

This paper is structured as follows. Based on a concise review of the literature of optimizing road pricing with dynamic traffic assignment models, the problem is defined and formulated mathematically, using a limited solution space. A solution approach is then discussed, which results in a solution algorithm with different variants. The variants of the solution algorithm are tested in a case study with different initial solutions. We describe the setup of these tests and the results in succeeding sections. Finally, conclusions are presented, including possible future improvements of the framework.

Literature review

The problem of congestion pricing has been studied from different modelling perspectives and under various assumptions: marginal cost pricing / second best pricing, different policy objectives, static / dynamic, fixed / elastic demand, link-based / path-based / zone-based pricing. In this study we did not aim to carry out an extensive literature review on the history of road pricing research. Such a review is for example given in (1). We focussed on dynamic models and bi-level modelling approaches for optimizing road pricing measures.

In (2) a static elastic demand model with queues is given and a bi-level programming approach is used to select the first best tolling policy that replaces delays with an equivalent level of the tolls. (3) studied static second best pricing with perfect driver information and elastic demand.

Dynamic models with time varying network conditions and link tolls have been addressed. (4) compares the effect of various pricing policies (uniform, time-varying, and step tolls). (5) and (6) developed dynamic first best pricing models for general transportation networks, with the important drawback that application of the model is limited to destination specific tolling. In (1) and (7), the problem of optimal tolling is formulated as a bi-level mathematical program. Supply, i.e. the transport network is modelled as a directed weighted graph, where the weights are a combination of travel time and toll, which may differ in time. Demand is modelled as a given OD-matrix and is input to the problem. In the upper level the policy objective (e.g. minimization of congestion or total travel time) is formulated as objective function, which depends on the value of the design variables: the space and time differentiated toll levels. Some of the stakeholders’ demands (e.g. minimum and maximum price levels) are formulated as constraints. Travel times depend on the amount of traffic in the network. These are determined in the lower level, where some form of a dynamic user equilibrium is assumed. Thus in the upper level tolls are set to minimize for instance travel times, in the lower level the travel times are determined, given the tolls. In order to solve the problem, an optimization was carried out for a small hypothetical network and a straightforward pricing scheme (constant toll or two different tolls in two time periods, only at one tolling location). The search algorithm that was used is a straightforward exhaustive search algorithm, that can only be applied in very simple networks.

In this paper we follow this approach and we develop an optimization method that can be used for larger networks, and also allows for more space and time differentiation in toll schemes. Because
the computation times involved to evaluate the lower level, more intelligent search algorithms must be used. Furthermore, we consider distance based tolls instead of tolls per passage.

PROBLEM DEFINITION

As was mentioned in the introduction besides improving the fairness of the transport system another objective of the road authority for the introduction of tolls might be to improve system performance (for example to minimize average travel time). This is achieved by choosing optimal tolls within realistic constraints and subject to the traffic assignment. The road authority selects feasible values for tolls to optimize its own objective function, while network users face these tolls and adapt their route and departure time decisions to minimize their individual travel cost, resulting in changes in the dynamic flow pattern. In response, the road authority will adapt the tolls, and travellers will respond again.

We now consider an ordered set of predefined prices \(P = \{ p_1, ..., p_m \} \), where \(p_1 \geq p_2 < ... < p_m \), and \(p \) is in €/km. For each time window \(t \) a price \(\pi_{at} \in P \) is assigned to each link \(a \) in the network. The order of the price in set \(P \) is defined in the following function: \(o(\pi_{at}) = v \) if \(\pi_{at} = p_v \). An initial assignment is based on the level of service of the link, e.g. when the flow-capacity ratio is high, the price of the link will also be high. Additionally, the location of the link (rural versus urban) is important and in principle, every link could be assigned its own price. In this paper however we reduced the solution space because each model evaluation is time consuming. To achieve this, the links and time windows are categorised in groups which will have the same toll level, based on comparable level of service and location of the link. The initial assignment is based on the average level of service in the group. Starting from the initial solution, we try to improve the toll setting further. From a mathematical viewpoint, we chose to use a discrete solution space, because gradient based methods, like steepest descent or Powel’s method, require a lot of computation time, because no analytical gradient can be computed in this case. In every iteration a numerical gradient has to be computed and the line search sub problem has to be solved. For more information on these search techniques, see (8).

