
 

 

 

 

 

 

A model-based approach for 

state estimation for networks 

 

 

 
 
 
 

Orestis Giamarelos 
M.Sc. Thesis 
January 2018 

 
 
 
 

M.Sc. Thesis Committee: 

prof. dr. ir. E. C. van Berkum 

dr. ir. L. J. J. Wismans 

ir. O. A. L. Eikenbroek 

ir. L. C. W. Suijs 

Faculty of Engineering 
Civil Engineering & Management 

 



 

 

 

 
 
 
 
 
 
 
 
Title: A model-based approach for traffic state estimation for networks 

Master Thesis 
 
 

Author: Orestis Giamarelos 
University of Twente 
Master’s programme: Civil Engineering & Management  
Specialization: Transport Engineering & Management 
Student number: s1615904 
E-mail: orestis@giamarelos.de 
 
 

Colloquium date: January 31st, 2018 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
  



iii 
 

Summary 
 

The aim of this thesis is to develop a model that is able to estimate the traffic state of a 
network (focusing on urban networks) in real time, by taking into account and fusing traffic 
data from various sources (e.g. VLOG and Floating Car Data) as they arrive. Most approaches 
in traffic state estimation focus on freeways and mainly use one source of traffic data. In 
addition, methodologies designed for use in urban networks usually incorporate a simple 
node model instead of full modelling of junctions, although the influence of junctions on the 
traffic state in urban networks is significant. The model developed in this thesis uses 
Streamline by DAT.Mobility as the process model, which includes detailed modelling of 
junctions. Data fusion of flow (VLOG) and speed (FCD) data is achieved using Extended 
Kalman Filtering (EKF). 
 
The model is validated through a series of tests using artificial data (measurements and 
“ground truth”). Initially, only one uncertainty parameter is enabled in each test, followed by 
combinations of parameters and finally a last test with all uncertainty parameters enabled. 
The model could satisfactorily estimate the state variables (densities and speeds) of all links 
of the network, as the average error values of all tests were at an acceptable level. 
Estimation improves over time, as the model “learns” through the fusion of measurements. 
An increasing uncertainty level of the system leads to a reduced rate of improvement. 
Estimation of the speeds proved to be more accurate in most validation tests. 
 
The tests also indicated the uncertainty parameters that mostly determine the model’s 
performance. Inaccuracy of the measurements (uncertainty and error on the 
measurements) is the parameter with the highest impact on the results, followed by the 
inaccuracy of the fundamental diagram parameters and the inaccuracy of the OD matrix. 
Combinations of these parameters in most (but not all) cases led to an increased combined 
impact on the state estimation. 

Analysis of the most problematic links in each test showed that an inaccurate OD matrix 

proved to have a higher impact on the estimation of the densities of links connected to a 

centroid (destination/origin). In addition, in tests with higher uncertainty it was observed 

that state estimation of links situated on parts of the network where no measurements were 

available did not improve over time, underlining the importance of the number of 

measurement points, as well as their position on the network. Among the fundamental 

diagram parameters, the free flow speed has the most significant impact on the estimation 

of the speeds and consequently the densities. 

The ability of the developed model to calibrate the fundamental diagram parameters has 

also been tested. The model succeeds in improving the estimate of the free flow speed over 

time but does not perform equally well in the estimation of the other fundamental diagram 

parameters (speed at capacity and capacity per lane). The improvement in the estimation of 

the free flow speed proved to be independent of the initial values set, meaning that even 

the values starting further off the ground truth value improve over time and eventually 

converge to the ground truth value. The standard deviations which control the variation 

allowed per time step for each fundamental diagram parameter could be increased in order 

to achieve faster convergence of the free flow speed. However, increasing the standard 

deviation value for a parameter would lead to more nervous behavior of the estimated value 
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of the free flow speed, possibly leading to a higher average error over time. Finally, the 

inclusion of a warm-up phase, to allow the parameters to approach their actual values, is 

recommended when possible. 

Regarding implementation of the method, it was observed that changing the order of fusing 

the measurements had practically no impact to the state estimation. In addition, setting 

reasonable thresholds for the state variables proved to be particularly important, as it can 

prevent the estimation from diverging, especially in cases with high uncertainty. 

Finally, future research suggestions include researching the problem of handling latency and 

using a different definition for the junction modelling factors, in order to improve fusion of 

the flow measurements. Moreover, application on a more congested network is 

recommended, in order to determine the model’s ability to estimate the speed at capacity 

and capacity per lane, as well as adding other parameters to the state vector, such as the 

turning fractions, to be corrected by the Kalman filter. 
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1. Introduction 
 

In the latest years, mobility and logistics have become more important than ever before, 

especially for economic growth. Subsequently, the significance of road transport has 

elevated globally. However, this ever-growing demand can often not be efficiently served, as 

it is in many cases much higher than supply. This imbalance between demand and supply 

leads to overuse of the existing road network and to widespread congestion, high emissions 

and noise levels (Calvert el al., 2014). In addition, congestion has proven to be extremely 

costly for the national economies. According to INRIX (2013), traffic congestion is expected 

to cumulatively cost for the years 2013-2030 $469 billion to the French national economy, 

$480 billion to the British, $691 billion to the German and $2.8 trillion to the U.S. economy. 

In the past, the most common solution to this problem was to heighten supply levels, by 

building new roads or by increasing the capacity of the existing network, e.g. by adding extra 

lanes to existing roads (Wismans et al., 2014). Adding road capacity is no longer a simple 

solution, as it comes at a high cost and suitable available space is limited. Therefore, 

effective traffic management becomes increasingly important to maximize the efficiency of 

the existing road infrastructure. 

To achieve the goal of effective traffic management, it is important that adequate 

information regarding the prevailing traffic conditions is available. Nowadays, a vast and 

ever-increasing amount of data sources is available, consisting of roadside sensors (e.g. 

induction loop detectors), in-car sensors (e.g. floating car data) or co-operative roadside and 

in-car sensors (e.g. automatic vehicle identification via Bluetooth). These data sources can 

provide information useful to traffic managers, compared to the past when significant effort 

had to be made to collect measurements and observations from the network. Collection of 

data has now become easier than ever, but the data coming from many different 

heterogeneous sources needs to be properly validated (e.g. identifying and removing 

erroneous measurements and possible systematic errors in the measuring devices) and 

fused to successfully assess the prevailing traffic conditions and their spatial and temporal 

dynamics. 

The availability of relevant data contributes to and enables the application of real-time 

traffic management and Intelligent Transport Systems (ITS). A major requirement for these 

applications is the availability of complete and consistent traffic state estimation. The traffic 

state includes all elements that describe the prevailing traffic conditions, including 

parameters needed for prediction. The elements included are set according to the aim of the 

traffic manager and the assumptions made in the traffic flow model (e.g. fixed or variable 

fundamental diagram parameters). Example elements that the traffic state can include are 

the following: speeds, densities and flows of all links of the network, densities of external 

links interacting with the network (e.g. links receiving from or sending flows to the network), 

turning fractions, fundamental diagram parameters (parameters that define the shape of the 

fundamental diagram, e.g. free flow speed, speed at capacity, capacity per lane and 
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maximum density for the Van Aerde fundamental diagram or similar parameters for other 

fundamental diagram types) etc. 

The current state estimates form the basis for (short-term) prediction of the future traffic 

state of the network. This prediction leads to informed decisions on traffic control measures 

to be implemented with a typical goal to prevent or minimize congestion (Yuan et al., 2014). 

The importance of an accurate traffic state estimation is, thus, highlighted by the fact that 

an inaccurate estimation will propagate through the decision support model, leading to an 

incorrect prediction of the (near-)future traffic state and to wrong conclusions regarding the 

appropriate traffic control measures to be used, as the short-term prediction of the future 

traffic state is a component of major importance for traffic control and ITS (Van Lint & Van 

Hinsbergen, 2012). 

The accurate estimation of the traffic state is not an easy task. Required data is only partially 

available, in terms of location and time, through sporadically installed sensors (e.g. induction 

loop detectors) in the road network or through content service providers (e.g. floating car 

data). The inaccuracy of sensor data available is an additional issue. Significant research has 

been conducted on the subject and various methodologies have been suggested to improve 

traffic state estimation. It must be noted, however, that the majority of related work deals 

with relatively simple freeway networks. In urban networks, complexity of the problem rises 

significantly due to various factors. For example, the intersections (regulated by traffic 

signals or unregulated) and the delay they impose to traffic, as well as the calculation of the 

fraction of traffic flow turning to each direction, are major factors that further increase the 

complexity of the problem. Other factors that further complicate the problem in urban 

networks are the following: the higher number of routing options available from origin to 

destination for each trip, the variation of road users and travel motives, the higher variation 

in the speeds of the vehicles, the availability of on-street parking and parking garages within 

the network, as well as the relatively low density of sensors installed in urban networks. 

The goal of this research is to develop a methodology for accurate traffic state estimation for 

networks, focusing on urban networks. In chapter 2 the problem is described in detail and 

the research objective and question is presented in chapter 3. Chapter 4 contains an 

extensive and detailed description of the developed method and chapter 5 the validation of 

the method using artificial data. In chapter 6, the conclusions of this research, as well as 

suggestions for future research, are provided. 

  



3 
 

2. Problem Description 
 

As mentioned in the introduction, the term traffic state estimation refers to the estimation 

of all traffic flow variables necessary to reproduce the traffic conditions on a link or a 

network, based on available traffic data. Estimation methods include data-driven methods, 

which use basic statistics, historical data and interpolation based on the sensor data, as well 

as model-based methods, which also take traffic flow dynamics into account (Yuan, 2013). 

While the data-driven methods are less complex and computationally expensive than model-

based methods, the latter are more accurate and offer the opportunity for full traffic state 

estimation (e.g. including the fundamental diagram parameters, which are impossible to 

physically measure), as well as better cope with non-regular traffic conditions. These 

significant advantages lead to the decision to follow a model-based approach in this 

research. 

A model-based traffic state estimation method consists of three elements (Yuan et al., 

2014):  

1. A process model, used to predict the state variables (e.g. density, speed, flow). Most 

widely used models are the first-order Lighthill–Whitham-Richards (LWR) (Lighthill & 

Whitham, 1955 and Richards, 1956) and the Cell Transmission Model (CTM) 

(Daganzo, 1994 & 1995), which is an operationalization of the LWR model. Also 

used, especially in freeway traffic state estimation, are higher order Payne-type 

(Payne, 1971) and METANET (Papageorgiou, 1990 and Wang & Papageorgiou, 2005) 

models. 

2. An observation model (measurement functions), used to compute the expected 

measurement values to be received from the sensors, considering the uncertainties 

of the process (e.g. density-flow and density-speed relationships) and the 

measurements (e.g. due to inefficiencies of the sensors) (Nantes, 2016). 

3. A data assimilation/fusion technique, used to estimate the most probable traffic 

state by combining the process model predictions, the measurements received from 

the sensors and the expected measurement values computed by the observation 

model. There are various data assimilation techniques, employing either simple or 

more sophisticated algorithms. An example of a simple algorithm is the Newtonian 

relaxation (nudging) method (Anthes, 1974), which relaxes system models towards 

observations, thus omitting the necessity for an observation model to perform data 

assimilation. A popular more sophisticated data assimilation algorithm is the Kalman 

filtering (KF) method (Kalman, 1960 and Kalman & Bucy, 1961) in various forms, such 

as the Unscented Kalman Filter (UKF), Ensemble Kalman Filter (EnKF) and especially 

the more widely used form, which is the Extended Kalman Filter (EKF) (see e.g. 

Tampère & Immers, 2007, Van Lint et al., 2008, Wang & Papageorgiou, 2005 and 

Wang et al. 2008). 

 

In Figure 1, a schematic procedure describing traffic state estimation with a recursive data 

assimilation method (such as Kalman Filtering) is provided. The method consists of 

prediction and correction steps, based on the measurements received from the sensors in 
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each time step. The process model describes the evolution of the system state (e.g. density, 

speed, fundamental diagram parameters). The observation model relates the system state 

to the observations. The aim of the data assimilation method is to make an optimal 

estimation of the system state using all new measurements (observations) that were made 

available between the previous and the current time step. 

For each discrete time step, first a prediction of the system state (𝑧𝑡
−) is made, based on the 

process model and the last available estimate. Based on this prediction of the state, the 

observation model predicts the values of the measurements expected to be received from 

the sensors. In the correction step that follows, the predicted system state is corrected with 

an optimal weighting factor, proportional to the error (𝐸𝑡) between the predicted 

measurement values and the actual measurement values received from the sensors. The 

optimal weighting factor is determined in terms of minimizing state estimation errors. The 

corrected state estimate (𝑧𝑡
+) is the “belief” of the actual traffic state, as it is the result of the 

combination of the process model and the actual measurements. This procedure iteratively 

provides state estimates at each time step and it is presented in detail in chapter 4. 

Most approaches in traffic state estimation use one source of traffic data/observations 

(Nantes et al., 2016). A possible reason is the complexity of fusing data from different types 

of sensors into one model: Each data source can possibly have different spatio-temporal 

resolutions (e.g. Eulerian/Langrangian coordinates). Additionally, it could be difficult to 

integrate various types of sensor data (e.g. speed, flow, travel time, etc.) into the flow model 

due to nonlinearities in traffic flow (Wang & Work, 2013). However, as Van Lint & 

Hoogendoorn (2009) testify, fusing data from multiple sources, when properly performed, 

leads to a more accurate and robust traffic state estimation. 

 

 

 

 

 
Figure 1. Schematic representation of the prediction-correction data assimilation method. (Based on Yuan, 2013) 
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There are various data sources providing traffic data measurements. The most common are 

the induction loop detectors, which are roadside sensors that provide flow data. However, 

there are not enough induction loop detectors installed, especially in urban networks, to rely 

upon and deliver a full traffic state estimation. The main reason is the high installation and 

maintenance cost for an adequately dense sensor network. The data they provide is also not 

entirely reliable, as they are also prone to measurement errors (e.g. Briedis & Samuels, 2010 

and Martins, 2008). Errors may occur either due to malfunctioning (e.g. in Herrera et al. 

(2010) it is mentioned that in California 30% of the 25,000 installed induction loop detectors 

does not work properly) or due to the nature of the sensor. For example, in a dual induction 

loop detector setup, a vehicle approaches and changes lane, passing over only one of the 

two loop detectors of that lane, resulting in an erroneous measurement. Additionally, a 

single induction loop detector setup requires additional assumptions to be made, e.g. for the 

average vehicle length. Therefore, uncertainty for the speed measurement values provided 

by such a setup is higher.  

Very common is also the use of Floating Car Data (FCD), which provides instantaneous speed 

data through GPS-equipped vehicles that transmit their position and speed. The GPS 

(in)accuracy of 6m (Owens, 1996) or 7.8m with a 95% confidence level (U.S. Department of 

Defense, 2008) is a drawback of FCD. This accuracy level can be improved using various 

methods, such as map matching. Other methods offering improved accuracy exist, e.g. 

Differential GPS and RTK-GPS (Real Time Kinematics) which can offer a typical accuracy of 

1.5m and 2cm respectively (van de Pijpekamp, 2015) or an accuracy range of 1-5m and 1-

10cm respectively (Jiménez et al, 2016). However, these methods would require additional 

equipment to be installed both in-vehicle (e.g. a special antenna) and in the network 

(reference stations every 100km and 10km respectively). The cost of acquiring floating car 

data is another drawback, as it is sold by traffic data providers. 

Another data source is Bluetooth vehicle identification, which can provide travel times 

between two specific points in the network. It has the downsides of low penetration rates, 

high cost of equipment, the uncertain shape and length of the scanning radius, which is 

based on the surrounding environment (Bhaskar & Chung, 2013) and affects the detection of 

the vehicles and the measurements (Nantes, 2016). 

A less common data source is video image processing (cameras) and automatic number-

plate recognition (ANPR). Both sources come at a high cost because of the equipment cost 

and the fact that they are computationally heavy processes. 

Finally, historical traffic data is also being used in practice in various forms. Such examples 

are the use of initial fundamental diagram, historical link data for every time step (flow, 

speed, occupancy), historical OD patterns/matrices (Wismans et al., 2014 and van der Vlist 

et al., 2016). 
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3. Research objective and question 
 

The main objective of the proposed research is to develop a model that will be able to 

estimate the traffic state of a network (focusing on urban networks) in real time, by taking 

into account and fusing data arriving from various heterogeneous sources (e.g. VLOG and 

FCD data) as they arrive. The focus is decided to be on urban networks, as most developed 

approaches on traffic state estimation focus on freeways (e.g. van Lint & Hoogendoorn, 

2009, Wang & Papageorgiou, 2005 and Treiber & Kesting, 2009). Few methodologies, such 

as the methodology by Nantes et al. (2016), have dealt with urban networks, but still with 

limitations, such as the lack of a junction model. 

An additional objective is to observe if the model is able to cope with situations affecting 

supply of infrastructure, e.g. a reduced free flow speed due to fog covering a part of a large 

network or a reduced capacity on a link due to an incident. Therefore, the additional 

objective is to observe if the fundamental diagram parameters, the parameters that 

determine the shape of the fundamental diagram, can also be accurately estimated by the 

model. 

 

The main research question, deduced from the main objective, is the following: 

How can a model be developed to provide online estimation of the traffic state of an urban 

network, taking into account measurements from sensors? 

An additional research question, covering the additional objective, is the following: 

How accurately can this developed model estimate the fundamental diagram parameters of 

each link of the network? 

 

The key terms of the research questions are the following: 

The traffic state is defined as the densities and speeds of each link, which lead to the 

estimation of the flows as well, assuming homogeneity of traffic. As the additional research 

question also requires the fundamental diagram parameters to be estimated, the traffic 

state has to include these parameters as well. 

The term sensors refers to measurements coming from sensors installed either roadside 

(e.g. directional flows derived from VLOG data) or onboard the vehicles (e.g. link speeds 

derived from FCD). As sensors are not perfect, sensor reliability is also a factor that must be 

considered in the development of the method. 