Notation

Sets and indices

\(a, b \in A \) Links
\(d \in D \) Nodes
\(i \in I \subseteq D \) Origins
\(j \in J \subseteq D \) Destinations
\(t, w \in T \) Time windows
\(p \in P \) Toll categories
\(r \in R_{ij} \) Routes between OD pair \(ij \)
\(g \in G \) Groups of links
\(h \in H \) Groups of time windows

Variables

\(k_t \) Length time window \(t \) (h)
\(l_a \) Length link \(a \) (km)
\(c_a \) Capacity link \(a \) (veh/h)
\(\mu_{ag} \) Index groups links: equals 1 if link \(a \) is in link group \(g \), and equals 0 otherwise (binary)

\(\theta_{wh} \) Index groups time periods: equals 1 if time window \(w \) is in time window group \(h \), and equals 0 otherwise (binary)

\(u_{at} \) Average inflow on link \(a \) during time period \(t \) (veh/h)

\(\tau_{at} \) Average travel time on link \(a \) during time period \(t \) (h)

\(C_{at} \) Congestion indicator: equals 1 if \(\nu_{at} \leq 0.6s_a \) and equals 0 otherwise

\(s_a \) Free flow speed link \(a \) (km/h)

\(\nu_{at} \) Average speed on link \(a \) during time period \(t \) (km/h)

\(N \) Total number of travellers in the network

Decision variable

\(\pi_{at} \) The link price link \(a \) during time period (€/km)

Objective functions

Three different objective functions have been researched. Minimization of average travel time is used to test the optimization procedure. The total congestion and total revenue are also investigated. The objective functions are:

\[
\min_{\pi_{at}} \frac{\sum_{a} \sum_{t} (u_{at} \tau_{at})k_{i}}{N} \quad (1)
\]

\[
\min_{\pi_{at}} \sum_{a} \sum_{t} C_{at}l_{a}c_{a} \quad (2)
\]

\[
\max_{\pi_{at}} \sum_{a} \sum_{t} \sum_{p} u_{at} \pi_{at}k_{i}l_{a} \quad (3)
\]

Constraints

To reduce the solution space we use link groups and time window groups. All links are assigned to a unique group and within a group all links get the same price. The same holds for the time windows. This is enforced by the following constraints:

\[
p_{m} (1 - \sum_{g} \mu_{ag} \mu_{bg}) + \pi_{at} \geq \pi_{bt} \quad \forall \ a, b > a, t \quad (4)
\]

\[
-p_{m} (1 - \sum_{g} \mu_{ag} \mu_{bg}) + \pi_{at} \leq \pi_{bt} \quad \forall \ a, b > a, t
\]

\[
p_{m} (1 - \sum_{h} \theta_{wh} \theta_{wh}) + \pi_{at} \geq \pi_{aw} \quad \forall \ a, t, w > t \quad (5)
\]

\[
-p_{m} (1 - \sum_{h} \theta_{wh} \theta_{wh}) + \pi_{at} \leq \pi_{aw} \quad \forall \ a, t, w > t
\]

In this formulation the toll level is not free, but has to be chosen from a limited number of price categories:

\[
\pi_{at} \in P = \{ p_1, \ldots, p_m \} \quad (6)
\]

In the lower level it is determined how the travellers respond to the tolls that were set in the upper level. It is assumed that users of the system may alter their routes and departure times. This is modelled as a dynamic stochastic user equilibrium (DSUE), where users minimize their individual perceived generalized costs (a weighted sum of toll, travel time, and schedule delays). The use of perceived costs achieves a more realistic user equilibrium, because not every individual from a heterogeneous population experiences the same disutility for the same route (e.g. comfort, speed, nice views, etc.). This results in the constraint:
\[u_{at} \text{ satisfies DSUE } \forall \ a,t \] \hspace{1cm} (7)

Solution space

The mathematical formulation is such that the solution space is discretized in several ways. First in the upper level, the toll level is discretized by stating that the price is an element of \(P \), links are divided into link group from a set \(G \), and the time is divided into intervals in \(H \). Thus we are trying to find optimal values for matrix \(\Pi \), with elements \(\pi_{hg} \in P \). Thus the number of possible solutions for \(\Pi \) is \(|P|^{G\cdot H}\), which is huge (e.g. 5 price categories, 4 time windows, and 3 link groups yield \(2.4 \times 10^8\) possible solutions).

SOLUTION APPROACH

For the lower level DSUE we have used a macroscopic dynamic equilibrium model (INDY), see (9), (10). To INDY a departure time choice model was added as described in (11), see Figure 1. Input for the model are a network, an OD-matrix, a PAT-profile, a fixed route set, and a toll setting.

One run of the lower level model is time consuming and an exhaustive grid search of all possible solutions becomes already infeasible with a only a limited number of price categories, link groups and time windows. As an alternative, a local search algorithm is used, which is called pattern search (12). Such an algorithm starts with an initial solution, and considers whether neighbors of this solution give improvement or not. In our case a neighbor is defined as follows:

FIGURE 1 Computation of the effects of a toll setting. The procedure terminates when DSUE is reached.
Definition

Π^1 is called a (h,g)-neighbor of Π^2 if $\pi_{fe}^1 = \pi_{fe}^2$, $\forall (f,e) \neq (h,g)$ and $|o(\pi_{hg}^1) - o(\pi_{hg}^2)| = 1$ where $o(\pi_{hg}) = v$ if $\pi_{hg} = p_v$, as defined earlier.

Furthermore, Π^1 is the right (h,g)-neighbor of Π^2 if they are (h,g)-neighbors and $o(\pi_{hg}^1) - o(\pi_{hg}^2) = 1$ and the left (h,g)-neighbor if $o(\pi_{hg}^1) - o(\pi_{hg}^2) = -1$

When no neighbor gives an improvement anymore, the algorithm terminates. When the objective function is convex and continuous, this is the global minimum. However, in (1) was showed that the objective function can already be non convex in a simple three link network, so it is likely that the objective function is non convex in a general network. Moreover we here consider a discrete formulation of the problem. The optimal toll setting from the optimization algorithm will therefore likely be a local minimum. There exist search algorithms that are capable of escaping from a local minimum, like tabu search, simulated annealing and genetic algorithms, see for example (13). However, these algorithms use many function evaluations (model runs on the lower level) which is computational expensive so, we have chosen to concentrate on the pattern search algorithm.

Variants of pattern search

The design variables of this problem consist of the toll matrix Π. The basic pattern search algorithm in this research is given in Algorithm 1. The objective function value can be seen as a function of the toll setting $\pi: z(\pi)$.

Algorithm 1

n = iteration number, π^n = toll vector in iteration n, π^0 = initial toll vector, d = dummy variable

Initialise: n=1, $\pi^1 := \pi^0$

FOR h = 1 to |H|

FOR g = 1 to |G|

Now suppose (w.l.o.g.) $\pi_{hg}^n = p_v$

Define $d_{hg} := p_{v+1}$ (if the right (h,g)-neighbor of π^n exists)

IF $z(\pi_{11},...,d_{hg},...,\pi_{HG}^n) < z(\pi^n)$

THEN $\pi_{hg}^{n+1} := p_{v+1}$, $n := n + 1$

ELSE $d_{hg} := p_{v-1}$ (if the left (h,g)-neighbor of π^n exists)

IF $z(\pi_{11},...,d_{hg},...,\pi_{HG}^n) < z(\pi^n)$

THEN $\pi_{hg}^{n+1} := p_{v-1}$, $n := n + 1$

ELSE $\pi_{hg}^{n+1} := p_v$, $n := n + 1$

END

END

This loop is repeated until no improvement in $z(\pi)$ occurs anymore.

The way to select the next variable

When little is known about the shape of the objective function, it is hard to determine the best order in which to select variables. However, the order of the variables can have influence on the results and the speed of the search algorithm, because the order determines the route of the algorithm through the solution space. In Algorithm 1 this order is determined by the structure of the FOR loop. The order can
as well make the algorithm terminate in another local minimum. Another aspect of this topic is to use a single order or to use multiple orders when a new loop begins. These multiple orders can be predetermined, random, or use information of former iterations. In Table 1 an overview is given of the experiments on this topic in this research.