The term online refers to the fact that the measurement data used in the model should not 

be available beforehand for pre-processing, but should be read from the sensors in real 

time. In addition, the model calculations should be fast enough to allow it to work in real-

time. The handling of possible latency in the measurements is not part of this research. It is 
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assumed that there is no latency in the measurement values received. This means that a 

measurement of e.g. the average directional flow for a whole minute is made available 

immediately, exactly at the end of the 60th second of that minute. 

The fact that the methodology must be suitable for urban networks increases the complexity 

of the research problem. Urban links are more challenging to model than freeway links, due 

to, e.g., the more complex traffic dynamics at intersections and the existence of unregulated 

intersections, which add a significant amount of uncertainty to the traffic state estimation. 

The junctions play a very determining role in urban networks, so the developed 

methodology should be able to cope with junctions. Therefore, junction modelling, as part of 

the model prediction is essential. 

Thus, in order to address this problem, the developed model should be accurate, fast 

enough, dependent only on the observations available until the current time step (no pre-

processing of measurements required), able to accommodate all junction types, estimate 

supply (fundamental diagram) parameters online and handle the uncertainties of model 

inaccuracies and sensor reliability. 

The proposed method is described in detail in the next chapter. 
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4. Method 
 

4.1. Introduction 
 

To address the solution of this problem, referring to the elements of a model-based 

approach for traffic state estimation, mentioned in chapter 2, and taking into account the 

analysis of the research questions in the previous chapter, the following decisions were 

made: 

- Streamline, a dynamic traffic propagation model based on METANET and 

implemented in the transport simulation software OmniTRANS by DAT.Mobility, was 

selected as the process model. It is a validated model that has been used in the 

industry for years and it is more complex and accurate than, for example, 

implementing a simple first-order LWR model. It additionally includes the powerful 

junction modeling module (XSTREAM), which provides additional opportunities to 

incorporate high levels of detail when modeling junctions, in order to simulate the 

actual situation of an urban network as accurately as possible. 

- The measurement functions for the observation model will be set up according to 

the equations used in the process model and the available data sources. 

- Finally, the Extended Kalman Filter (EKF), coded in Matlab, is selected as the data 

assimilation technique, as it is suitable for working with non-linear equations. In 

addition, it is more computationally efficient than other forms, which makes it a 

good choice for use in large networks (Yuan, 2013), as well as online applications 

because of the lower computational time it requires. More specifically, a slight 

modification of the standard EKF algorithm is selected, the incremental EKF 

proposed by Nantes et al. (2016), which allows incorporating of the various 

heterogeneous measurements incrementally, whenever they become available, 

enabling the use of varying sampling rates per data source. Therefore, this 

methodology offers additional flexibility in relation to the setup of the sensors. 

The developed solution is depicted in a flowchart (Figure 2) and the methodology is 

described in detail in the subchapters that follow. 

 

4.2. Process model 
 

A target road is defined as a set of connected links. The flow of vehicles has a pre-defined 

direction and it is conserved, in the sense that traffic can enter and leave a link only at the 

upstream and downstream nodes respectively and not in-between. When dealing with 

urban traffic, a node can be an intersection, either signalized or unsignalized. 
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Each link 𝑖 is designed to have a distance 𝐿𝑖 and the simulation time is divided in time steps 

of time 𝑇, so as to satisfy the Courant-Friedrichs-Lewy condition (Sod, 1985). This condition 

ensures that the distance covered within a time step, which is equal to the free flow speed 

(𝑣𝑓𝑟𝑒𝑒) multiplied by the duration of the time step 𝑇, cannot exceed the length of the link 

(𝜐𝑖
𝑓𝑟𝑒𝑒

∙ 𝑇 ≤ 𝐿𝑖). 

 

The equations used in the process model are the METANET (Technical University of Crete & 

Messmer, 2012) equations for the outflow, density propagation and speed propagation. 

These are presented below: 

 

The outflow of each link 𝑖 at time 𝑘 is given by the equation: 

𝑞𝑖(𝑘) = 𝜌𝑖(𝑘) ∙ 𝜐𝑖(𝑘) ∙ 𝜆𝑖 ,       (1) 

where 

𝑞𝑖(𝑘) denotes the total outflow of link 𝑖 at time 𝑘, 

𝜌𝑖(𝑘) denotes the density per lane of link 𝑖 at time 𝑘, 

𝜐𝑖(𝑘) denotes the speed of link 𝑖 at time 𝑘 and 

𝜆𝑖 denotes the number of lanes of link 𝑖. 

 

The density of each link 𝑖 at time 𝑘 + 1 is given by the equation: 

𝜌𝑖(𝑘 + 1) = 𝜌𝑖(𝑘) +
𝑇

𝐿𝑖𝜆𝑖
(𝑞𝑖−1(𝑘) − 𝑞𝑖(𝑘)),     (2) 

whose intuitive, physical meaning is that the density of the link at the next time step is the 

sum of the density at the current time step and the difference between the inflow to link 𝑖 

(outflow of the upstream link 𝑖 − 1) and the outflow from link 𝑖. 

 

The speed of each link 𝑖 at time 𝑘 + 1 is given by its speed at time 𝑘, plus a relaxation term 

that includes a fundamental diagram calculation 𝑉(𝜌), a convection term that expresses the 

change in speed caused by the inflow of vehicles and an anticipation term that expresses the 

speed decrease caused by a density increase downstream. The relevant equation is the 

following: 

 

𝜐𝑖(𝑘 + 1) = 𝜐𝑖(𝑘) +
𝑇

𝜏
(𝑉(𝜌𝑖(𝑘)) − 𝜐𝑖(𝑘)) +

𝑇

𝐿𝑖
𝜐𝑖(𝑘)(𝜐𝑖−1(𝑘) − 𝜐𝑖(𝑘))

−
𝜈𝛵

𝜏𝐿𝑖

𝜌𝑖+1(𝑘) − 𝜌𝑖(𝑘)

𝜌𝑖(𝑘) + 𝜅
 

           (3) 

where τ, ν and κ are model parameters. 

 

The fundamental diagram calculation 𝑉(𝜌), which is included in (3), expresses the speed-

density relationship. Streamline uses by default the Van Aerde fundamental diagram, but it 

is possible to use other fundamental diagram types as well. Because the use of the Van 

Aerde fundamental diagram led to the forming of very long and complex equations and even 

more complex Jacobians, it was decided to switch to the simpler METANET fundamental 

diagram, by using the appropriate setting in Streamline. The form of this fundamental 

diagram is shown in Figure 3. 
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Figure 3. The METANET fundamental diagram. 

 

The equation of the METANET fundamental diagram is the following: 

𝑉(𝜌𝑖(𝑘)) = 𝜐𝑓𝑟𝑒𝑒 ∙ exp[−
1

𝛼𝑚
∙ (

𝜌𝑖(𝑘)

𝜌𝑐𝑟𝑖𝑡,𝑖(𝑘)
)
𝛼𝑚

],     (4) 

where 𝜌𝑐𝑟𝑖𝑡 signifies the critical density, which can be expressed as: 

𝜌𝑐𝑟𝑖𝑡 =
𝑓𝑐𝑎𝑝

𝜐𝑐𝑎𝑝,         (5) 

where 𝑓𝑐𝑎𝑝 signifies the capacity per lane and 𝜐𝑐𝑎𝑝 signifies the speed at capacity. 

 

The term 𝛼𝑚 is defined as: 

𝛼𝑚 = −
1

𝑙𝑛(
𝑓𝑐𝑎𝑝

𝜐𝑓𝑟𝑒𝑒∙𝜌𝑐𝑟𝑖𝑡
)

         (6) 

and using (5): 

𝛼𝑚 = −
1

𝑙𝑛(
𝜐𝑐𝑎𝑝

𝜐𝑓𝑟𝑒𝑒)
         (7) 

 

Therefore, the fundamental diagram equation (4), using (5) and (7) becomes: 

𝑉(𝜌𝑖(𝑘)) = 𝜐𝑓𝑟𝑒𝑒 ∙ exp[𝑙𝑛 (
𝜐𝑐𝑎𝑝

𝜐𝑓𝑟𝑒𝑒) ∙ (
𝜌𝑖(𝑘)∙𝜐𝑐𝑎𝑝

𝑓𝑐𝑎𝑝 )

−
1

𝑙𝑛(
𝜐𝑐𝑎𝑝

𝜐𝑓𝑟𝑒𝑒
)
]    (8) 

 

4.3. Full state vector 
 

In order to form the full state vector, the approach and the annotations used in Wang & 

Papageorgiou (2005) will be followed.  

 

The full state vector𝑥 has the following general form: 

𝑥 = (𝑙, 𝑑, 𝑝),         (9) 

where 𝑙 signifies the vector of link variables, 𝑑 the vector of boundary variables and 𝑝 the 

vector of fundamental diagram parameters. 
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The flow 𝑞𝑖(𝑘) for every link 𝑖  at time 𝑘 can be calculated from (1) by replacing the values of 

𝜌𝑖(𝑘) and 𝜐𝑖(𝑘) from equations (2) and (3). Therefore, the independent link variables for 

each link 𝑖 are 𝜌𝑖 and 𝜐𝑖. 

 

Consequently, the vector of the link variables for a network consisting of 𝑁 links has 2𝑁 

elements in total and the following form: 

𝑙 = (𝜌1, 𝜐1, 𝜌2, 𝜐2, … , 𝜌𝛮 , 𝜐𝛮)       (10) 

 

For the calculation of 𝜌𝑖(𝑘 + 1) from equation (2) and the calculation of 𝜐𝑖(𝑘 + 1) from 

equation (3), the variables 𝑞𝑖−1(𝑘), 𝜐𝑖−1(𝑘) and 𝜌𝑖+1(𝑘) are also required to be available for 

all links. These values can be calculated for all links, except the links at the edges of the 

network, which have a centroid either as an origin or a destination of the link. Therefore, for 

all centroids, through which traffic enters and exits the network, the variables 𝑞𝑖−1(𝑘), 

𝜐𝑖−1(𝑘) and 𝜌𝑖+1(𝑘) need to be provided as well, in order to enable the estimation of the 

link variables for all links of the network. The vector of the boundary variables for 𝐶 

centroids has the following form: 

𝑑 = (𝑞1
𝑜𝑟𝑖𝑔𝑖𝑛

, 𝜐1
𝑜𝑟𝑖𝑔𝑖𝑛

, 𝜌1
𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛, . . . , 𝑞𝐶

𝑜𝑟𝑖𝑔𝑖𝑛
, 𝜐𝐶

𝑜𝑟𝑖𝑔𝑖𝑛
, 𝜌𝐶

𝑑𝑒𝑠𝑡𝑖𝑛𝑎𝑡𝑖𝑜𝑛)  (11) 

 

In Streamline, the convection and anticipation terms of the speed equation (3) containing 

the variables 𝜐𝑖−1(𝑘) and 𝜌𝑖+1(𝑘) respectively, are omitted from the equation when the 

upstream link is an origin and the downstream link is a destination respectively. Therefore, 

the variables that give the upstream speed of an origin and the downstream density of the 

destination, are omitted from (11). 

 

The flow entering the network from the origins is modeled with a simple queue model. It 

mainly depends on the demand, which is read from the OD matrix/matrices Streamline uses 

to route traffic in the network for the duration of the simulation. The OD matrices are 

estimated from a variety of data sources such as home and roadside interviews, historical 

traffic data and observed link volumes. As matrix estimation is beyond the scope of this 

thesis, it is assumed that the provided OD matrices for the test network are accurate. 

Therefore, the origin flows can be considered as input to the system, provided by Streamline 

every time step, and not a state variable. 

 

Thus, no boundary variable is part of the state vector in the developed model, as the 

upstream speed of the origins and the downstream density of the destinations are omitted 

in Streamline, while the flow of the origins is input to the system. Therefore, 𝑑 = Ø. 

 

Finally, the fundamental diagram calculation in (8) requires the values of additional 

parameters, which determine the shape of the fundamental diagram. The three parameters 

required for the fundamental diagram calculation are the free flow speed (𝑣𝑓𝑟𝑒𝑒), the 

capacity per lane (𝑓𝑐𝑎𝑝) and the speed at capacity (𝜐𝑐𝑎𝑝). In a large network, the values of 

the fundamental diagram parameters may greatly vary between links. For example, the 

network could consist of major urban links (speed limit 50 km/h) and minor urban links 

(speed limit 30 or 20 km/h). For such a mixed network, the values of the three fundamental 

diagram parameters between all links of the network would greatly differ. In addition, the 
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fundamental diagram parameters could be affected by various factors, such as adverse 

weather conditions, which could affect differently the values of the fundamental diagram 

parameters of each link. For example, fog could be covering only a part of a large network, 

causing a significant decrease of the free flow speed to the links of that area, while in other 

areas of the network there could be no or very little decrease of the free flow speed due to 

the fog. Therefore, it is considered important to set different fundamental diagram 

parameters for each link and include them in the state vector. The vector of fundamental 

diagram parameters for a network consisting of 𝑁 links has 3𝑁 elements in total and the 

following form: 

𝑝 = (𝜐1
𝑓𝑟𝑒𝑒

, . . . , 𝜐𝑁
𝑓𝑟𝑒𝑒

, 𝑓1
𝑐𝑎𝑝

, . . . , 𝑓𝑁
𝑐𝑎𝑝

, 𝜐1
𝑐𝑎𝑝

, . . . , 𝜐𝑁
𝑐𝑎𝑝

)    (12) 

 

 

Based on the analysis above, the full state vector 𝑥 for the model consists of 5𝑁 elements 

and it is presented in (13): 

𝑥 = (𝜌1, 𝜐1, . . . , 𝜌𝛮 , 𝜐𝛮 , 𝜐1
𝑓𝑟𝑒𝑒

, . . . , 𝜐𝑁
𝑓𝑟𝑒𝑒

, 𝑓1
𝑐𝑎𝑝

, . . . , 𝑓𝑁
𝑐𝑎𝑝

, 𝜐1
𝑐𝑎𝑝

, . . . , 𝜐𝑁
𝑐𝑎𝑝

)  (13) 

 

 

4.4. Full transition model 
 

By replacing equation (1) into equation (2), we receive the following equation for the 

density: 

𝜌𝑖(𝑘 + 1) = 𝜌𝑖(𝑘) +
𝑇

𝐿𝑖𝜆𝑖
(𝜌𝑖−1(𝑘) ∙ 𝜐𝑖−1(𝑘) ∙ 𝜆𝑖−1 − 𝜌𝑖(𝑘) ∙ 𝜐𝑖(𝑘) ∙ 𝜆𝑖) + 𝜉𝑞(𝑘) (14) 

 

The density equation is modelled exact, as it describes the conservation of vehicles. 

However, the term 𝜉𝑞(𝑘) is added after incorporating the flow equation (1), to reflect the 

modelling inaccuracy of the approximate flow equation. 

 

Similarly, the term 𝜉𝜐(𝑘) is added to the empirical speed equation (3) to reflect the 

modelling inaccuracy of this equation. The resulting equation is the following: 

 

𝜐𝑖(𝑘 + 1) = 𝜐𝑖(𝑘) +
𝑇

𝜏
(𝑉(𝜌𝑖(𝑘)) − 𝜐𝑖(𝑘)) +

𝑇

𝐿𝑖
𝜐𝑖(𝑘)(𝜐𝑖−1(𝑘) − 𝜐𝑖(𝑘))

−
𝜈𝛵

𝜏𝐿𝑖

𝜌𝑖+1(𝑘) − 𝜌𝑖(𝑘)

𝜌𝑖(𝑘) + 𝜅
+ 𝜉𝜐(𝑘) 

           (15) 

 

Therefore, the transition model for the link variables can be written in a compact form as 

follows: 

𝑙(𝑘 + 1) = 𝑔(𝑥(𝑘)) + 𝜉(𝑘)       (16) 
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Or using vectors: 

[
𝜌𝑖(𝑘 + 1)

𝜐𝑖(𝑘 + 1)
] = [

𝜌𝑖(𝑘)

𝜐𝑖(𝑘)
] +

[
 
 
 
 

𝑇

𝐿𝑖𝜆𝑖

(𝜌𝑖−1(𝑘) ∙ 𝜐𝑖−1(𝑘) ∙ 𝜆𝑖−1 − 𝜌𝑖(𝑘) ∙ 𝜐𝑖(𝑘) ∙ 𝜆𝑖)

𝑇

𝜏
(𝑉(𝜌𝑖(𝑘)) − 𝜐𝑖(𝑘)) +

𝑇

𝐿𝑖
𝜐𝑖(𝑘)(𝜐𝑖−1(𝑘) − 𝜐𝑖(𝑘)) −

𝜈𝛵

𝜏𝐿𝑖

𝜌𝑖+1(𝑘) − 𝜌𝑖(𝑘)

𝜌𝑖(𝑘) + 𝜅 ]
 
 
 
 

+ [
𝜉𝑞(𝑘)

𝜉𝜐(𝑘)
] 

           (17) 

 

 

The fundamental diagram parameters are modeled with a random walk strategy, meaning 

that the current value of a variable is composed of the past value plus an error term defined 

as zero-mean Gaussian white noise: 

𝑝(𝑘 + 1) = 𝑝(𝑘) + 𝜉(𝑘)        (18) 

 

Or using vectors: 

[
𝜐𝑓𝑟𝑒𝑒(𝑘 + 1)

𝑓𝑐𝑎𝑝(𝑘 + 1)

𝜐𝑐𝑎𝑝(𝑘 + 1)

] = [
𝜐𝑓𝑟𝑒𝑒(𝑘)

𝑓𝑐𝑎𝑝(𝑘)

𝜐𝑐𝑎𝑝(𝑘)

] + [

𝜉𝜐𝑓𝑟𝑒𝑒(𝑘)

𝜉𝑓𝑐𝑎𝑝(𝑘)

𝜉𝜐𝑐𝑎𝑝(𝑘)

]     (19) 

 

All 𝜉 terms in equations (14)-(19) denote zero-mean Gaussian white noise processes. They 

are defined as: 

𝜉∗ = 𝒩(0, 𝜎∗2),         (20) 

where 𝜎∗ denotes the standard deviation of link variable/fundamental diagram parameter *. 