Table 1 Properties of the variants of pattern search tested in this research

<table>
<thead>
<tr>
<th>Pattern search</th>
<th>Way to select next variable</th>
<th>When improvement</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Like in algorithm 1</td>
<td>Idem as P1</td>
</tr>
<tr>
<td>P2</td>
<td>Change g and h in the FOR loops in algorithm 1</td>
<td>Idem as P1</td>
</tr>
<tr>
<td>P3</td>
<td>Change all variables within a group at the same time i.e. compute $z(\pi_{11}, d_{11}, d_{12}, \ldots, \pi_{HG})$ or compute $z(\pi_{11}, d_{1g}, d_{2g}, \ldots, \pi_{HG})$</td>
<td>Idem as P1</td>
</tr>
<tr>
<td>P4</td>
<td>Randomly select a π_{hg} from the set of variables without a label. When a variable gives no improvement, add a label to it.</td>
<td>Idem as P1</td>
</tr>
<tr>
<td>P5</td>
<td>Idem as P2.</td>
<td>WHILE $z(\pi_{11}, d_{hg}, \ldots, \pi_{HG}) < z(\pi^n)$, define $d_{hg} = p_{i+2}$ etc. or $d_{hg} = p_{i-2}$ etc.</td>
</tr>
<tr>
<td>P6</td>
<td>Idem as P1, but after the first execution of the FOR loop, skip variables which did not give improvement in the former FOR loop.</td>
<td>Save the new value of the variable, add variable to the improvement list, and select the next variable.</td>
</tr>
</tbody>
</table>

Former iterations are stored in each variant

When a solution gives improvement

What to do after improvement is an important question, because it can influence the direction in which the algorithm develops. One strategy is to stay with a variable when improvement is occurred with the argument that it is likely that more improvement is possible in this variable (P5, see Table 1). This strategy has the danger that it ignores other directions in which more improvement is possible. To prevent this phenomenon a strategy can be used in which after improvement in one variable, the new value is saved, but a next variable is selected (P1 to P4). Finally, in P6 the improved variables are stored in an improvement list. These variables are tried to improve further in the next iterations, until no further improvement is possible. Then, all variables are tried again to be improved, etc.

CASE STUDY

The modelling framework is applied to a case study, in order to gain information on the shape of the objective function and the behaviour of the variants of the search algorithm.

The test network based on the real network of the town of Delft in the western part of the Netherlands. It contains two main highways: the A13 and the A4. The rest of the network consists of urban roads (see Figure 2). The network further consists of 12 centroids, 137 links and 90 nodes.
The time period is an AM peak, from 7:00 AM to 9:00 AM. In order to include some warm-up and cool down time to fill and empty the network, the modelled time period is from 6:00 AM to 10:00 AM. Some fixed preferred arrival time profile is used, corresponding to this peak period. In the situation without tolls ($\Pi^{0.0}$ is a matrix filled with zero’s), the average travel time in the network is $z(\Pi^{0.0}) = 28.1\text{min}$. Most traffic travels along the A13: at 7.30AM queues start to form there in front of on- and off-ramps. Around 8PM smaller queues develop on the A4 and on the urban roads. So a clear distinction exists between busy highways (A13), quiet highways (A4), and other roads (town).

Now the sets H, G, and P are defined. In this test network it is chosen to create three link groups: $G = \{town, A13, A4\}$. The morning peak is divided in 4 time-intervals of each 30 minutes, so $H = \{7:00 - 7:30, 7:30 - 8:00, 8:00 - 8:30, 8:30 - 9:00\}$. The warm-up and cool-down period have no toll. This results in 12 variables to be optimized. Then five price categories ranging from €0.00 per km to €0.20 per km are defined, with a step size of €0.05, so $P = \{0.00, 0.05, 0.10, 0.15, 0.20\}$.

The initial solution

A carefully chosen, initial solution can strongly contribute to the fast achievement of a good solution. In Table 2 three different values for Π^0 are presented. Most analyses in this research have been executed with $\Pi^{0.1}$. This initial toll vector is based on the reference run, with busy roads getting a higher price. The other two initial solutions are chosen such that they differ significantly from $\Pi^{0.1}$. Note that the z value of $\Pi^{0.3}$ is higher than the situation without tolls. This means that tolls are set on wrong locations and times in a way that travellers are driven into congestion.
TABLE 2 Three initial toll solutions

<table>
<thead>
<tr>
<th>Time period</th>
<th>Toll level (€/km)</th>
<th>Toll level (€/km)</th>
<th>Toll level (€/km)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>town A13</td>
<td>A4</td>
<td>town A13</td>
</tr>
<tr>
<td>6:00-7:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7:00-7:30</td>
<td>0.20</td>
<td>0</td>
<td>0.20</td>
</tr>
<tr>
<td>7:30-8:00</td>
<td>0.15</td>
<td>0</td>
<td>0.15</td>
</tr>
<tr>
<td>8:00-8:30</td>
<td>0.05</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>9:00-10:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Initial solution 1: $\Pi^{0,1}$, $z(\Pi^{0,1}) = 25.25$ min
Initial solution 2: $\Pi^{0,2}$, $z(\Pi^{0,2}) = 27.83$ min
Initial solution 3: $\Pi^{0,3}$, $z(\Pi^{0,3}) = 31.95$ min

EXPERIMENTAL RESULTS

In this section the results of the numerical experiments are presented. First, all 6 variants of the pattern search algorithm are tested with initial solution $\Pi^{0,1}$. The three best variants are selected, and their behaviour using the other initial solutions is then tested. Finally the effect on two different objective functions is investigated.

TABLE 3 Results achieved with the different pattern search algorithms using initial solution $\Pi^{0,1}$

<table>
<thead>
<tr>
<th>Search algorithm</th>
<th>Π^*</th>
<th>$z(\Pi^*)$ (min)</th>
<th>Number of iterations to termination of algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>Π^*_5</td>
<td>23.11</td>
<td>80</td>
</tr>
<tr>
<td>P2</td>
<td>Π^*_4</td>
<td>23.07</td>
<td>95</td>
</tr>
<tr>
<td>P3</td>
<td>Π^*_7</td>
<td>23.34</td>
<td>38</td>
</tr>
<tr>
<td>P4-1</td>
<td>Π^*_2</td>
<td>22.90</td>
<td>74</td>
</tr>
<tr>
<td>P4-2</td>
<td>Π^*_10</td>
<td>24.22</td>
<td>22</td>
</tr>
<tr>
<td>P4-3</td>
<td>Π^*_10</td>
<td>24.22</td>
<td>37</td>
</tr>
<tr>
<td>P4-4</td>
<td>Π^*_10</td>
<td>24.22</td>
<td>51</td>
</tr>
<tr>
<td>P5</td>
<td>Π^*_10</td>
<td>24.22</td>
<td>42</td>
</tr>
<tr>
<td>P6</td>
<td>Π^*_3</td>
<td>22.90</td>
<td>65</td>
</tr>
</tbody>
</table>

Performance of the variants of pattern search

In Table 3 the results of all 6 variants of pattern search with $\Pi^{0,1}$ are presented. P4 has a random component, so it is executed 4 times with different random seeds (sub-variants P4-1 – P4-4). The number of iterations in the table corresponds to the number of toll settings that is evaluated in the lower level. So only a tiny part of the complete solution space of $2.4*10^8$ possible solutions is searched. In this section and in the next section 10 different local minima were found (Π^*_i to Π^*_i), so indeed the objective function is not convex. The best objective function value is an average travel time of 22.90 minutes, compared to $z(\Pi^{0,1}) = 25.25$ min. This value is achieved by two different search algorithms at two different local minima Π^*_2 and Π^*_3. Both computation time and objective function
value are used to assess the variants. The best result is achieved by P6: this variant only uses 65 iterations to find the best value. P4 also achieved this value in P4-1, but in P4-2 to P4-4 a much worse local minimum has been found, so overall this is not a good variant. P1 and P2 achieved a little worse objective function value, but used considerably more iterations to reach that value, so the performance is worse. P3 has a little worse objective function value again, but uses less iterations to reach this value. P5 does not achieve a good average travel time value in this case and it uses many iterations, so it is not a good variant. The development of the average travel time throughout iterations when executing the best three variant (P1, P3, and P6) is compared in Figure 3, which illustrates the performance differences of these algorithms.

FIGURE 3 The development of the average travel time value throughout iterations, using the pattern search algorithms P1, P3 and P6.