The standard deviation for each variable must be set according to the typical time variations 

expected to be observed in the respective variables/model parameters to be tracked. A 

higher noise standard deviation for an estimated model parameter indicates a parameter 

that is more time variant. Thus, a lower standard deviation value would lead to slower 

convergence of the parameter estimates, while a higher standard deviation value would lead 

to more nervous behavior (larger fluctuations) of the parameter estimates. 

 

 

4.5. Junction modeling 
 

Signalized and unsignalized junctions are integral elements of urban networks. Therefore, 

for a model that can be applied to urban networks, handling junctions is essential. 

OmniTRANS incorporates XSTREAM, a powerful junction modeling module, which can be 

used to model signalized junctions and roundabouts, as well as uncontrolled or sign-

controlled junctions. It calculates the average delay for each turning movement based on 

the junction layout, turning flows and signal settings (for signalized junctions). 

XSTREAM adds extra turning links to the network with properties that affect traffic 

propagation accordingly. The data received as output is practically limited to the outflow, 

speed and density of these extra turning links. 

The complex calculations involved and the fact that it is hard to obtain calculation data from 

the XSTREAM module lead to the need to follow another approach to capture the effects of 

junction modelling on the state variables without implementing all the calculations in the 

model. 
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The workaround to this problem is to sum up the effect of junction modeling using 

appropriate factors, by exploiting the information obtained from Streamline for the state of 

the next time step (second). Two points are of interest for the state estimation problem: 

1. The possible reaching of an outflow limit on the link upstream the junction, as a result of 

the traffic light ahead and possibly congestion spillback from the link downstream the 

turn. 

2. The inflow that enters the link downstream the turn, which is affected by the turn delay 

imposed by junction modeling, as well as the turning fractions. 

Therefore, if it is possible to get the information regarding these two points for every time 

step, the actual details of the calculations made within the junction modeling module are 

not necessary. 

 

The process used for receiving these factors that sum up the effects of junction modeling is 

presented below: 

1. A factor that summarizes the effect of the first point (using the term “outflow limit 

factor”) is received by examining the Streamline state of the next time step. If the flow is 

not equal to the product of density, speed and the number of lanes, as in equation (1), 

then an outflow limit because of either the traffic light or congestion downstream has 

been reached. So, the outflow limit factor will be equal to 1, unless an outflow limit has 

been reached, in which case the factor will be less than 1 and calculated as: 

𝛼𝑖(𝑘) =
𝑞𝑖(𝑘)

𝜌𝑖(𝑘)∙𝜐𝑖(𝑘)∙𝜆𝑖
,        (21) 

where 𝛼𝑖 signifies the outflow limit factor. 

The flow equation (1) is modified to include the outflow limit factor, to reflect the limited 

outflow when an outflow limit has been reached, taking the following form: 

𝑞𝑖(𝑘) = 𝜌𝑖(𝑘) ∙ 𝜐𝑖(𝑘) ∙ 𝜆𝑖 ∙ 𝛼𝑖       (22) 

 

 

2. The second point affects the inflow of the links downstream the turn. The inflow of this 

link is the sum of the outflows of the extra turning links that enter this link. The outflows 

of the extra turning links can be expressed using factors that relate them to the outflow 

of their upstream link. Consider the junction in the example below: 

 

 

 

 

 

 

 

 
Figure 4. Example junction. 

 

In this example, the inflow of link 3 will be equal to the sum of the outflows of turning 

links 4 and 5. However, these can be expressed using a factor that relates them to the 

outflows of links 1 and 2 respectively. With the Streamline state of the next time step 

Turning 

Link 4 

Link 1 

Link 3 

Link 2 

Turning 

Link 5 
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known, we can calculate these factors and end up with an equation that only contains 

standard network links (no turning links) and incorporates the effects of junction 

modeling. 

 

Therefore, for the example junction of Figure 4: 

𝑞3
𝑖𝑛 = 𝑞4

𝑜𝑢𝑡 + 𝑞5
𝑜𝑢𝑡 = 𝛽4 ∙ 𝑞1

𝑜𝑢𝑡 + 𝛽5 ∙ 𝑞2
𝑜𝑢𝑡, where the factors 𝛽 are calculated as 𝛽 =

𝑞𝑡𝑢𝑟𝑛𝑖𝑛𝑔𝑙𝑖𝑛𝑘
𝑜𝑢𝑡

𝑞𝑛𝑒𝑡𝑤𝑜𝑟𝑘𝑙𝑖𝑛𝑘
𝑜𝑢𝑡 . So, in this example, 𝛽4 =

𝑞4
𝑜𝑢𝑡

𝑞1
𝑜𝑢𝑡 and 𝛽5 =

𝑞5
𝑜𝑢𝑡

𝑞2
𝑜𝑢𝑡. The values of the factors are 

calculated using the Streamline state of the next second (simulation time step), which is 

known, and their values are replaced in the equation which will be used for this time 

step. 

 

Thus, the outflows of the turning link 𝑗, which is located downstream network link 𝑖, can 

be expressed as: 

𝑞𝑗
𝑜𝑢𝑡(𝑘) = 𝜌𝑖(𝑘) ∙ 𝜐𝑖(𝑘) ∙ 𝜆𝑖 ∙ 𝛼𝑖 ∙ 𝛽𝑗      (23) 

 

 

These modified flow equations (22, 23) are also used in all equations that include flows, for 

example in the density equation (2), as well as in the flow measurement functions that will 

be presented in the next subchapter. 

 

The advantages of using this approach are the following: 

• Full XSTREAM settings and features can be enabled and any combination of options 

for turning delays and traffic light timings may be used. 

• The dependencies between the previous and next links of the network are 

preserved. 

• Significantly easier implementation than attempting to implement the full XSTREAM 

module in the developed model. 

 

The main disadvantage is that the factors need to be recalculated every time step and their 

values must be updated in all equations and their jacobians. This costs some additional 

running time, but this process is still faster overall, as with this solution the equations used 

in the model remain simpler and are therefore faster to calculate. 

 

It has to be noted that the method described calculates the factors using data of the last two 

consecutive seconds, which leads to capturing the effect of junction modelling on the exact 

second the EKF is applied. However, for technical reasons it was decided to use average 

minute data for the calculation of the junction modelling factors. This approach solved a 

technical problem but led to an inaccuracy in the calculations, which is in most cases 

negligible, except in cases of sharp increases/decreases of the density. 

 

Especially on links directly downstream an intersection, where more than one links would 

send flow to a leaving link from the junction, it was observed that on extremely congested 

situations this link would not accept any flow, so the outflow of the upstream (turning) links 

would be zero. The reason for this is that the density of the leaving link has already 
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exceeded the maximum density value, so this behavior is reasonable, as a precautionary 

measure to allow the density to fall back to acceptable levels (less than the maximum 

density). However, the initial use of per second data to calculate the factors would in that 

case possibly be using an outflow of zero, which would lead to the calculation of a factor 

with a value of zero and eventually zeroing out the whole flow equation and producing 

wrong estimates of the state variables. To prevent this problem from occurring, it was 

decided to use average data of the whole minute for the calculation of the junction 

modelling factors. While the effect of this averaging of data over a minute does not lead to 

an observable difference in uncongested conditions, it does cause a slight temporary 

difference, especially to the estimation of the density when congestion is forming and 

dissolving rapidly, due to e.g. a sharp increase/decrease in demand. When an increase in 

density takes place, the “outflow limit factor” is relatively underestimated (depending on 

how sharp the increase is), because the average density of 1 minute is a value, which is 

lower than the density of the last second that should have been used instead. Therefore, an 

underestimated factor for the same flow will lead to an overestimated density, in order for 

the flow equation to be valid. The opposite effect is observed, but to a significantly lower 

extent, in case of an equally sharp dissolving of congestion. 

 

4.6. Measurement functions 
 

With the measurement functions ℎ, the expected value of the measurements from the 

sensors are expressed, based on the state of the system and the system input. The 

measurement functions generally consist of the predicted values, adding the uncertainties of 

the process and the measurement.  

 

The speed measurements are given from Floating Car Data. The speed measurement 

function for link 𝑖 is given by the speed plus measurement noise: 

 ℎ𝑣𝑖
(𝑘) = 𝑣𝑖(𝑘) + 𝛾𝑖

𝜐(𝑘),       (24) 

where 𝛾𝑖
𝜐 denotes speed measurement noise which is modeled as zero-mean Gaussian 

white noise, similarly to the 𝜉 values in (20). 

 

The flow measurements are available from VLOG data at the stop line of the regulated 

intersections. The VLOG data gives the outflow of the turning links, so the relevant flow 

measurement function is derived from (23): 

 

ℎ𝑞𝑗
𝑜𝑢𝑡(𝑘) = 𝜌𝑖(𝑘) ∙ 𝜐𝑖(𝑘) ∙ 𝜆𝑖 ∙ 𝛼𝑖 ∙ 𝛽𝑗 + 𝜉𝑞(𝑘) + 𝛾𝑗

𝑞
(𝑘),    (25) 

 

where 𝜉𝑞(𝑘) reflects the modeling inaccuracy of the flow equation, as previously 

mentioned, and 𝛾𝑗
𝑞
(𝑘) denotes the flow measurement noise which is modeled as zero-mean 

Gaussian white noise. 

 

Due to the way the factors are defined, an overall outflow limit factor is calculated for the 

outflow of each network link. This method could be problematic for the entering links to a 
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junction, where the flow could be limited e.g. only to one direction, due to congestion 

downstream that direction. In this case, the use of this common factor to each directional 

flow separately would be wrong, as the actual outflow limit factor to the congested direction 

should have an even lower value, while the flow limit factors to the other directions could 

even be 1 (totally unrestricted), depending on the traffic conditions downstream and the 

demand toward these directions. 

To take into account these cases as well, it was decided to use the sum of all directional 

flows of the entering links to a junction (summing up the measurement values and the 

respective measurement functions), instead of fusing each individual directional flow 

measurement separately. 

Therefore, for the example junction presented in Figure 5, there are measurements from 

VLOG data available for the outflows of turning links 4 and 5. The outflow limit factor of link 

1 is calculated on the total outflow of link 1, which is divided to the turning links 4 and 5. 

However, as link 2 is congested and link 3 is not, and depending on the demand to each 

direction, it is possible that the outflow is limited to only one of these directions or that it is 

unevenly restricted. The solution to this problem is to sum the measurement values of the 

outflows of the turning links 4 and 5 and also combine the respective measurement 

functions, in order to form one combined measurement to fuse using the Extended Kalman 

Filter. 

 

 

 

 

 

 

 

 
Figure 5. Example junction. 

 

The individual measurement functions for links 4 and 5 would have been (based on equation 

25) the following: 

• ℎ𝑞4
𝑜𝑢𝑡(𝑘) = 𝜌1(𝑘) ∙ 𝜐1(𝑘) ∙ 𝜆1 ∙ 𝛼1 ∙ 𝛽4 + 𝜉𝑞(𝑘) + 𝛾4

𝑞(𝑘) for link 4 

• ℎ𝑞5
𝑜𝑢𝑡(𝑘) = 𝜌1(𝑘) ∙ 𝜐1(𝑘) ∙ 𝜆1 ∙ 𝛼1 ∙ 𝛽5 + 𝜉𝑞(𝑘) + 𝛾5

𝑞
(𝑘) for link 5. 

The combined measurement function for the total outflow of the entering link 1 to the 

junction is the following: 

• ℎ𝑞1
𝑜𝑢𝑡(𝑘) = 𝜌1(𝑘) ∙ 𝜐1(𝑘) ∙ 𝜆1 ∙ 𝛼1 ∙ (𝛽4 + 𝛽5) + 𝜉𝑞(𝑘) + 𝛾4

𝑞(𝑘) + 𝛾5
𝑞
(𝑘) 

 

Turning 

Link 4 

Link 1 

Link 2 - 

congested 

Turning 

Link 5 

Link 3 - 

uncongested 
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Notice in the combined measurement function the participation of the process noise once 

(which refers to the modelling inaccuracy of the flow equation) and the measurement noise 

of all involved sensors (in this example,  𝛾4
𝑞(𝑘) and 𝛾5

𝑞
(𝑘)). 

A drawback of this approach is that the number of flow measurements to be assimilated in 

every time step is now reduced. Therefore, the information the Kalman filter obtains from 

VLOG data is slightly deteriorated, as it comes in the form of a more complex function with 

more uncertainty parameters included (e.g. all measurement noise elements in one 

function). Therefore, capturing the errors and error covariances by the Kalman filter is with 

this approach more difficult, compared to an approach which would use separate flow 

measurement functions for each measurement. 

Finally, it must be noted that the standard deviation values set for 𝛾𝑗
𝑞

 and 𝛾𝑗
𝜐 should reflect 

the reliability level of the corresponding measurements and they depend on the reliability of 

the sensors. Their values can optionally be different per link, reflecting different accuracy 

levels of different sensor types that could possibly be installed throughout the network. 

 

 

4.7. Data fusion using Extended Kalman Filtering 
 

The Extended Kalman Filter has been selected as a computationally efficient data 

assimilation method. More specifically, the incremental Extended Kalman Filter algorithm 

has been selected. This slightly modified EKF algorithm, proposed by Nantes et al. (2016), is 

implemented to handle measurements with different sampling frequencies (e.g. loop 

detector data aggregated every minute while instantaneous speed data from the floating 

cars can be available every 15 seconds). The filter adds measurements as they are received 

without a state transition in-between every measurement. A precondition for this 

incremental addition of information from multiple measurements is the assumption that all 

measurements  𝑧 are independent, given the current state and input vectors. 

 

Based on the previously described formulation of the model, the equations are applied to 

the EKF algorithm (Nantes, 2016). 

 

Definitions: 

The state-space model consists of the following equations in compact form: 

𝑥(𝑘) = 𝑓(𝑥(𝑘 − 1)) + 𝜉        (26) 

𝑧(𝑘) = ℎ(𝑘, 𝑥(𝑘)) + 𝛾        (27) 

Equation (26) is formed by combining (17) and (19), while equation (27) is formed by 

combining (24) and (25). 

 

The process noise covariance matrix is defined as: 

𝑇 = 𝑑𝑖𝑎𝑔(𝜉)         (28) 

i.e. a matrix whose diagonal terms are the relevant variances of the state elements. 
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The Jacobian of the state transition function 𝑓, with respect to the full state vector 𝑥 and 

computed at 𝑥(𝑘 − 1) is defined as: 

𝐹𝑘|𝑘−1 =
𝜕𝑓(𝑘,𝑥)

𝜕𝑥
| 𝑥=𝑥(𝑘−1)        (29) 

 

The Jacobian of each measurement function ℎ, with respect to the full state vector 𝑥 and 

computed at the “a priori” estimate of the state 𝑥(𝑘) is defined as: 

𝐻𝑘 =
𝜕ℎ

𝜕𝑥
| 𝑥=𝑥(𝑘)         (30) 

 

Prediction step: 

1. State estimate propagation:  

𝑥(𝑘) = 𝑓(𝑥(𝑘 − 1))        (31) 

Equation (31) gives the “a priori” estimate for the state, based on the model equations 

and the state of the previous simulation time step. In this setup, the state estimate is 

obtained directly from the Streamline simulation. 

 

2. Error covariance propagation: 

𝛴(𝑘) = 𝐹𝑘|𝑘−1 ∙ 𝛴(𝑘 − 1) ∙ 𝐹𝑘|𝑘−1
𝑇 + 𝑇,      (32) 

based on the previous error covariance matrix, the Jacobians of the process model 

and the process noise covariance matrix. 

 

Correction step: 

The correction step is repeated for all measurements received in the current time step: 

1. Measurement prediction 

�̂�(𝑘) = ℎ(𝑥(𝑘)),         (33) 

where 𝑧 refers to a speed or flow measurement and ℎ refers to the relevant speed or 

flow measurement function, calculated at the “a priori” state estimate. 

 

2. Kalman gain 

𝐾(𝑘) = 𝛴(𝑘) ∙ 𝐻𝑇(𝑘) ∙ [𝐻(𝑘) ∙ 𝛴(𝑘) ∙ 𝐻𝑇(𝑘) + 𝜉 + 𝛾]−1    (34) 

The Kalman gain is a vector that works as a regulator between the “a priori” estimate of 

the state and the received measurement. Based on the “knowledge” it has accumulated 

in the error covariance matrix and the uncertainties of the process and measurement, it 

decides on which of the two values to give more weight to: the estimate or the 

measurement. 

 

3. State estimate update 

𝑥(𝑘) = 𝑥(𝑘) + 𝐾(𝑘) ∙ (𝑧(𝑘) − �̂�(𝑘))      (35) 

The difference between the measurement value and the predicted measurement 

multiplied by the Kalman gain vector is added to the “a priori” state estimate, in order 

to correct the state with the results of the fusion of this specific measurement. This 

updated state estimate is constantly updated after each measurement of the current 

time step is assimilated. 
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4. Error covariance update 

𝛴(𝑘) = (𝐼 − 𝐾(𝑘) ∙ 𝐻(𝑘)) ∙ 𝛴(𝑘)       (36) 

The error covariance matrix is similarly updated after each measurement is fused. 

 

The last resulting state estimate (called the “a posteriori” state estimate) represents the 

updated state after fusing all measurements available in the current time step. This 

corrected “a posteriori” state estimate will be used as the initial state of the next time step. 

The same applies to the error covariance matrix as well. 

 

Thresholds: 

After all observations have been assimilated, the resulting state variables must be restricted 

within reasonable margins, in order to prevent the estimation from significantly diverging 

from the actual solution. As an example, the values of the densities need to be non-negative 

and lower than the maximum density value (0 ≤ 𝜌𝑖 ≤ 𝑘𝑗). Therefore, if a density value is 

calculated to be, for example, 185 vehicles/km and the maximum density value is set to be 

180 vehicles/km, then the calculated density value will be lowered to 180 vehicles/km. 