Different initial solutions
Since the objective function is not convex and because we use a local search algorithm like pattern search, the chance of ending up in a local minimum is high. The search algorithm variants are therefore tested with 2 other initial solutions. In Table 4 the results are presented and it can be concluded that all three variants perform quit good. In fact the impact of another initial solution on the end solution of the objective function is relatively small. Yet, this is also the result of the flat shape of the objective function since each combination of initial solution and variant of pattern search results in another end-solution but the values of the objective function are comparable. Thus, the objective function is such that many local minima (toll-settings) exist, that produce almost equal average travel times. The only difference is the number of iterations that is required. Obviously the worse the initial solution is the longer it takes to reach an optimum. Further it appears that variant P3 needs the least amount of iterations for all initial solutions.
TABLE 4 The effect of different initial solutions

<table>
<thead>
<tr>
<th>Search algorithm</th>
<th>Initial toll solution</th>
<th>Resulting toll setting</th>
<th>Objective function value (min)</th>
<th>Number of iterations to termination of algorithm</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>$\Pi_1^{0.1}$</td>
<td>Π_2^*</td>
<td>23.11</td>
<td>80</td>
</tr>
<tr>
<td>P1</td>
<td>$\Pi_1^{0.2}$</td>
<td>Π_3^*</td>
<td>23.46</td>
<td>125</td>
</tr>
<tr>
<td>P1</td>
<td>$\Pi_1^{0.3}$</td>
<td>Π_0^*</td>
<td>23.30</td>
<td>95</td>
</tr>
<tr>
<td>P3</td>
<td>$\Pi_1^{0.1}$</td>
<td>Π_3^*</td>
<td>23.34</td>
<td>38</td>
</tr>
<tr>
<td>P3</td>
<td>$\Pi_2^{0.2}$</td>
<td>Π_3^*</td>
<td>23.11</td>
<td>74</td>
</tr>
<tr>
<td>P3</td>
<td>$\Pi_1^{0.3}$</td>
<td>Π_0^*</td>
<td>23.68</td>
<td>91</td>
</tr>
<tr>
<td>P6</td>
<td>$\Pi_1^{0.1}$</td>
<td>Π_3^*</td>
<td>22.90</td>
<td>65</td>
</tr>
<tr>
<td>P6</td>
<td>$\Pi_1^{0.2}$</td>
<td>Π_3^*</td>
<td>22.72</td>
<td>139</td>
</tr>
<tr>
<td>P6</td>
<td>$\Pi_1^{0.3}$</td>
<td>Π_0^*</td>
<td>23.30</td>
<td>110</td>
</tr>
</tbody>
</table>

Differences between local minima

As mentioned earlier, 10 different local minima were found (Π_1^* to Π_{10}^*). In every resulting toll setting, a similar structure can be observed, which follows the peak in the traffic demand: the tolls start low, then increase, and finally decrease again. In each of these local minima, $\pi_{22} = 0.20$, so here it is clear that the toll should be on the maximum level. For the other variables different combinations occur, within the mentioned rough structure. Furthermore, in most local minima the toll values in link group ‘town’ are lower than in the other two link groups.

In order to illustrate these observations, Table 5 shows three examples of these local minima: the best found solution Π_1^*, a solution with relatively low toll values, Π_3^*, and a solution with a relatively bad average travel time value, Π_{10}^*, which quite differs from Π_1^* and is close to initial solution $\Pi^{0.1}$.

TABLE 5 Three local minima

<table>
<thead>
<tr>
<th>Time period</th>
<th>Π_1^*</th>
<th>Π_3^*</th>
<th>Π_{10}^*</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>$z(\Pi_1^*) = 22.72$ min</td>
<td>$z(\Pi_3^*) = 22.90$ min</td>
<td>$z(\Pi_{10}^*) = 24.22$ min</td>
</tr>
<tr>
<td>6:00-7:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7:00-7:30</td>
<td>0</td>
<td>0</td>
<td>0.05</td>
</tr>
<tr>
<td>7:30-8:00</td>
<td>0.15</td>
<td>0.20</td>
<td>0.15</td>
</tr>
<tr>
<td>8:00-8:30</td>
<td>0</td>
<td>0.20</td>
<td>0.20</td>
</tr>
<tr>
<td>8:30-9:00</td>
<td>0</td>
<td>0.10</td>
<td>0.15</td>
</tr>
<tr>
<td>9:00-10:00</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>

Effects on total revenue and total congestion

Until now all tests were performed where the objective function was the average travel time. Earlier other objective functions were defined, i.e. the total revenue and total congestion. In Table 6 for all local minima the values of the three objective functions are listed.
TABLE 6 The values of three different objective functions