 

At the end of this process, the resulting values of the state elements are retained as the 

state of the system for the current time step. The process continues with the next time step, 

using these values as the initial state for the next time step. 

 

 

4.8. Description of the program flow 
 

The method described in this chapter is programmed in Matlab and OmniTRANS (in the form 

of Ruby scripts). OmniTRANS runs the simulation per second for one minute, a Matlab 

program fuses the available measurements and feeds the updated state values back to 

OmniTRANS for the simulation of the next time step. The process is automated using a 

control character scheme, where a special character is written in a text file, which signifies to 

these programs when they should pause and resume running. 

 

The process begins by running a “start job” in OmniTRANS, which sets the initial 

fundamental diagram parameters in the network links and then proceeds with running the 

first minute of the simulation. When the simulation is over, OmniTRANS creates a file 

containing a database dump of the state values and other parameters used in the equations 

(e.g. flows from the origins, downstream densities etc.) for every second of simulation and a 

save state file containing the state of the last and previous second of simulation. It then 

starts Matlab and writes a specific control character in the control text file, which signifies 

that OmniTRANS has finished running. 

 

After the Matlab program is initialized and the network and the relevant equations are 

loaded, Matlab reads the file containing the database dump of the simulation and from this 

data it forms the initial state vector for the EKF and the parameter vectors required for the 

calculations, which include the downstream densities, the origin flows, the factors required 
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for junction modelling (outflow limit factors and inflow reduce factors). Using these values, 

the EKF algorithm runs, fusing the measurements that belong to the current time step, and 

the resulting updated values are checked if they are within reasonable thresholds (e.g. no 

value can be negative, all densities have to be lower than the maximum density etc.). If not, 

they are set within the defined limits. 

 

The updated values of the densities and speeds, as well as the calculated values of the flows, 

using the updated values of the densities and speeds and a possible outflow limit factor, 

replace the relevant values for the speeds, densities and flows in the OmniTRANS save state 

file. The updated fundamental diagram parameters are written in a separate CSV file. Finally, 

a control character enabling OmniTRANS to proceed is written in the control text file. 

 

OmniTRANS then proceeds with reading the file containing the updated fundamental 

diagram parameters and updates the relevant values of the links in the network. It then 

reads the updated save state file and proceeds with the simulation of the next minute, using 

the data from the save state file as the initial state. 

 

The process continues for the desired number of time steps. After the last time step, a 

special control character is written in the control text file, which instructs the OmniTRANS 

job to stop running and the Matlab program to proceed with calculating performance 

indicators and designing graphs. 

 

 

4.9. Numerical examples 
 

In order to help the reader understand the developed methodology, some numerical 

examples are provided, where the formulation of the equations and the state vector is 

presented. In addition, the numerical calculations for the first time step are made, in order 

to illustrate the calculation process. 

 

4.9.1. Network consisting of one link and fundamental diagram parameters 

estimation 

 

For the first numerical example, we consider a network that consists of only one link, as 

shown in Figure 6. The link consists of one lane and its length is 1 km. For this link, a fixed 

inflow is considered, with a value of 𝑞𝑖𝑛=1000 veh/h. The time step of the simulation is set 

to 1 second. 

The full state vector in this example contains the density (𝜌𝑚) and speed (𝜐𝑚) of the link, as 

well as the fundamental diagram parameters (𝑣𝑓𝑟𝑒𝑒, 𝑓𝑐𝑎𝑝 and 𝜐𝑐𝑎𝑝). Therefore, the full 

state vector is the following: 

𝑥 = (𝜌𝑚, 𝜐𝑚, 𝜐
𝑓𝑟𝑒𝑒

, 𝑓
𝑐𝑎𝑝

, 𝜐
𝑐𝑎𝑝

)       (37) 
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Figure 6. Network consisting of one link. 

 

The density propagation equation is based on (14), after replacing the values for the 

duration of the time step 𝑇, number of lanes 𝜆 and length of the link 𝐿, as well as the term 

𝜌𝑖−1(𝑘) ∙ 𝜐𝑖−1(𝑘) ∙ 𝜆𝑖−1 with 1000, which is the value of 𝑞𝑖𝑛: 

𝜌𝑚(𝑘 + 1) = 𝜌𝑚(𝑘) +
1

3600
∙ (1000 − 𝜌𝑚(𝑘) ∙ 𝜐𝑚(𝑘)) + 𝜉𝑞(𝑘)   (38) 

 

In order to avoid complex equations in this example, a much simpler speed equation is used, 

which has been randomly setup, simply making sure that it contains all fundamental diagram 

parameters in it: 

𝜐𝑚(𝑘 + 1) = 𝜐𝑚(𝑘) +
𝑓

𝑐𝑎𝑝

𝜐
𝑓𝑟𝑒𝑒

∙𝜐
𝑐𝑎𝑝  + 𝜉𝜐(𝑘)     (39) 

Therefore, the full state transition model can be described as: 

[
 
 
 
 
 

𝜌
𝑚
(𝑘 + 1)

𝜐𝑚(𝑘 + 1)

𝜐
𝑓𝑟𝑒𝑒

(𝑘 + 1)

𝑓
𝑐𝑎𝑝

(𝑘 + 1)

𝜐
𝑐𝑎𝑝

(𝑘 + 1) ]
 
 
 
 
 

=

 
 
 
 
 
 
 
 𝜌𝑚(𝑘) +

1

3600
∙ (1000 − 𝜌𝑚(𝑘) ∙ 𝜐𝑚(𝑘))

𝜐𝑚(𝑘) +
𝑓

𝑐𝑎𝑝
(𝑘)

𝜐
𝑓𝑟𝑒𝑒

(𝑘)∙𝜐
𝑐𝑎𝑝

(𝑘)

𝜐
𝑓𝑟𝑒𝑒

(𝑘)

𝑓
𝑐𝑎𝑝

(𝑘)

𝜐
𝑐𝑎𝑝

(𝑘)  
 
 
 
 
 
 
 

+

[
 
 
 
 
 

𝜉𝑞(𝑘)

𝜉𝜐(𝑘)

𝜉𝜐𝑓𝑟𝑒𝑒(𝑘)

𝜉𝑓𝑐𝑎𝑝(𝑘)

𝜉𝜐𝑐𝑎𝑝(𝑘) ]
 
 
 
 
 

 (40) 

The Jacobian 𝐹 with respect to the state 𝑥 of the state transition function 𝑓 is a 5x5 matrix: 

𝐹 = 

1 −
𝜐𝑚

3600
 −

𝜌𝑚

3600
 0 0 0 

0 1 −
𝑓

𝑐𝑎𝑝

(𝜐
𝑓𝑟𝑒𝑒

)2 ∙ 𝜐
𝑐𝑎𝑝

 
1

𝜐
𝑓𝑟𝑒𝑒

∙ 𝜐
𝑐𝑎𝑝

 −
𝑓

𝑐𝑎𝑝

(𝜐
𝑐𝑎𝑝

)2 ∙ 𝜐
𝑓𝑟𝑒𝑒

 

 0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

(41) 

The relevant measurement functions for the speed and flow are the following: 

ℎ𝑣𝑚
(𝑘) = 𝑣𝑚(𝑘) + 𝛾𝑚

𝜐 (𝑘)       (42) 

ℎ𝑞𝑚
(𝑘) = 𝜌𝑚(𝑘) ∙ 𝜐𝑚(𝑘) + 𝜉𝑞(𝑘) + 𝛾𝑚

𝑞
(𝑘)     (43) 
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The Jacobians of the measurement functions are the following: 

𝐻𝑣 = (0, 1, 0, 0, 0)        (44) 

𝐻𝑞 = (𝑣𝑚, 𝜌𝑚, 0, 0, 0)        (45) 

The standard deviations for the uncertainties of the process and the measurements are set 

to 𝜉𝑞 = 𝜉𝜐 = 𝛾𝑚
𝜐 = 𝛾𝑚

𝑞
= 0.25 and for the uncertainties of the fundamental diagram 

parameters to 𝜉𝜐𝑓𝑟𝑒𝑒 = 𝜉𝑓𝑐𝑎𝑝 = 𝜉𝜐𝑐𝑎𝑝 = 1. 

The process noise covariance matrix 𝑇 = diag(𝜉𝑞 , 𝜉𝜐, 𝜉𝜐𝑓𝑟𝑒𝑒 , 𝜉𝑓𝑐𝑎𝑝, 𝜉𝜐𝑐𝑎𝑝) =  

= diag(0.25, 0.25, 1, 1, 1). 

The EKF is initialized with the following settings: 

Initial state: 𝑥(0) = (19.9, 50, 49, 1610, 34) T 

Initial covariance matrix 𝛴(0) = diag(1) 

The example measurements that will be used for the first time step are the following: 

𝑧𝑞(1) = 1020 and 𝑧𝜐(1) = 48. 

Prediction step 

The state estimate propagation for the first time step 𝑥(1) is given by (40), by replacing the 

values of the initial state 𝑥(0). The resulting state is: 

𝑥(1) = (19.9014, 50.9664, 49, 1610, 34) T. 

The Jacobian 𝐹 calculated at 𝑥(1) is calculated from (41): 

𝐹 =  

0.9858 −0.0055 0 0 0 

0 1 −0.0197 0.0006 −0.0284 
 0 0 1 0 0 

0 0 0 1 0 

0 0 0 0 1 

The error covariance propagation (𝛴) is given by (32): 

𝛴 =  

1.2219 −0.0055 0 0 0 

-0.0055 1 −0.0197 0.0006 −0.0284 
 0 −0.0197 2 0 0 

0 0.0006 0 2 0 

0 −0.0284 0 0 2 
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Correction step 

The application of the correction step must be repeated twice, as there are measurements 

of both the speed and the flow of the link. 

Starting with the flow measurement, the process begins with the prediction of the 

measurement from the measurement functions: 

�̂�𝑞(1) = 𝜌𝑚(1) ∙ 𝜐𝑚(1) = 19.9014 ∙ 50.9664 = 1014.3veh/h 

The Jacobian of the flow measurement function from (45) is: 

𝐻𝑞 = (𝑣𝑚, 𝜌𝑚, 0, 0, 0) = (50.9664, 19.9014, 0, 0, 0) 

The Kalman gain is calculated from (34): 

𝐾 = [0.0170, 0.0067, -0,0001, 0.000003, -0.000155]T 

The state estimate update is calculated from (35): 

𝑥(1) = [19.9982, 51.0047, 48.9994, 1610.00002, 33.9991] T 

The error covariance matrix 𝛴 is calculated from (36): 

𝛴 =  

0.1657 −0.4238 0.0067 -0.000203 0.0096 

-0.4238 1.0855 −0.0171 0.00052 −0.0246 
 0.0067 −0.0171 2 0.0000013 -0.0000607 

-0.000203 0.00052 0.0000013 2 0.00000185 

0.0096 −0.0284 -0.0000607 0.00000185 1.9999 

The same process is repeated for the fusion of the speed measurements, using the above 

new values for the 𝑥(1) and 𝛴 after fusion of the flow measurement: 

�̂�𝜐(1) = 𝜐𝑚(1) = 51.0047𝑘𝑚/h 

𝐻𝑣 = (0, 1, 0, 0, 0) 

𝐾 = [-0.2673, 0.68465, -0.010773, 0.000328, -0.015526]T 

𝑥(1) = [20.8014, 48.9475, 49.032, 1609.99903, 34.046] T 
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𝛴 =  

0.0524 −0.1337 0.0021 -0.000064 0.0030 

−0.1337 0.3423 −0.0054 0.000164 −0.0078 
0.0021 −0.0054 1.9998 0.000007 -0.000326 

-0.000064 0.000164 0.000007 2 0.00001 

0.0030 −0.0078 -0.000326 0.00001 1.9995 

After fusing all measurements, the resulting value of 𝑥 is the “a posteriori” estimate of the 

traffic state, the corrected state for the first time step. This value of the state and the 

resulting value of 𝛴 are used as the respective initial values for the next time step. 

Therefore, the values 𝑥(1) = 𝑥(1) = [20.8014, 48.9475, 49.032, 1609.99903, 34.046] T and 

𝛴(1) = 𝛴 are the corrected state for the first time step. The process continues with the next 

time step, where these values are used for the “a priori” state estimate of the second time 

step. 

 

4.9.2. Network consisting of two links, no fundamental diagram parameters 

estimation 

 

For the second numerical example, we consider a network consisting of two links, as shown 

in Figure 7. The links consist of one lane and their length is 1 km each. For the first link, a 

fixed inflow is considered, with a value of 𝑞𝑖𝑛=1000 veh/h. The time step of the simulation is 

set to 1 second. In this example we omit the fundamental diagram parameters and use a 

simpler speed equation for simplicity reasons. 

The full state vector in this example contains the densities (𝜌1 and 𝜌2) and speeds (𝜐1 and 

𝜐2) of the links. Therefore, the full state vector is the following: 

𝑥 = (𝜌1, 𝜐1, 𝜌2, 𝜐2)        (46) 

 

The density propagation equations are based on (14), after replacing the values for the 

duration of the time step 𝑇, number of lanes 𝜆 and length of the link 𝐿, as well as the term 

𝜌𝑖−1(𝑘) ∙ 𝜐𝑖−1(𝑘) ∙ 𝜆𝑖−1 with 1000, which is the value of 𝑞𝑖𝑛 for the first link: 

𝜌1(𝑘 + 1) = 𝜌1(𝑘) +
1

3600
∙ (1000 − 𝜌1(𝑘) ∙ 𝜐1(𝑘)) + 𝜉𝑞(𝑘)   (47) 

𝜌2(𝑘 + 1) = 𝜌2(𝑘) +
1

3600
∙ (𝜌1(𝑘) ∙ 𝜐1(𝑘) − 𝜌2(𝑘) ∙ 𝜐2(𝑘)) + 𝜉𝑞(𝑘)  (48) 

 

 

 

 

 
Figure 7. Network consisting of two links. 
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In order to avoid complex equations in this example, too, a simpler speed equation is used, 

keeping only the convection term. For the first link, a constant upstream speed of 50 km/h is 

assumed: 

𝜐1(𝑘 + 1) = 𝜐1(𝑘) +
1

3600
∙ 𝜐1(𝑘) ∙ (50 − 𝜐1(𝑘)) + 𝜉𝜐(𝑘)   (49) 

𝜐2(𝑘 + 1) = 𝜐2(𝑘) +
1

3600
∙ 𝜐2(𝑘) ∙ (𝜐1(𝑘) − 𝜐2(𝑘)) + 𝜉𝜐(𝑘)   (50) 

Therefore, the full state transition model can be described as: 

[
 
 
 
 
𝜌

1
(𝑘 + 1)

𝜐1(𝑘 + 1)
𝜌

2
(𝑘 + 1)

𝜐2(𝑘 + 1)
]
 
 
 
 

=

 
 
 
 
 
 
 𝜌1(𝑘) +

1

3600
∙ (1000 − 𝜌1(𝑘) ∙ 𝜐1(𝑘))

𝜐1(𝑘) +
1

3600
∙ 𝜐1(𝑘) ∙ (50 − 𝜐1(𝑘)) 

𝜌2(𝑘) +
1

3600
∙ (𝜌1(𝑘) ∙ 𝜐1(𝑘) − 𝜌2(𝑘) ∙ 𝜐2(𝑘))

𝜌2(𝑘) +
1

3600
∙ (𝜌1(𝑘) ∙ 𝜐1(𝑘) − 𝜌2(𝑘) ∙ 𝜐2(𝑘))

 
 
 
 
 
 
 

+

[
 
 
 
 
𝜉𝑞(𝑘)

𝜉𝜐(𝑘)

𝜉𝑞(𝑘)

𝜉𝜐(𝑘)
]
 
 
 
 

 (51) 

The Jacobian 𝐹 with respect to the state 𝑥 of the state transition function 𝑓 is a 4x4 matrix: 

𝐹 = 

1 −
𝜐1

3600
 −

𝜌1

3600
 0 0 

0 1.0139 - 
𝜐1

3600
 0 0 

 
𝜐1

3600
 

𝜌1

3600
 1 −

𝜐2

3600
 −

𝜌2

3600
 

0 
𝜐2

3600
 0 

𝜐1

3600
−

𝜐2

1800
+ 1 

(52) 

The relevant measurement functions for the speed and flow are the following: 

ℎ𝑣1
(𝑘) = 𝑣1(𝑘) + 𝛾𝜐 (𝑘)        (53) 

ℎ𝑣2
(𝑘) = 𝑣2(𝑘) + 𝛾𝜐 (𝑘)        (54) 

ℎ
𝑞1

(𝑘) = 𝜌1(𝑘) ∙ 𝜐1(𝑘) + 𝜉𝑞(𝑘) + 𝛾
𝑞
(𝑘)     (55) 

ℎ
𝑞2

(𝑘) = 𝜌2(𝑘) ∙ 𝜐2(𝑘) + 𝜉𝑞(𝑘) + 𝛾
𝑞
(𝑘)     (56) 

 

The Jacobians of the measurement functions are the following: 

𝐻𝑣1 = (0, 1, 0, 0)         (57) 

𝐻𝑣2 = (0, 0, 0, 1)         (58) 

𝐻𝑞1 = (𝑣1, 𝜌1, 0, 0)        (59) 

𝐻𝑞2 = (0,0, 𝑣2, 𝜌2)        (60) 

The standard deviations for the uncertainties of the process are set to 𝜉𝑞 = 𝜉𝜐 = 0.25  and 

for the uncertainties of the measurements to 𝛾𝜐 = 𝛾𝑞 = 0.5. 
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The process noise covariance matrix 𝑇 = diag(𝜉𝑞 , 𝜉𝜐, 𝜉𝑞 , 𝜉𝜐) = diag(0.25, 0.25, 0.25, 0.25). 

The EKF is initialized with the following settings: 

Initial state: 𝑥(0) = (19.9, 49.9, 25, 49) T 

Initial covariance matrix 𝛴(0) = diag(1) 

The example measurements that will be used for the first time step are the following: 

𝑧𝑞1(1) = 1020, 𝑧𝜐1(1) = 45  for link 1 and 𝑧𝑞2(1) = 1050, 𝑧𝜐2(1) = 48  for link 2. 

Prediction step 

The state estimate propagation for the first time step 𝑥(1) is given by (51), by replacing the 

values of the initial state 𝑥(0). The resulting state is: 

𝑥(1) = (19.9019, 49.9014, 24.9356, 49.0123) T. 

The Jacobian 𝐹 calculated at 𝑥(1) is calculated from (52): 

𝐹 =  

0.9861 −0.0055 0 0 

0 0.9862 0 0 
0.0139 0.0055 0.9864 -0.0069 

0 0.0136 0 0.9866 

The error covariance propagation (𝛴) is given by (32): 

𝛴 =  

1.2225 −0.0055 0.0136 -0.00007527 

-0.0055 1.2225 0.0055 0.0134 
0.0136 0.0055 1.2232 -0.0068 

-0.00007527 0.0134 -0.0068 1.2236 

 

Correction step 

The application of the correction step must be repeated four times, as there are 

measurements of the speeds and flows of both links. 

Starting with the speed measurement of link 1: 

The measurement value received from the sensor is 𝑧𝜐1(1) = 45 km/h. 

The prediction of the measurement from the measurement function is �̂�𝜐1(1) = 𝜐1(1) =

49.9014𝑘𝑚/h. 
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The Jacobian of the speed measurement function from (57) is: 

𝐻𝜐1 = (0, 1, 0, 0, 0) 

The Kalman gain is calculated from (34): 

𝐾 = [-0.0028, 0.6198, 0.0028, 0.0068]T 

The state estimate update is calculated from (35): 

𝑥(1) = [19.9155, 46.8636, 24.9220, 48.9789] T 

The error covariance matrix 𝛴 is calculated from (36): 

𝛴 =  

1.2225 −0.0021 0.0137 -0.000038 

-0.0021 0.4648 0.0021 0.0051 
 0.0137 0.0021 1.2232 -0.0068 

-0.000038 0.0051 -0.0068 1.2235 

The same process is repeated for the fusion of the speed measurement of link 2, using the 

above new values for the 𝑥(1) and 𝛴 after fusion of the speed measurement of link 1: 

𝑧𝜐2(1) = 48𝑘𝑚/ℎ 

�̂�𝜐2(1) = 𝜐2(1) = 48.9789𝑘𝑚/h 

𝐻𝑣2 = (0, 0, 0, 1) 

𝐾 = [-0.000019, 0.0026, -0.0034, 0.6200]T 

𝑥(1) = [19.9155, 46.8611, 24.9254, 48.3720] T 

𝛴 =  

1.2225 −0.0021 0.0137 -0.000015 

-0.0021 0.4648 0.0021 0.0019 
 0.0137 0.0021 1.2232 -0.0026 

-0.000015 0.0019 -0.0026 0.4650 

Fusion of flow measurement of link 1, using the above new values for the 𝑥(1) and 𝛴: 

𝑧𝑞1(1) = 1020𝑣𝑒ℎ/ℎ 

�̂�𝑞1(1) = 𝜌1𝜐1(1) = 933.2624𝑣𝑒ℎ/h 

𝐻𝑞1 = (𝑣1, 𝜌1, 0, 0) = (46.8611, 19.9155, 0, 0) 

𝐾 = [0.0200, 0.0032, 0.00024, 0.00001325]T 

𝑥(1) = [21.6481, 47.1383, 24.9460, 48.3732] T 

𝛴 =  

1.2225 −0.0021 0.0137 -0.000015 

-0.0021 0.4648 0.0021 0.0019 
 0.0137 0.0021 1.2232 -0.0026 

-0.000015 0.0019 -0.0026 0.4650 

Fusion of flow measurement of link 2, using the above new values for the 𝑥(1) and 𝛴: 
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𝑧𝑞2(1) = 1050𝑣𝑒ℎ/ℎ 

�̂�𝑞2(1) = 𝜌2𝜐2(1) = 1206.72𝑣𝑒ℎ/h 

𝐻𝑞2(1) = (0, 0, 𝑣2, 𝜌2) = (0, 0, 48.3732, 24.9460) 

𝐾 = [-0.0000055, 0.000013, 0.0188, 0.0036]T 

𝑥(1) = [21.6490, 47.1363, 22.0018, 47.8015] T 

𝛴 =  

0.0790 −0.1850 0.000366 -0.00071 

-0.1850 0.4355 −0.00086 0.0017 
 0.000366 −0.00086 0.1128 -0.2181 

-0.00071 0.0017 -0.2181 0.4231 

After fusing all measurements, the resulting value of 𝑥 is the “a posteriori” estimate of the 

traffic state, the corrected state for the first time step. This value of the state and the 

resulting value of 𝛴 are used as the respective initial values for the next time step. 

Therefore, the vector 𝑥(1) = 𝑥(1) = [21.6490, 47.1363, 22.0018, 47.8015]T is the corrected 

state for the first time step and 𝛴(1) = 𝛴 is the covariance matrix after the first time step. 

The process continues with the next time step, where these values are used for the “a 

priori” state estimate of the second time step and the error covariance propagation of the 

prediction step (𝑥(2) and 𝛴(2)). 
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5. Validation 
 

In this chapter, the performance of the developed model is assessed. The first step in this 

process is the verification of the model, by confirming that all equations and computations 

are properly implemented into the model. The second step is the validation of the model, 

which examines if the model accurately represents the real system. It is achieved through a 

series of tests using artificial measurements. The results of the tests are thoroughly analyzed 

and discussed at the end of the chapter. 

 

5.1. Verification 

The first step to be taken before proceeding with the validation of the model is the 

Verification step. In this step, the extent to which the concept described in the model has 

been correctly transferred to the program is examined. It includes the verification of the 

individual equations, as well as their correct implementation in the code. However, it must 

be mentioned that verification only ensures that there are no unintentional 

computational/implementation errors in the programmed model. It does not evaluate the 

accuracy of the structure or results of the model, which is assessed in the validation step 

that follows. 

The developed code has been extensively documented and commented, describing what 

each part of the code intends to do and how. This practice facilitates checking of the code by 

the programmer him-/herself, as well as by other people and/or parties, for robustness and 

accuracy and makes identification of errors easier. 

In the case of the developed model, which relies on both Streamline and a custom-coded 

Matlab program, it is additionally important to verify that the equations used in both 

Streamline and Matlab are the same. A possible difference between the two would add an 

additional error to the model results. By running the model without the use of 

measurements and comparing the values received from Streamline and the values 

calculated by the equations used in Matlab, some very minor differences in the results are 

observed, which are attributed to roundings taking place in the calculations. The maximum 

differences observed are smaller than half a thousandth of a unit (<0.0005, e.g. if a speed 

calculated by Streamline is 49.9920 km/h, the relevant result received by Matlab will be 

between 49.9915 and 49.9925 km/h). Since the resulting differences are very small, they 

have practically no effect on the results and they may safely be ignored. 

The main causes for these differences between the Streamline and Matlab calculations are 

considered to be the following: 

• The major cause is the fact that the junction modelling part of Streamline is 

simulated using appropriate calculated factors, as described in the previous chapter. 

This approach inserts additional rounding to the calculations both when the factors 
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are calculated and when the values of e.g. speed and density are calculated using 

these rounded factors. 

• An additional minor cause is the use of the save state functionality of OmniTRANS to 

exchange data with Matlab, which provides rounded numbers to the 6th decimal 

digit. Combined with the relatively long speed equations leads to slight, but 

negligible inaccuracies. 

The advantage of preserving junction modelling when modelling an urban network 

significantly outweighs the addition of roundings in the calculations. Therefore, these slight 

differences are only mentioned as results of the verification process, but are practically 

negligible, as the resulting differences are minor. 

 

5.2. Validation 

Finding an adequate validation scheme for a model that uses real measurements is not an 

easy task. The reason is that there is no “ground truth” to compare the results of the model 

with, in order to evaluate its performance. The smaller the difference between the 

calculated values and the relevant “ground truth” values, the more successful the model is 

at representing the actual situation. The vast majority of other work in the field relies on 

artificial data/measurements to produce “ground truth” data, obtained e.g. from a 

microscopic simulation (e.g. Duret et al., 2017, Fountoulakis et al., 2017, Nantes et al., 2016, 

Sunderrajan et al., 2016 etc.). A microscopic simulation can provide all kinds of data, 

measurements and comparisons to rely upon, in order to validate the results of the model. 

On the other hand, when using real-life data there is no other information at the 

researcher’s disposal, apart from the actual measurement values, as received from the 

installed sensors. 

The validity of the developed model can be supported theoretically, based on the fact that 

the model builds on already validated theories and methodologies that are widely accepted 

and adopted by many researchers in the field, as has already been mentioned in chapter 2. 

Streamline is based on the METANET model, which together with the EKF algorithm 

implemented in the developed Matlab program, are acknowledged and used by 

professionals and researchers in the field for decades. More specifically, the incremental 

Extended Kalman Filtering method implemented in the model, presented by Nantes et al. 

(2016), is in effect a slight modification of the EKF method. This method and the additional 

assumptions made for it (e.g. the independence of each measurement) are validated by the 

authors using a microscopic simulation to produce ground truth and sensor data to compare 

with, yielding satisfactory results. Therefore, it can be claimed that in terms of face validity 

(Eddy et al., 2012), the developed model is valid because it is based on already validated 

models and methodologies. What remains to be assessed is how this particular setup 

performs in practice. 
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The validation scheme selected for this specific model will be based on artificial 

measurements. The reason is that the use of artificial measurements provides the necessary 

controlled environment and the opportunity to examine the impact each uncertainty 

parameter has on the accuracy of the estimation. Therefore, the use of artificial 

measurements provides more options and flexibility for the validation of the method. The 

validation scheme, results and discussion is presented in the rest of this chapter. 

The performance evaluation is achieved by calculating the calculation of the root mean 

square error (RMSE) and/or mean absolute percentage error (MAPE) between estimated 

and “ground truth” values. The root mean square error is generally calculated as follows, 

with 𝑦𝑖  the “ground truth” value, �̂�𝑖  the respective estimated value through the model and 𝑛 

the number of estimated values: 

𝑅𝑀𝑆𝐸 = √
∑ (�̂�𝑖−𝑦𝑖)

2𝑛
𝑖=1

𝑛
        (61) 

The MAPE is calculated as follows: 

𝑀𝐴𝑃𝐸 = ∑
|�̂�𝑖−𝑦𝑖|

𝑦𝑖

𝑛
𝑖=1         (62) 

An overall RMSE and/or MAPE can be calculated as the average RMSE or MAPE for all links 

of the network (Wismans et al., 2014). 

The MAPE value gives an indication of a percentage error, which can give a first idea on its 

significance. The RMSE value gives an indication of the actual error value, allowing to draw a 

conclusion if the error is significant from a traffic engineer’s point of view. A combination of 

both values is required for a proper analysis. For example, a 50% MAPE for a traffic flow 

value on a link operating near capacity is a very unsuccessful result. However, this is not the 

case for the same MAPE value observed in a link with hardly any flow (Van Lint & Van 

Hinsbergen, 2012). A difference, e.g., of an estimate of a flow of 15 veh/h from a 

measurement of 10 veh/h leads to a MAPE value of 0.5 or 50%, which is very high. However, 

the actual impact of this error from a traffic engineer’s point of view is negligible, as the 

RMSE value of 5 veh/h is negligible. 

From each one of the validation tests, the links displaying the highest MAPE and RMSE error 

values are determined and possible reasons for their behavior is presented in the discussion 

section at the end of the chapter. 

 

5.3. Test network description 

For the validation using artificial measurements, a test network with known conditions was 

set up in OmniTRANS. It was designed so as to include all possible sequences of links (link-



34 
 

link, node-link, link-node, centroid-node, node-centroid), in order to be able to identify 

sequences for which state estimation could be particularly problematic. 

The test network consists of 30 links in total (15 bi-directional links, one lane each, 50m 

length), 7 centroids (entries to/exits from the network), two 4-way regulated intersections 

and one 3-way unregulated intersection (give way) and is depicted in Figure 8. The asterisks 

indicate the centroids and they are numbered with the blue-colored numbers preceded by 

C. The intersections are depicted using green-colored numbers, preceded by U for 

unregulated intersections and R for regulated intersections. The unregulated intersection U1 

is a “Give-way” intersection, with the priority set to the horizontal direction (1  3 and -3  

-1). The black-colored numbers on the right of each link direction display the link number. 

e.g. link 1 has a direction from left to right (from C1 to U1) and link -6 has a direction from 

top to bottom (from R1 to C3). 

An origin-destination (OD) matrix, which contains information on the trips going from each 

origin to each destination, is also needed for the simulation. In other words, in the OD matrix 

the demand to and from each centroid is set. Instead of using a fixed OD matrix for the 

whole simulation period, it was decided to use two different OD matrices, one having a 

higher demand and the other one having a lower demand, in order to introduce variation. 

Simulation for minutes 1-20 and 41-60 is run using the higher-demand OD matrix, while 

simulation for minutes 21-40 uses the lower-demand OD matrix.  

For the two regulated intersections, fixed traffic light plans were used, even though the 

developed methodology allows for any type of traffic light timings, either static or dynamic. 

The reason is that the traffic light timings together with the OD matrices are set accordingly, 

in order to ensure that there is congestion on specific sections of the network, while the rest 

of the network operates in free flow conditions. The OD matrices and traffic light plans set 

for the test network are presented in Appendix A1 and A4 respectively. 

 

 

 

Figure 8. The test network. 
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The fundamental diagram parameters are set accordingly for an urban network: Free flow 

speed is set to 50 km/h, speed at capacity to 35 km/h and capacity per lane to 1650 veh/h. 

All links of the network share the same fundamental diagram parameters. 

Finally, for the system to work, a minimal uncertainty value for the uncertainties for the 

process and measurements (𝜉𝑞 , 𝜉𝜐, 𝛾𝑞 , 𝛾𝜐) is required to be set. Therefore, the default 

values for the standard deviations for 𝜉𝑞 , 𝜉𝜐, 𝛾𝑞 , 𝛾𝜐 are set to a low value (0.1). This value 

was set as an adequately low value that did not cause calculation problems in any of the 

tests. Previous tests with zero or lower values (e.g. 0.01) led to problems in all or some tests, 

depending on the setup. 

 

5.4. Individual tests 

The validation process begins by testing the effect each one uncertainty parameter has on 

the estimation. The uncertainty parameters in the developed methodology are the 

following: 

- Base case with all uncertainty parameters set equal to the ground truth 

- Correctness of measurement values (uncertainty about the actual values received, 

error on the measurements due to inefficiencies of the sensors) 

- Availability of measurements 

- Correctness of the OD matrix used 

- Fundamental diagram parameters (correct or not, changing or not) 

In each of these tests, only one uncertainty parameter applies, as all other uncertainty 

parameters are kept identical to the ground truth, in order to capture the effect of the 

examined uncertainty parameter to the state estimation. 

The ground truth is created by running a one-hour simulation on the test network with the 

appropriate parameters, as required by the setup of each test. At the end of the simulation, 

the average speeds and densities per minute are collected. 

The artificial measurements are created following a similar approach: After the end of the 

simulation, matrices containing the average flows per minute for all turning links (flow 

measurements) and the average speeds per minute for all network links (speed 

measurements) are created. Depending on the setup of each test, a smaller sub-matrix 

containing the values of only the parameters required by the test is constructed. When 

required, random noise within a given threshold (±10%) is added to the measurement 

values. 
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5.4.1. Test 1: Base case scenario – no uncertainty parameters enabled 

This test forms the basis for comparison with the results of the tests that follow. In this test, 

no uncertainty parameters are enabled. Therefore, the OD matrix, fundamental diagram 

parameters and measurements used in the simulation are equal to the ground truth. 

Uncertainties for the process and measurements are set at a minimal value (0.1). Finally, 

speed measurements from all links of the network and flow measurements from all 

intersections are fused. 

Ideally the MAPE and RMSE for this test would be zero. However, this is not the case 

because of the minimal uncertainty that is required to be set for the system to run, as well 

as the amount of number roundings that take place in the process. Therefore, the expected 

results of this test are very low MAPE and RMSE values, that can be attributed to these 

causes. 

The results of the simulation are practically identical to the ground truth in most cases. As 

can be seen from the graphs in Figure 9 showing the results of the simulation for the density 

and speed of a random link of the network, all lines coincide (ground truth, simulation 

before correction and simulation after correction), as their differences are minor and 

practically not observable. 

 

 

 

Figure 9. Calculated state variables for link #12. 
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An exception is link 13 shown in Figure 10, on which we have set up a very high demand to 

create congestion. This very abrupt increase in density occurring in this link cannot be 

entirely accurately followed by the model, as shown in the graph by the different red and 

blue lines, indicating the corrected and ground truth values respectively. The same behavior 

is also observed after time step 40, when, after an interval of 20 time steps with a lower-

demand OD matrix, the previous higher-demand OD matrix is used again and congestion 

forms again. This behavior is generally observed in sharp increases or decreases particularly 

of the density and is thoroughly discussed in the discussion part of this chapter. 

The network MAPE and RMSE values are satisfactorily low, 5.5∙10-4 and 0.0381 respectively. 

By calculating separate network MAPE and RMSE values for the densities and speeds, the 

results are 0.0011 and 0.0539 for the densities, 7.9∙10-6 and 1.5∙10-4 for the speeds. 

The average RMSE values show that link 13 contributes to this RMSE more than all other 

links: the average RMSE value of link 13 over the whole simulation period is 0.9753, while 

the next highest RMSE value is 0.0176 (link -11). The same applies to the average MAPE 

value, where the relevant value for link 13 is 0.0076 and the next highest average MAPE is 

0.0009 (links -11 and -10). 

By calculating separate average MAPE and RMSE values per link, link 13 again shows the 

highest MAPE and RMSE values for both the densities and speeds. The average MAPE for the 

densities is 0.0149 (approximately 9 times higher than the second highest) and the average 

MAPE for the speeds is 0.0002 (approximately 30 times higher than the second highest). 