<table>
<thead>
<tr>
<th>Π^*</th>
<th>Average travel time (min)</th>
<th>Total revenue (10^4 €)</th>
<th>Total congestion (10^6)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Π_1^*</td>
<td>22.72</td>
<td>2.6</td>
<td>2.9</td>
</tr>
<tr>
<td>Π_2^*</td>
<td>22.90</td>
<td>2.3</td>
<td>3.2</td>
</tr>
<tr>
<td>Π_3^*</td>
<td>22.90</td>
<td>2.2</td>
<td>2.9</td>
</tr>
<tr>
<td>Π_4^*</td>
<td>23.07</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>Π_5^*</td>
<td>23.11</td>
<td>2.3</td>
<td>2.9</td>
</tr>
<tr>
<td>Π_6^*</td>
<td>23.30</td>
<td>2.4</td>
<td>2.9</td>
</tr>
<tr>
<td>Π_7^*</td>
<td>23.33</td>
<td>2.3</td>
<td>2.8</td>
</tr>
<tr>
<td>Π_8^*</td>
<td>23.46</td>
<td>2.8</td>
<td>3.0</td>
</tr>
<tr>
<td>Π_9^*</td>
<td>23.68</td>
<td>2.1</td>
<td>3.2</td>
</tr>
<tr>
<td>Π_{10}^*</td>
<td>24.22</td>
<td>2.8</td>
<td>2.8</td>
</tr>
</tbody>
</table>

The total revenue of the different toll settings varies highly: the highest revenue is 35.5% higher than the lowest revenue, while the corresponding average travel time only differs 6.6%. The value of the total congestion is a dimensionless indicator for the level of congestion in the network, where longer links and links with a higher capacity are weighted higher, see equation (2). The total congestion level also varies differently than the average travel time. This is probably caused by the indicator formulation of the congestion objective function: a link is either congested or not, while the travel time on a link can vary continuously.

Optimization with respect to another objective function would thus result in different solutions, as could be expected. In the case of average travel time minimization, the resulting toll settings in most cases have higher tolls on the A4 than on the roads in the town. So apparently, the average travel time decreases when the traffic is guided through the town, which may for example from the viewpoint of liveability or an environmental viewpoint be an undesirable situation. This confirms that the objective function should be chosen with care and the resulting toll setting should be carefully considered, because otherwise undesirable effects on other objectives could occur.

CONCLUSIONS

The optimal toll level design problem is formulated as a bi-level mathematical program and an approximation approach is presented for finding the optimal toll levels in space and time differentiated, link based pricing, with the objective to minimize average travel time. Different variants of the search algorithm have been compared and the effect of a different initial solution is treated.

Application of different variants of the pattern search algorithm to the case study showed that it is possible to achieve considerable improvements in the value of the average travel time compared with the situation without tolls and with an initial toll solution. Multiple local minima have been found, but the average travel time value is comparable in most local minima. So different toll settings are roughly the same by means of the policy objective. Other political arguments, like the expected revenue of these toll settings, can determine which exact toll setting is to be implemented. The risk to end up in a bad local minimum is small, because different initial solutions all gave acceptable
solutions. The initial solution has influence on the speed of the algorithm: when it is far away from the optimal solution, it takes longer to reach a local minimum than when it is already close.

When the algorithm saves in what variables improvement has been made, better average travel time values have been achieved within the same computation time. When the algorithm changes more than one variable at a time, considerably shorter computation times can be achieved with only slightly worse average travel time values. When all variants of pattern search are compared, a weak relation exists between computation time and achieved average travel time value: long computation times achieve better average travel time values.

This paper showed that it is possible to apply a pattern search algorithm in this context. When this framework is applied in practice, it is yet only computationally feasible with little space and time differentiation and a few price categories, so this definition is important. Furthermore, the definition of the objective function strongly determines the resulting toll setting, so it should be carefully considered.

It is likely that general findings in this research also apply for other networks, though this is not shown in this paper. Future application of this framework to other networks is recommended. When this framework is applied to bigger networks, further improvements in the lower level are needed. The behaviour of other search algorithms in this context like simulated annealing is as well an interesting topic for future research.

REFERENCES