Similarly, the average RMSE for the densities is 1.3792 and the average RMSE for the speeds 

is 0.0026 (both values approximately 50 times higher than the second highest). 

 

Figure 10. Calculated state variables for link #13. 
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The results are presented in Table 1 that follows: 

Table 1: Results of test 1. 

TEST 1 Network Network 
(speeds) 

Network 
(densities) 

Max Average 
per link 

Max Average 
per link (υ) 

Max Average 
per link (ρ) 

MAPE 5.5∙10-4 7.9∙10-6 0.0011 0.0076 [13] 0.0002 [13] 0.0149 [13] 

RMSE 0.0381 1.5∙10-4 0.0539 0.9753 [13] 0.0026 [13] 1.3792 [13] 

 

 

5.4.2. Test 2: Error on the measurements and uncertainty values for the 

process and measurements 

The goal of this test is to identify the impact of the uncertainty of the measurements. As the 

sensors are not perfect, each measurement received possibly contains an error. In all other 

individual tests run, artificial measurements without error were used. However, it is 

considered important to examine how the model works when the measurements are not 

perfectly accurate, because this is what is always expected in a real-case scenario. 

The measurements were created with a random deviation from the ground truth of ±10%. 

Uncertainty standard deviation values for the process (flow and speed) and flow 

measurements were set to 0.5, while the uncertainty for the speed measurements was set 

to 1. This selection of setting a higher uncertainty is justified by the experience working with 

the real data available for the application of the methodology, which showed that the 

available Floating Car Data was less reliable. 

The results of the simulation are satisfactory, as they follow the ground truth well in most 

cases. The average situation, relatively common for all links of the network, is shown in 

Figure 11, showing the results of the simulation for the density and speed of a random link 

of the network. The red line, which expresses the corrected values follows well the blue line 

(ground truth). In the speeds section of the graph, it can also be observed that the corrected 

values are in the vast majority of time steps between the measurement and 

simulated/ground truth values. From the graphs, the differences in the values seem 

acceptably low. 

The exception of link 13 is in this test made more clear, as the errors on the measurements 

are causing a higher impact in this link, as shown in Figure 12. This is discussed in more detail 

in the discussion subchapter at the end of this chapter. 

The calculated error values are presented in Table 2. 
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Table 2: Results of test 2. 

TEST 2 Network Network 
(speeds) 

Network 
(densities) 

Max Average 
per link 

Max Average 
per link (υ) 

Max Average 
per link (ρ) 

MAPE 0.0277 0.0179 0.0375 0.0428 [13] 0.0274 [13] 0.0582 [13] 

RMSE 0.8257 0.8679 0.5019 2.8943 [13] 1.3490 [5] 3.7714 [13] 

 

 

Figure 11. Calculated state variables for link #12. 

 

Figure 12. Calculated state variables for link #13. 
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The maximum values are again almost all observed on link 13. The difference is that in this 

second test, the MAPE values of other links as well have values that approach those of link 

13. However, the average RMSE for the speeds of link 13 had one of the lowest values of all 

links in the network. This was expected, as link 13 is significantly more congested than all 

other links of the network and, thus, lower speeds are expected, as can be observed from 

the two graphs for links 12 and 13. Therefore, the RMSE as an indicator of the error as an 

absolute value, and not as a percentage, is expected to be lower. 

 

5.4.3. Test 3: Less measurements available 

The goal of such a test is to identify the impact to the estimation of the speeds and densities 

due to a limited availability of measurements. In the previous tests, speed measurements 

from all links of the network and directional flow measurements from all three intersections 

were used. As so many measurement points are unlikely to happen in a real-case scenario, it 

is important to examine if the estimation significantly deteriorates due to a lack of 

measurements. 

In this specific setup, this test cannot offer much insight to that direction, because the 

measurements are derived from the ground truth, without any error on the measurements 

added, and they are produced using the same model used for the actual simulation. With 

each measurement that is fused, the minor uncertainty parameters required for the running 

of the model (𝜉𝑞 = 𝜉𝜐 = 𝛾𝑞 =𝛾𝜐 = 0.1) and the roundings of the values that take place 

lead to a minor error being added. Therefore, in this test we are testing this hypothesis and 

expect to observe a slightly lower error compared to test 1, as we are fusing less 

measurements and all other uncertainty parameters are not enabled. The impact of the 

availability of less measurements will be made apparent when combining uncertainty 

parameters in the next subchapter, as the availability of less measurements will offer fewer 

opportunities to improve estimation and “correct” the errors introduced due to other 

enabled uncertainty parameters. 

As in the previous tests, the ground truth was created using the standard OD matrix 

previously mentioned and the standard fundamental diagram parameters (𝑣𝑓𝑟𝑒𝑒=50 km/h, 

𝑓𝑐𝑎𝑝=1650 veh/h and 𝜐𝑐𝑎𝑝=35 km/h). The measurements were created from these ground 

truth values without adding any error and only a subset of all measurements was kept. 

Finally, the uncertainty standard deviation values (𝜉 and 𝛾) are set to their minimal values 

(0.1). 

This test could be performed in various ways. For example, a suggestion could be to 

randomly remove scattered measurements or to remove speed measurements from specific 

links or flow measurements from whole intersections. It was decided to run this test in 

consistence with data that could be available in a real case. Therefore, the measurements 

available are speed measurements of only one of the two directions of traffic and directional 

flow measurements from the regulated intersections of the network (R1 and R2). 
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As expected, the results regarding the error values are similar to those of the first test. In the 

resulting graphs, no difference between the ground truth and the corrected values can 

practically be observed. The results for link 13, which has always displayed the greatest 

variation, are also significantly more satisfactory, as can be seen in Figure 13. 

The calculated error values are presented in the table below: 

Table 3: Results of test 3. 

TEST 3 Network Network 
(speeds) 

Network 
(densities) 

Max Average 
per link 

Max Average 
per link (υ) 

Max Average 
per link (ρ) 

MAPE 0.0006 0.0006 0.0006 0.0090 [13] 0.0146 [13] 0.0034 [13] 

RMSE 0.0149 0.0158 0.0089 0.2199 [13] 0.2742 [13] 0.1032 [13] 

The maximum values are all observed on link 13. Similarly to test 1, the error values of link 

13 are significantly higher than those of the other links of the network. The difference 

compared to the error values of the other links in the network is high, but lower than the 

difference observed in test 1. 

 

 

 

 

Figure 13. Calculated state variables for link #13. 
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5.4.4. Test 4: Different OD matrix 

The goal of this test is to identify the impact a not-perfectly-calibrated OD matrix can have to 

the estimation of speed and density. This is also a scenario that is common in practice, as the 

OD matrix is set up using data from various sources and can reach high accuracy levels but it 

is unlikely that it can be considered an absolutely accurate representation of the ground 

truth. Therefore, a slight or even major deviation from the “ground truth” is always expected 

when working with a real network. 

As in the previous test, the ground truth was created using the standard fundamental 

diagram parameters (𝑣𝑓𝑟𝑒𝑒=50 km/h, 𝑓𝑐𝑎𝑝=1650 veh/h and 𝜐𝑐𝑎𝑝=35 km/h), which are kept 

constant for the whole simulation. The measurements were created from these ground 

truth values without adding any error to the relevant values. However, the values of the OD 

matrix that is used to produce the ground truth and measurements have been randomly 

altered within limits (±10%) (Appendix A2). The actual simulation is run using the OD matrix 

presented in chapter 5.3 (Appendix A1). Finally, the uncertainty standard deviation values (𝜉 

and 𝛾) are set to their minimal values (0.1). 

The calculated error values are presented in the table below: 

Table 4: Results of test 4. 

TEST 4 Network Network 
(speeds) 

Network 
(densities) 

Max Average 
per link 

Max Average 
per link (υ) 

Max Average 
per link (ρ) 

MAPE 0.0045 4.0∙10-6 0.0089 0.0119 [-5] 7.4∙10-5 [13] 0.0238 [-5] 

RMSE 0.1011 9.9∙10-5 0.1430 0.9242 [13] 0.0008 [13] 1.3070 [13] 

Most maximum values are observed on link 13. Differences between the ground truth and 

the corrected values are already evident from the graph (Figure 14). 

Links -5 and -6 both show similarly high MAPE values, but as they correspond to low values 

of densities, they are not accompanied by high RMSE values as well. Therefore, actual 

differences are not high enough to warrant a significant inaccuracy that would make a 

difference from a traffic engineer’s point of view. The insignificance of the errors in link -5 

can be seen in the relevant graph (Figure 15), where the lines of the corrected values and 

the ground truth practically coincide. 
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Figure 14. Calculated state variables for link #13. 

 

 

Figure 15. Calculated state variables for link #-5. 
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5.4.5. Test 5: Inaccurate fundamental diagram parameters 

The goal of this test is to check the impact of using slightly inaccurate fundamental diagram 

parameters to the estimation of the densities and speeds. As the fundamental diagram 

parameters are not directly measurable, this scenario of inaccurate fundamental diagram 

parameters is expected to occur in a real case. A second goal is to check if the fundamental 

diagram parameters are corrected over time. The results of the fundamental diagram 

parameter estimation are presented in chapter 5.7. 

The ground truth was created using the standard OD matrix (Appendix A1) and the standard 

fundamental diagram parameters of our test network (𝑣𝑓𝑟𝑒𝑒=50 km/h, 𝑓𝑐𝑎𝑝=1650 veh/h 

and 𝜐𝑐𝑎𝑝=35 km/h). The measurements were created from these ground truth values 

without adding any error to those values and with only the minimum required uncertainty 

for the system to run (𝜉𝑞 = 𝜉𝜐 =𝛾𝑞 =𝛾𝜐 = 0.1). 

The original fundamental diagram parameters on all links were altered within limits (±10%). 

Free flow speeds were set between 45 and 55 km/h, speeds at capacity between 32 and 38 

km/h and capacities per lane were set between 1500 and 1790 veh/h. The individual values 

set for each link can be found in Appendix A3. As in this test we want to enable changing of 

the fundamental diagram parameters for our system, we set the relevant standard deviation 

values of the fundamental diagram parameters to appropriate values 𝜉𝜐𝑓𝑟𝑒𝑒=𝜉𝜐𝑐𝑎𝑝 = 2 

and 𝜉𝑓𝑐𝑎𝑝 = 500. The selection of especially this very high value for the standard deviation of 

the capacity per lane is discussed in chapter 5.6.2, in which the performance of the system in 

estimating the fundamental diagram parameters is presented. All other uncertainty 

parameters are kept stable, with the same values as in the ground truth. 

The results of the estimation of the density and speed show satisfactory results. While 

initially larger differences are observed, especially on the links whose fundamental diagram 

parameters are further off the ground truth values, soon the estimation of the densities and 

speeds improves, as the fundamental diagram parameters (especially the free flow speed) 

are corrected over time. More on the evolution of the estimation of the fundamental 

diagram parameters is presented in chapter 5.6.2. 

The calculated error values for the calculation of the speeds and densities are presented in 

the table below: 

Table 5: Results of test 5. 

TEST 5 Network Network 
(speeds) 

Network 
(densities) 

Max Average 
per link 

Max Average 
per link (υ) 

Max Average 
per link (ρ) 

MAPE 0.0062 0.0072 0.0052 0.0209 [-10] 0.0312 [-10] 0.0159 [13] 

RMSE 0.3020 0.3588 0.0916 1.1089 [-10] 1.5488 [-10] 1.1511 [13] 
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Link -10 shows the highest maximum average MAPE and RMSE values. At the same time it is 

one of the links that had its initial fundamental diagram parameters (especially the free flow 

speed) furthest away from the ground truth values. As the free flow speed over time 

approached the ground truth value of 50 km/h, the estimation of speed and density 

improved as well. The same behavior can be observed on all links and it is even more 

evident on the most congested link 13. Comparing the density and speed evolution in time 

steps 1-10 with those of time steps 41-50, when the high-demand OD matrix is used, a much 

lower estimation error is observed in the second case, when the free flow speed is close to 

the ground truth value. The relevant graphs for the speed and density estimation of links -10 

and 13 are presented in Figures 16 and 17. 

 

 

 

 

 

 

 

 

Figure 16. Calculated state variables for link #-10. 
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Figure 17. Calculated state variables for link #13. 

 

5.5. Combinations 

Apart from the individual tests performed in the previous subchapter, three combinations 

between the uncertainty parameters were tested, in order to provide more insight on the 

combined effect of the parameters. The parameters to combine in these tests were selected 

based on situations most likely to encounter in a real-case scenario, as well as combinations 

where it was logically expected that the combination would significantly increase their 

individual impact on the estimation. Finally, a test with all uncertainty parameters enabled 

was run. The results for these tests are presented in the rest of this subchapter. 

 

5.5.1. Test 6: Inaccurate OD matrix and lower availability of 

measurements 

The combination of an inaccurate OD matrix with the lower availability of measurements is a 

combination that was expected to significantly increase the impact of the inaccurate OD 

matrix. This happens because, by fusing less measurements, there are less opportunities to 

correct and alleviate the effect of the OD matrix. In the individual test presented in 

subchapter 5.4.4, speed measurements of all links, as well as directional flow measurements 

from all equations were available in all time steps. In this test, speed measurements to only 

one direction (link #1, 3, -4, 7, 8, 9, 10, 11, 12 and -15) are fused in each time step. In 

addition, directional flow data from only the regulated intersections (R1 and R2) is available. 
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The fundamental diagram parameters remain fixed at their ground truth values and no error 

or uncertainty on the measurements is applied (the minor required values are used again, 

𝜉𝑞 = 𝜉𝜐 =𝛾𝑞 =𝛾𝜐 = 0.1). 

The calculated error values are presented in the table below: 

Table 6: Results of test 6. 

TEST 6 Network Network 
(speeds) 

Network 
(densities) 

Max Average 
per link 

Max Average 
per link (υ) 

Max Average 
per link (ρ) 

MAPE 0.0082 0.0027 0.0137 0.0563 [13] 0.0728 [13] 0.0397 [13] 

RMSE 0.1842 0.0495 0.2449 2.6359 [13] 1.0134 [13] 3.4414 [13] 

 

The highest error values are all observed on link 13. The relevant graph is presented in 

Figure 18. 

Contrary to the individual test presented in subchapter 5.4.4, no speed measurements for 

link 13 are available, leading to an increased error in the speed and, therefore in the density 

estimation as well. The fused speed measurements for link 13 in the individual test had 

helped alleviate the effect of the inaccurate OD matrix. In this combined test, the values are 

mostly corrected by the fusion of flow measurements of the regulated intersection R2, as 

well as from the correlations to other links as well. 

 

 

Figure 18. Calculated state variables for link #13. 
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5.5.2. Test 7: Inaccurate fundamental diagram parameters and 

error/uncertainty on the measurements 

This pair of uncertainty parameters was selected because they proved to have the highest 

impact on the estimation of the densities and speeds, based on the network MAPE and 

RMSE values calculated in the relevant individual tests. At the same time, as the 

fundamental diagram parameters are not directly measurable and the sensors providing the 

measurements are not perfect, it is expected in a real-case scenario to have slightly 

inaccurate fundamental diagram parameters and errors on the measurements. Therefore, 

this is another scenario that can be encountered in reality, while at the same time having 

great interest because of the high impact on the estimation already observed for these two 

parameters. 

The ground truth is created using the standard OD matrix (Appendix A1). The standard 

fundamental diagram parameters are also used (𝑣𝑓𝑟𝑒𝑒=50 km/h, 𝑓𝑐𝑎𝑝=1650 veh/h and 

𝜐𝑐𝑎𝑝=35 km/h), and they are kept constant for the creation of the ground truth. The 

measurements are created adding a random error of ±10%. Speed measurements from all 

links and directional flow measurements from all intersections are created to be used in the 

simulation. 

In the actual simulation, uncertainty standard deviation values for the process (flow and 

speed) and flow measurements are set to 0.5, while the uncertainty for the speed 

measurements was set to 1. The initial fundamental diagram parameters are set as in test 5 

(detailed table with all the fundamental diagram parameter values per link is provided in 

Appendix A3) and are allowed to change during the simulation according to the standard 

deviation values of 𝜉𝜐𝑓𝑟𝑒𝑒=𝜉𝜐𝑐𝑎𝑝 = 2 and 𝜉𝑓𝑐𝑎𝑝 = 500. The OD matrix in the simulation is 

kept the same as in the ground truth. 

The calculated error values are presented in the table below: 

Table 7: Results of test 7. 

TEST 7 Network Network 
(speeds) 

Network 
(densities) 

Max Average 
per link 

Max Average 
per link (υ) 

Max Average 
per link (ρ) 

MAPE 0.0374 0.0336 0.0411 0.0578 [-10] 0.0751 [-10] 0.0647 [2] 

RMSE 1.3320 1.6488 3.1849 3.1849 [13] 3.7378 [-10] 3.9400 [13] 

 

The links that show the highest error values are links -10 and 13, the same links that 

displayed the highest errors in the individual test of the fundamental diagram parameters (in 

5.4.5). An improvement over time is observed in this test, as well. However, the 

improvement is much slower, as is the convergence of the free flow speed. Therefore, the 

introduction of error and uncertainty for the measurements greatly reduces convergence 

speed. In the individual fundamental diagram parameter test, the free flow speed of almost 

all links had already reached the ground truth free flow speed value by the 30th time step. In 
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this test, very few links have managed to achieve converge at the 30th time step and by 

examining the speed of convergence, it appears that it would take 3 times the simulation 

horizon, in order for the free flow speed of all links to converge to their ground truth values. 

 

 

Figure 19. Calculated state variables for link #-10. 

 

 

Figure 20. Calculated state variables for link #13. 
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Therefore, the relevant graphs for the speeds and densities for these links (Figures 19 and 

20) show the gradual improvement over time in the estimation and a comparison with the 

same graphs of the individual test (Figures 16 and 17) shows the different in the 

improvement achieved over time, comparing the errors in speed and density estimation of 

time steps 1-10 with those of time steps 41-50. 

 

5.5.3. Test 8: Inaccurate fundamental diagram parameters and OD matrix 

 

The third parameter pair also represents a pair that can be found in a real-case scenario, as 

there is always uncertainty regarding the fundamental diagram parameters, which are not 

directly measurable, and the OD matrix, which is compiled using data from various sources 

and is not likely to be entirely accurate. 

The ground truth is created using the altered OD matrix (Appendix A2). The standard 

fundamental diagram parameters are also used (𝑣𝑓𝑟𝑒𝑒=50 km/h, 𝑓𝑐𝑎𝑝=1650 veh/h and 

𝜐𝑐𝑎𝑝=35 km/h), and they are kept constant for the creation of the ground truth. The 

measurements are created without adding any error. Speed measurements from all links 

and directional flow measurements from all intersections are created to be used in the 

simulation. 

In the actual simulation, the minor uncertainty standard deviation value of 0.1 is set to the 𝜉 

and 𝛾 values. The OD matrix used is the standard OD matrix (Appendix A1). The initial 

fundamental diagram parameters are set as in test 5 (Appendix A3) and are allowed to 

change during the simulation according to the standard deviation values of 𝜉𝜐𝑓𝑟𝑒𝑒=𝜉𝜐𝑐𝑎𝑝 =

2 and 𝜉𝑓𝑐𝑎𝑝 = 500. 

The calculated error values are presented in the table below: 

Table 8: Results of test 8. 

TEST 8 Network Network 
(speeds) 

Network 
(densities) 

Max Average 
per link 

Max Average 
per link (υ) 

Max Average 
per link (ρ) 

MAPE 0.0087 0.0072 0.0101 0.0193 [-10] 0.0312 [-10] 0.0304 [-6] 

RMSE 0.3409 0.3575 0.1592 1.1204 [-10] 1.5497 [-10] 1.4644 [13] 

 

The highest error values are mainly observed in link -10, similarly to the results of the 

individual fundamental diagram parameter test (in 5.4.5). The relevant graphs for this link 

are provided in Figure 21. It shows a gradual improvement over time, as can be seen more 

easily in the speed graph, which occurs as the free flow speed gradually converges to the 

ground truth value. Link -10 is the slowest to converge compared to other links in the 

network whose initial free flow speed values are equally far from the ground truth value. 

Such an example is link 3, whose free flow speed value appears to converge after 
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approximately 10-15 time steps, significantly faster than the 30-35 time steps required for 

link -10. This observation is further discussed in chapter 5.6. The relevant graph for link 3 is 

provided for comparison in Figure 22. 

 

Figure 21. Calculated state variables for link #-10. 

 

 

Figure 22. Calculated state variables for link #3. 
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5.5.4. Test 9: All uncertainty parameters combined 

The final test incorporates all uncertainty parameters. All these uncertainty parameters will 

be evident in the real case. Therefore, a test incorporating all parameters is an opportunity 

to test the performance of the developed model in a scenario that resembles real life but in 

a controlled environment. 

The ground truth is created using the altered OD matrix (Appendix A2). The standard 

fundamental diagram parameters are also used (𝑣𝑓𝑟𝑒𝑒=50 km/h, 𝑓𝑐𝑎𝑝=1650 veh/h and 

𝜐𝑐𝑎𝑝=35 km/h), and they are kept constant for the creation of the ground truth. The 

measurements are created adding a random error of ±10%. Speed measurements to only 

one direction (links #1, 3, -4, 7, 8, 9, 10, 11, 12 and -15) are fused in each time step. In 

addition, directional flow data from only the regulated intersections (R1 and R2) is available. 

In the actual simulation, uncertainty standard deviation values for the process (flow and 

speed) and flow measurements are set to 0.5, while the uncertainty for the speed 

measurements is set to 1. The initial fundamental diagram parameters are set as in test 5 

(Appendix A3) and are allowed to change during the simulation according to the standard 

deviation values of 𝜉𝜐𝑓𝑟𝑒𝑒=𝜉𝜐𝑐𝑎𝑝 = 2 and 𝜉𝑓𝑐𝑎𝑝 = 500. The OD matrix in the simulation is 

the standard OD matrix (Appendix A1), different to the one used in the ground truth by 

±10%. 

The calculated error values are presented in the table below: 

Table 9: Results of test 9. 

TEST 9 Network Network 
(speeds) 

Network 
(densities) 

Max Average 
per link 

Max Average 
per link (υ) 

Max Average 
per link (ρ) 

MAPE 0.0614 0.0595 0.0632 0.1763 [2] 0.1664 [2] 0.1862 [2] 

RMSE 2.2092 2.8653 0.7849 5.8914 [2] 8.3179 [2] 5.3015 [13] 

 

The highest error values for this test are mainly observed in link 2. In this link, the estimation 

of the free flow speed has failed (diverges from the ground truth value) leading to an 

increasing error. In general, the fundamental diagram parameter estimation seems to be 

failing in most links, as few links show a convergence of the free flow speed toward the 

ground truth value and still at a lower pace compared to the previous tests. The inability to 

estimate the free flow speed has a significant impact to the estimation, as most links of the 

network are in free flow conditions. The relevant graphs for the two links showing the 

highest error values (links #2 and #13) are presented in Figures 23 and 24. 

The network MAPE value of 0.0614 is the highest of all tests, as expected, but still low 

enough to support the claim that the developed model works sufficiently well for the 

estimation of the speeds and densities. The main source of problems appears to be the 
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inability to estimate the free flow speed, leading to an inaccurate speed and consequently a 

wrong density value. 

 

 

Figure 23. Calculated state variables for link #2. 

 

 

Figure 24. Calculated state variables for link #13. 
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For the reader’s convenience, the results of the MAPE and RMSE values from all tests are 

gathered in Table 10. 

Table 10: Aggregated results of all tests. 

TEST #  Network Network 
(speeds) 

Network 
(densities) 

Max Average 
per link 

Max Average 
per link (υ) 

Max Average 
per link (ρ) 

1 
MAPE 5.5∙10-4 7.9∙10-6 0.0011 0.0076 [13] 0.0002 [13] 0.0149 [13] 

RMSE 0.0381 1.5∙10-4 0.0539 0.9753 [13] 0.0026 [13] 1.3792 [13] 

2 
MAPE 0.0277 0.0179 0.0375 0.0428 [13] 0.0274 [13] 0.0582 [13] 

RMSE 0.8257 0.8679 0.5019 2.8943 [13] 1.3490 [5] 3.7714 [13] 

3 
MAPE 0.0006 0.0006 0.0006 0.0090 [13] 0.0146 [13] 0.0034 [13] 

RMSE 0.0149 0.0158 0.0089 0.2199 [13] 0.2742 [13] 0.1032 [13] 

4 
MAPE 0.0045 4.0∙10-6 0.0089 0.0119 [-5] 7.4∙10-5 [13] 0.0238 [-5] 

RMSE 0.1011 9.9∙10-5 0.1430 0.9242 [13] 0.0008 [13] 1.3070 [13] 

5 
MAPE 0.0062 0.0072 0.0052 0.0209 [-10] 0.0312 [-10] 0.0159 [13] 

RMSE 0.3020 0.3588 0.0916 1.1089 [-10] 1.5488 [-10] 1.1511 [13] 

6 
MAPE 0.0082 0.0027 0.0137 0.0563 [13] 0.0728 [13] 0.0397 [13] 

RMSE 0.1842 0.0495 0.2449 2.6359 [13] 1.0134 [13] 3.4414 [13] 

7 
MAPE 0.0374 0.0336 0.0411 0.0578 [-10] 0.0751 [-10] 0.0647 [2] 

RMSE 1.3320 1.6488 3.1849 3.1849 [13] 3.7378 [-10] 3.9400 [13] 

8 
MAPE 0.0087 0.0072 0.0101 0.0193 [-10] 0.0312 [-10] 0.0304 [-6] 

RMSE 0.3409 0.3575 0.1592 1.1204 [-10] 1.5497 [-10] 1.4644 [13] 

9 
MAPE 0.0614 0.0595 0.0632 0.1763 [2] 0.1664 [2] 0.1862 [2] 

RMSE 2.2092 2.8653 0.7849 5.8914 [2] 8.3179 [2] 5.3015 [13] 

 

5.6. Discussion 

5.6.1. Estimation of the speeds and densities 

The aim of the tests that were run in the validation process was to examine the accuracy of 

the state estimation, as well as to discover the uncertainty parameters that have the highest 

impact on the estimation of the speeds and densities of all links of the network. From the 

individual tests of chapter 5.4, the most impacting parameter is the error and uncertainty of 

the measurements (test 2), which displayed the highest network MAPE and RMSE values. 

Using the same criterion, the second most impacting parameter is the inaccuracy of the 

fundamental diagram parameters, followed by the inaccuracy of the OD matrix and the 

lower availability of measurements. 

The combinations tested in chapter 5.5 provided more insight on the combined effect of the 

parameters, approaching the conditions of a real case where more uncertainty parameters 

are involved. The combined effect of the inaccurate OD matrix and lower availability of 

measurements (test 6), as well as that of the inaccurate fundamental diagram parameters 

combined with an error and uncertainty on the measurements (test 7), appeared to be 

significantly higher, as the resulting network MAPE values for these tests is significantly 

higher than the sum of MAPE values of the relevant individual tests. In test 6, the model had 
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less opportunities to correct the errors imported due to the inaccurate OD matrix, as the 

amount of available measurements was lower, leading to a higher impact of that imported 

error, until the model could gradually “learn” to handle it. In test 7, the error and 

uncertainty on the measurements weakened the ability of the system to estimate the free 

flow speed and consequently improve the estimation of speeds and densities. The free flow 

speed was still correctly estimated after some time, but convergence took longer. 

On the other hand, in test 8 (inaccurate OD matrix and fundamental diagram parameters) 

the combined effect of the parameters appeared to be lower than their individual effect. 

Taking into account that part of each individual effect is also due to the minimum required 

uncertainty for the model to run, as well as roundings in the calculations and exchange of 

data between Streamline and Matlab, as mentioned in 5.4.1, the conclusion that we can 

draw from this test is that the model is still able to handle the inaccuracy of both parameters 

adequately, at least for this inaccuracy level of ±10% selected for the test. 

In test 9, the combined effect of all uncertainty parameters together significantly increased. 

The model failed to calculate the free flow speeds of links on parts of the network that were 

not measured. On links with speed measurements and/or close to the regulated 

intersections for which measurements are available, there was convergence but it was 

slower than in previous tests because of the additional errors/uncertainty imported to the 

model in the last test. The free flow speed value has a strong influence on the speed 

estimation and consequently on the density estimation. Thus, this parameter proved to be 

the most disrupting to the estimation because the co-existence of the other uncertainty 

parameters severely weakened the model’s ability to correct it with time. 

The overall network MAPE value of test 9 (0.0614) is significantly higher than the values 

observed in the previous tests. However, it can be considered marginally acceptable, as its 

practical meaning of an average error of about 6% is in most cases adequate, meaning for 

example an estimated speed of 47 km/h instead of the correct speed of 50 km/h. However, 

when dealing with larger values, e.g. a three-lane road with a traffic flow of 5400 veh/h, a 

6% error means a difference in the flow of over 320 veh/h, which consists a much more 

significant difference from a traffic engineer’s point of view. 

By calculating separate overall MAPE values for the densities and speeds of the links of the 

network (columns 4 and 5 of Table 10), it can be derived that the speed estimation is 

significantly more accurate in cases where the fundamental diagram parameters are 

correctly estimated. The main reason for the fact that the estimation of the density is less 

accurate than the estimation of the speed is that while we have direct measurements of the 

speed, we can only indirectly estimate/correct the density with the help of the flow 

measurements. Flow measurements, at least in this network, can only be obtained from the 

intersections and, thus, are not available for all links of the network. Furthermore, the 

method selected of summing up flow measurements, due to limitations imposed from the 

junction modelling factors, as analyzed in chapter 4.6, has an additional weakening effect to 

their ability to correct the state. Therefore, it is expected for the density estimation to be in 

most cases less accurate than the speed estimation. The parameter that seems to mostly 
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disrupt speed estimation is the fundamental diagram parameters (free flow speed), as can 

be understood from the fact that the difference in the MAPE values of the densities and 

speeds for the network (columns 4 and 5 of Table 10) is smaller in the tests that involve 

inaccurate fundamental diagram parameters. In test 5, in which the only uncertainty 

parameter enabled is the inaccuracy of the fundamental diagram parameters, the MAPE 

value for the speeds even exceeds the MAPE value for the densities. 

The columns 6, 7 and 8 of Table 10 provide insight on the links that contribute more to the 

error values calculated for each test. The link whose error values were the highest per test is 

written within brackets in the relevant cell on that table. The link showing most often the 

highest values is link 13, followed by links -10, 2, -5 and -6. 

Link 13 is the most congested link of the network. However, it is the selected way of 

calculating the factors simulating the effect of junction modelling (“flow limit factor” and 

“inflow reduce factors”) that seems to be playing the most significant role to the problem 

observed on that link, as described in the previous chapter. This can be derived from the fact 

that when more uncertainty parameters are involved, the errors on other links exceed the 

error values of link 13. 

Link -10 is situated in the middle of the long stretch between the two regulated intersections 

with a direction from right to left. Link -10 shows the highest error values in the tests that 

had inaccurate fundamental diagram parameters. This can be explained by the fact that link 

-10 is situated the furthest away from the regulated intersections, so it is less affected by the 

available directional flow measurements on the intersections. Therefore, it relies almost 

exclusively to its speed measurements, as well as speed measurements of the neighboring 

links, in order to correct its free flow speed and eventually speed and density. As was 

observed in these tests, link -10 showed slower convergence of the free flow speed and this 

led to a slower improvement in the estimation of its speed and density. In addition, another 

factor is its starting free flow speed value of 45 km/h, which is the furthest away from the 

actual value of 50 km/h. These two factors contribute to its slower convergence of the free 

flow speed and its higher error values. 

Convergence speed could be increased by using higher values for the relevant standard 

deviation. However, this method should be used with caution, as it could lead to more 

nervous behavior of the free flow speeds possibly leading to higher overall error values in 

the network. Therefore, it is recommended to run several tests with different standard 

deviation values for the fundamental diagram parameters, in order to check the behavior of 

the system and achieve a balance between speed of convergence and nervous behavior. 

The improvement achieved in the estimation of the free flow speeds over time, which leads 

to improved estimation of the speeds and densities as well, could justify the introduction of 

a warm-up phase to allow the free flow speed to converge or at least move closer to the 

actual values before initiating state estimation. An important advantage of the developed 

model, as was observed in the results and previously discussed, is that it can converge to the 

actual fundamental diagram parameter values (at least the free flow speeds), irrespective of 



57 
 

the difference of their initial values from the ground truth values. The disrupting effect of 

wrong fundamental diagram parameters to the speed and consequently the density 

estimation was also observed. Therefore, introducing a warm-up phase allows the user to 

make more relaxed assumptions for the initial fundamental diagram parameter values to 

set, as they will be for the most part corrected during this warm-up phase, without affecting 

speed and density estimation which will begin after this phase. The possible addition of a 

warm-up phase, as well as its duration, would be subject to the exact conditions of the 

network in question, such as the usual congestion levels and the estimated uncertainty 

levels of the parameters. 

In addition, it has to be noted that the addition of a warm-up phase would be useful not only 

in cases with constant fundamental diagram parameter values as the ground truth, as were 

the cases tested in this thesis, but also in cases with varying values over time. The behavior 

that the estimation of the free flow speed displays, gives confidence to claim that it can also 

follow and adapt to changing values of the parameter. However, this will need to be verified 

using relevant tests. In addition, in most cases with variable fundamental parameter values, 

e.g. due to adverse weather conditions, the change of the parameters occurs gradually, 

allowing the system to adapt to the new conditions. Therefore, alleviating the uncertainty of 

the initial fundamental diagram parameter values set is also important in cases with varying 

values over time and an introduction of a warm-up phase in these cases is recommended as 

well. 

Link 2 is situated upstream the unregulated intersection (U1) and downstream centroid C2. 

It shows the highest error values in test 9 and also the highest error on the speed estimation 

in test 7. Its starting free flow speed value is 45 km/h, as in link -10, and there are no speed 

measurements available for this link. Therefore, it is reasonable that the estimation of link 2 

is failing, as the system has practically no information available for that part and direction of 

the network, while an error due to the different OD matrix is constantly added by the 

centroid upstream (C2) and the speed of the link is constantly estimated wrongly because of 

the inaccurate free flow speed. In general, it was observed in test 9 that the links whose free 

flow speeds move over time towards convergence were those that had available 

measurements, either speed measurements, or were close to a regulated intersection and 

were therefore corrected by the fusion of the directional flow measurements. 

A possible improvement could be achieved using sets of common fundamental diagram 

parameters for several links for which it is reasonable to claim that they would have the 

same fundamental diagram parameter values (e.g. all links between two consecutive 

intersections). Convergence would then be achieved faster, as the model would receive 

more information on these parameters from various links of the network. A hypothesis can 

reasonably be made that such a strategy would prove to be helpful especially for links on 

parts of the network for which there is not enough information, such as link 2. However, 

thorough testing of such a hypothesis would be required. 

Another point that needs to be stressed is the importance of the thresholds applied at the 

end of each time step. It is important that these thresholds are set as realistically as possible, 
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in order to prevent estimation from significantly diverging from the ground truth, especially 

in cases with high uncertainty. For example, as can be seen from the results of link 2 in test 9 

(Figure 23), the introduction of an upper threshold for the free flow speed at 60 km/h (on a 

link with a speed limit of 50 km/h) also kept the diverging of the speed estimation to 

reasonable levels, as an additional threshold is applied to the speeds, which prevents them 

from being much higher than the free flow speed of the link. 

Links -5 and -6 are situated downstream the middle regulated intersection and upstream 

centroids 4 and 3 respectively. These links show higher error values, especially for the 

density estimation, in tests 4 and 8, which incorporate an inaccurate OD matrix. This result 

can be explained by the fact that the OD matrix affects routing and the calculated turning 

fractions. These turning fractions, which in this case are calculated from an inaccurate OD 

matrix, take part in the flow measurement equations through the “inflow reduce factors”, 

leading to a similarly inaccurate value downstream the intersection on the links leading to a 

centroid/exit from the network. 

A major topic of discussion is also the existence of bias in this research, which could be 

affecting the results. An example is the range of ±10% set for the addition of errors in the 

measurements, fundamental diagram parameters and OD matrix. This value was selected as 

being low enough to reflect e.g. a relatively well-calibrated OD matrix and high enough to 

make differences observable. The same value was used in all tests, in order to create a fair 

base for comparison. However, it is not necessarily true that using the same range for all 

uncertainty parameters is fair, due to the different characteristics of each parameter. For 

the uncertainty parameter of lower availability of measurements, as parameters such as the 

dispersion of the measurements (e.g. remove scattered measurements or concentrated in 

one part of the network) are also of importance, the criterion selected was the resemblance 

to a real-case scenario, where e.g. flow data would be available only at the regulated 

intersections and speed data could be available only to one direction of traffic. 

Furthermore, a major source of bias is the fact that the measurements are created using 

basically the same model used for simulation (Streamline). Using real measurements would 

certainly lead to higher error values. Therefore, validation with real measurements as well is 

considered necessary. 

Moreover, the form of the test network, as well as the demand set for it is another source of 

bias. The fact that most links are on (or close to) free flow conditions could possibly be the 

reason behind the increased significance of the free flow speed to the speed estimation, 

compared to the capacity per lane and the speed at capacity. In addition, the failure of 

estimating those two fundamental diagram parameters could possibly be attributed to the 

fact that there are almost no measurements close to capacity conditions. More tests using 

more congested conditions would be required to test this hypothesis. 

A final point that needs to be mentioned is the order of fusing the measurements. As 

thorough testing proved, the order of fusing the measurements practically plays no role in 

the state estimation. Resulting differences in the corrected state and error covariance matrix 
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are negligible. The effect of the order of fusing the measurements declines over time, as the 

system “learns” the network. After running many tests where extreme measurements were 

introduced in the first time step(s) or later in the simulation period, it was discovered that 

the impact of the extreme measurements on the first time step was significant. However, 

after a few more time steps this effect was negligible. Therefore, on a practical application of 

this method, the order of fusing the measurements makes practically no difference and 

extreme measurements can be handled adequately well by the system. 

 

5.6.2. Estimation of the fundamental diagram parameters 

From literature (e.g. Wang et al. 2007 & 2008) it is known that convergence of the 

fundamental diagram parameters in a freeway network takes a long time, and in this specific 

work the fundamental diagram parameters used were common for all links of the network, 

something that could facilitate convergence, together with the smaller complexity of a 

freeway network compared to an urban network. The slow convergence can be explained 

from the fact that these parameters cannot be directly measured, so there are no 

measurements of these specific parameters which could be fused to improve accuracy. They 

are indirectly changed due to the fusion of the flow and speed measurements, as the 

fundamental diagram parameters take part in the speed equations, specifically in the 

element that contains the fundamental diagram calculation. However, it would be expected 

to see the altered fundamental diagram parameter values gradually changing towards the 

“ground truth” values and the unchanged values to remain practically unaltered, fluctuating 

over time around the “ground truth” values. 

A first note regarding the estimation of the fundamental diagram parameters concerns the 

standard deviation values to be used. In a first run with standard deviation values of 2, 5 and 

2 respectively for the free flow speed, capacity per lane and speed at capacity, it was noticed 

that there was almost no change in the values of the capacity per lane parameter. This can 

possibly be explained by the fact that the capacity per lane parameter participates less in the 

forming of the speed equation compared to the other two parameters (the free flow speed 

and speed at capacity elements variables appear three times in the equation, while the 

capacity per lane only once), at least with the equations as formed using the METANET 

fundamental diagram, as well as from the fact that the actual numerical value is much higher 

than the values of the free flow speed and the speed at capacity. Therefore, the use of a 

significantly higher standard deviation value for the capacity per lane parameter is justified. 

The test was then repeated with a very high standard deviation value of 500 for the capacity 

per lane and in this case some change on the capacity per lane values was observed. 

The estimation of the fundamental diagram parameters was enabled in tests 5, 7, 8 and 9. 

The main difference observed in the tests was that as the number of uncertainty parameters 

involved increased, convergence speed of the free flow speed became lower. In test 9, with 

all uncertainty parameters enabled, convergence speed was very low and only for links that 

were backed by measurements. Calculation of the free flow speed in other links practically 
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failed, with some examples even diverging from the ground truth values. The discussion of 

the results that follows is based on test 5, where all other uncertainty parameters were 

eliminated, so the actual fundamental diagram parameter estimation can be examined. 

The results on the estimation of the fundamental diagram parameters were mixed. The free 

flow speed estimation can be considered successful, as in all links the value of the free flow 

speed changed over time towards the “ground truth” value and when this value was 

reached fluctuated around this value. The free flow speed values of the links that were 

already correct at the start of the simulation, fluctuated around that correct value over the 

whole simulation period, as well. Therefore, in terms of estimation accuracy, the estimation 

of the free flow speed is considered successful. 

As shown in Figure 25, the MAPE and RMSE values decrease over time, indicating the 

improvement achieved in the calculation of the free flow speed over time. The maximum 

values of the MAPE and RMSE were found to occur on the first time step (with values of 

0.0556 and 2.7809 respectively), followed by a relatively fast decline. A minor increase of the 

MAPE and RMSE values occurs in time step 41. At time step 41, the OD-matrix used for the 

simulation is changed again to the higher-demand OD-matrix, causing a slight difference to 

which the model adapts already from the next time step. A minimum value is reached at 

time step 54 (with values of 0.0055 and 0.2743 respectively for the MAPE and RMSE value) 

and is practically kept constant at the remaining time steps. 

 

 

 

 

 

Figure 25. Evolution of the MAPE and RMSE values of the network for the estimation of the free flow 

speed. 
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Contrary to the good results observed for the estimation of the free flow speed, the 

estimation of the speed at capacity and the capacity per lane is unsuccessful. Their values 

seem to randomly fluctuate over time, often to the wrong direction. Therefore, some values 

seem to be converging to the correct values, while others are diverging. As shown in Figures 

26 and 27, the MAPE and RMSE values for these two parameters remain practically constant 

over time, showing that there is no improvement achieved in their estimation for the whole 

network over time, at least for this time period of 60 minutes. What is also observed is a 

minor change shortly after time steps 20 and 40, when the demand changes. This is 

practically observed only on the speed at capacity estimation, as in the capacity per lane 

only very minor fluctuations can be observed, practically imperceptible in the graphs. 

 

 

Figure 26. Evolution of the MAPE and RMSE values of the network for the estimation of the capacity per 

lane.  

 

 

Figure 27. Evolution of the MAPE and RMSE values of the network for the estimation of the speed at 

capacity. 
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In general, it is observed again that the changes on the values of the capacity per lane are 

much smaller per time step, compared to the values of the speed at capacity, despite the big 

difference in the standard deviation values set for these two parameters (2 for the speed at 

capacity and 500 for the capacity per lane). As previously mentioned, it can be attributed to 

the increased “participation” of the speed at capacity parameter to the speed equation, 

compared to the capacity per lane parameter. 

Finally, a factor that could be causing the failure of the speed at capacity and capacity per 

lane is the fact that in the test network there are almost no measurements close to capacity. 

Almost all links of the test network are in free flow or close to free flow conditions for the 

whole simulation period. As a result, the links are almost never measured in congestion or 

near-capacity conditions. This could prove to be the major cause the Kalman filter cannot 

improve estimation of the speed at capacity and the capacity per lane parameters, as there 

are no measurements of the complete fundamental diagram. Therefore, there is not 

adequate information to adapt the values of these parameters as well. In addition, as the 

test network is an urban network, it is the junctions that mainly determine the capacities 

within the network, making the acquisition of measurements of links near capacity even 

more difficult. At the same time, this dominance of the junctions in determining the 

capacities could be the reason why speed at capacity and capacity per lane appear to be 

much less significant for the state estimation in an urban network than the free flow speed. 

To examine this topic, several tests with a different, more congested network must be 

carried out. Therefore, this remark is provided as a topic for future research. 
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6. Conclusion and future research 
 

6.1. Conclusion 

As presented in chapter 3, the research questions were the following: 

1. How can a model be developed to provide online estimation of the traffic state of an 

urban network, taking into account measurements from sensors? 

2. How accurately can this developed model estimate the fundamental diagram 

parameters of each link of the network? 

To address the research questions, the developed solution uses Streamline as the process 

model. It is a higher order LWR model, which is more suitable than a first order model 

because of the more correlations between links that can be captured and lead to more 

opportunities for correction on links for which no measurements are available. In addition, 

Streamline incorporates a junction model (XSTREAM), which is a vital element of a model 

designed for urban networks, as the role of the junctions is decisive. The observation model 

was set up accordingly, using the appropriate equations (measurement functions) of the 

process model. Extended Kalman Filtering was selected as the data assimilation method, as 

it is suitable for working with non-linear equations and is computationally efficient. As it was 

required to develop a model suitable for online state estimation, the model does not require 

any pre-processing of the data and is capable of running faster than real-time, at least for 

relatively small networks. Finally, the state vector was set up to include the speeds and 

densities, which are needed to answer the first/main research question, as well as the 

fundamental diagram parameters, in order to cover the second/additional research question 

as well. To answer the research questions and assess the effectiveness of the developed 

approach, the model was validated through a series of tests using artificially created 

measurements. 

Regarding the first research question, it can be concluded that the model could satisfactorily 

estimate the densities and speeds of all links of the network, as the average error values of 

all tests were at an acceptable level. Estimation improves over time, as the model “learns” 

through the fusion of measurements. An increasing uncertainty level of the system leads to 

a reduced rate of improvement overall for the network. Estimation of the speeds appears in 

most tests to be more accurate than the estimation of the densities. This can be attributed 

to the fact that the densities are indirectly corrected through the fusion of flow 

measurements, while the speeds are directly corrected through the fusion of speed 

measurements. Another contributing factor is the method selected for fusing the flow 

measurements in the developed approach, due to technical reasons. By summing up flows 

from each direction instead of fusing each directional flow measurement, the correction 

effect of the flow measurements is slightly reduced. 

Uncertainty and error on the measurements is the parameter with the highest impact on the 

results, followed by the inaccuracy of the fundamental diagram parameters and the 
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inaccuracy of the OD matrix. Combinations of these parameters in most cases led to an 

increased combined impact on the state estimation. Among the fundamental diagram 

parameters, the free flow speed has the most significant impact on the estimation of the 

speeds and consequently the densities. 

The results of the last test, which combined all uncertainty parameters showed that, 

although estimation improved overall in that test as well, the results of certain links showed 

a deteriorating estimation, as the error values of these links kept increasing over time. This 

occurred in links on which the uncertainty parameters had the highest impact, e.g. links 

connected to centroids (and therefore affected by the OD matrix inaccuracy) while at the 

same time being situated away from any measured link, offering practically no opportunity 

to correct its state. This result especially underlined the importance of the availability of 

measurements. It showed, in addition, that very high uncertainty levels (perhaps even 

higher than those tested) may lead to a failure in estimation. Therefore, it is important to 

attempt to reduce uncertainty on parameters that can be pre-processed, such as OD matrix 

calibration or setting the initial fundamental diagram parameter values. 

In cases where estimation of the fundamental diagram parameters is not of importance, the 

model can be modified to exclude them from the state vector. The immediate result would 

be a significant increase in simulation speed, as the dimensions of the Jacobian matrices 

would drastically decrease allowing for faster calculations. It can also be argued that 

estimation of speed and density will also slightly benefit from this change, as the model will 

have less parameters to calibrate when applying the correction. However, additional tests 

would be required to validate this hypothesis. 

From the analysis of the most problematic links in each test, it was observed that an 

inaccurate OD matrix proved to have a higher impact on the estimation of the densities of 

links connected to a centroid (destination/origin). In addition, in tests with higher 

uncertainty it was observed that state estimation of links situated on parts of the network 

where no measurements were available did not improve over time, underlining the 

importance of the number of measurement points on the network, as well as their location. 

Regarding the second research question, the model succeeds in improving the estimate of 

the free flow speed over time but fails to estimate the speed at capacity and capacity per 

lane. The improvement in the estimation of the free flow speed proved to be independent of 

the initial values set. The standard deviations which control the variation allowed per time 

step for each fundamental diagram parameter could be increased in order to achieve faster 

convergence of the free flow speed. However, a high standard deviation value would lead to 

more nervous behavior of the estimated value of the free flow speed, possibly leading to a 

higher average error over time. Therefore, a series of preliminary tests could be run 

beforehand, in order to decide on their values. Finally, the inclusion of a warm up phase, to 

allow the parameters to approach their actual values, before actual state estimation begins, 

is recommended whenever possible. 
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The most probable cause of the observed failure of the estimation of the speed at capacity 

and the capacity per lane appears to be the fact that in the tests performed the network was 

mostly in free flow conditions. As there were almost no measurements near capacity, the 

system cannot estimate the relevant fundamental diagram parameters. However, this 

hypothesis needs further validating through relevant tests on networks on near-capacity 

conditions. 

A recommendation would be to use sets of common fundamental diagram parameter values 

for consecutive/”similar” links in the network, instead of separate values per link. By 

following this strategy, it is expected that the system will converge to the correct 

fundamental diagram parameter values and respond to changes in their values faster even 

in cases with lower availability of measurements, as the EKF will have more sources of 

information for the same parameters. However, this hypothesis has not been tested yet. 

Finally, regarding implementation, it was observed that changing the order of fusing the 

measurements had a negligible impact to the state estimation. In addition, the importance 

of setting reasonable thresholds for the state variables needs to be stressed, as it can 

prevent the estimation from diverging, especially in cases with high uncertainty. 

 

6.2. Suggestions for future research 

Future research could focus on the alleviation of the inefficiencies of the developed model, 

its expansion, as well as topics that were derived from the discussion of the results of this 

research. 

An important element of the developed model that could be improved is the definition 

selected for the outflow limit factors. Defining and using outflow limit factors per turn 

direction, as well, would lead to an improvement in the fusion of flow measurements and 

consequently an improvement in state estimation, especially the estimation of the densities. 

Introducing sets of common fundamental diagram parameters is another suggestion that 

could improve estimation of the fundamental diagram parameters, as well as the speeds and 

densities. 

Applying the model on a more congested network would shed light on its ability to estimate 

the speed at capacity and capacity per lane, too, instead of only the free flow speed. By 

fusing more measurements near capacity, it is expected that the estimation of those 

fundamental diagram parameters would improve, as the model would have more 

information on conditions related to these parameters. 

A possibly determining factor that has not been examined at all in this research is latency. It 

is assumed that the measurements for each minute are immediately available at the end of 

the 60th second. However, in a real network, this assumption is not realistic, as 

measurement data may take several minutes to become available, depending on various 
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factors, such as the data size, transmission speed and the required processing of sensor 

data. A suggestion offered as a starting point when researching how to handle latency in a 

real network is the following: The traffic state of each time step (e.g. minute) would be 

predicted from the process model, based on the traffic state of the previous time step. 

Kalman Filtering would be applied for a time step several minutes in the past, as soon as 

measurement data for that time step is made available, resulting to a corrected traffic state 

for that time step. Using this corrected traffic state, the predictions of the traffic states of all 

subsequent time steps would then be recalculated. For example, assuming a latency of five 

minutes, the process would begin with the traffic state being predicted solely by the process 

model for the first six minutes. At the end of minute 6, the measurements for the first 

minute would be made available. The traffic state of minute 1 would then be corrected 

accordingly, by fusing the measurements for minute 1. This updated traffic state of minute 1 

would be used to predict again the traffic state of minutes 2-7 using the process model. 

Similarly, at the end of minute 7, measurements for minute 2 would be available, leading to 

an updated traffic state for minute 2 and a new prediction for all subsequent minutes etc. 

Finally, the use of the Kalman filter provides the opportunity to estimate other parameters 

as well. For example, routing could be affected through the use of the turning fractions, 

which could be included in the state vector and changed by the Kalman filter with the 

information from the measurements. The turning fractions would then replace the relevant 

junction modelling factor (“inflow reduce factor”) in the equations, as the factor practically 

imitates the turning fractions. OD matrix calibration could also be included as an additional 

process to be followed at the end of each time step. 
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Appendix A: Simulation settings and parameters (test network) 
 

1. Standard OD Matrix 

Time steps 1-20 and 41-60: 

 

 

Time steps 21-40: 
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2. Modified OD Matrix 

Time steps 1-20 and 41-60: 

 

 

Time steps 21-40: 
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3. Initial fundamental diagram parameters set 
 

Link ID 𝒗𝒇𝒓𝒆𝒆 
(km/h) 

𝒇𝒄𝒂𝒑 
(veh/h) 

𝝊𝒄𝒂𝒑 
(km/h) 

 Link ID 𝒗𝒇𝒓𝒆𝒆 
(km/h) 

𝒇𝒄𝒂𝒑 
(veh/h) 

𝝊𝒄𝒂𝒑 
(km/h) 

-15 50 1500 35  1 46 1650 36 

-14 49 1510 36  2 45 1660 37 

-13 48 1520 37  3 55 1670 38 

-12 47 1530 38  4 54 1680 32 

-11 46 1540 32  5 53 1690 33 

-10 45 1550 33  6 52 1700 34 

-9 55 1560 34  7 51 1710 35 

-8 54 1570 35  8 50 1720 36 

-7 53 1580 36  9 49 1730 37 

-6 52 1590 37  10 48 1740 38 

-5 51 1600 38  11 47 1750 32 

-4 50 1610 32  12 46 1760 33 

-3 49 1620 33  13 45 1770 34 

-2 48 1630 34  14 55 1780 35 

-1 47 1640 35  15 54 1790 36 
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4. Traffic light plans 

Traffic light plans (green times per turn direction) for the R1 and R2 regulated intersections 

respectively. Cycle time is 60 seconds to coincide with the arrival of each round of 

measurements. 

                              

    R1            R2 

 

 


