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Predictions of Urban Volumes in Single Time Series
Tom Thomas, Wendy Weijermars, and Eric van Berkum

Abstract—Congestion is increasing in many urban areas. This
has led to a growing awareness of the importance of accurate
traffic-flow predictions. In this paper, we introduce a prediction
scheme that is based on an extensive study of volume patterns
that were collected at about 20 urban intersections in the city of
Almelo, The Netherlands. The scheme can be used for both short-
and long-term predictions. It consists of 1) baseline predictions
for a given preselected day, 2) predictions for the next 24 h, and
3) short-term predictions with horizons smaller than 80 min. We
show that the predictions significantly improve when we adopt
some straightforward assumptions about the correlations between
and the noise levels within volumes. We conclude that 24-h predic-
tions are much more accurate than baseline predictions and that
errors in short-term predictions are even negligibly small during
working days. We used a heuristic approach to optimize the model.
As a consequence, our model is quite simple so that it can easily be
used for practical applications.

Index Terms—Demand forecasting, error measures, evaluating,
Kalman filter, uncertainty.

I. INTRODUCTION

CONGESTION has significantly increased over the last
few decades. The efficient use of existing infrastructure

by dynamic traffic management is one of the strategies to reduce
congestion. An important requirement is the availability of
detailed information about travel demand. In general, demand
cannot directly be measured but must be estimated using in-
formation on volumes, i.e., traffic counts. On Dutch highways,
data are collected by a high concentration of detection loops
that yield information on both volumes and velocities. This
information enables the use of artificial neural networks, e.g.,
[1] and [2], pattern-matching models, e.g., [3], or extrapolation
models, e.g., [4], to make short-term predictions of the traffic
circulation.

In urban areas, traffic information is much scarcer, and only
recently have traffic data become available in traffic information
centers, e.g., [5]–[7]. For these areas, the traffic circulation is
usually estimated by a combination of volume measurements
and (macroscopic) traffic models. Some authors, e.g., [8], have
suggested that, with reliable volume predictions, it will be
possible to improve model forecasts of urban traffic circulation.

Different approaches exist for predicting volumes. Extrap-
olation models (both spatial and temporal) are often used for
short-term predictions, e.g., [9]–[13]. Extrapolations can give
accurate predictions but only for prediction horizons smaller
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than 15–20 min. For longer prediction horizons, volume mea-
surements can also be matched to historical patterns. For these
predictions, neural networks, e.g., [14] and [15], or clustering
methods, e.g., [16] and [17], are applied.

Short-term volume predictions can be used, for example,
in flexible control systems that anticipate on rapid changes in
demand. Long-term predictions are used in general manage-
ment applications, for example, in the optimization of traffic
signal plans. In this paper, we develop a scheme for both
short- and long-term predictions. Unlike most methods, we
make an explicit distinction between systematic variation and
noise. Contrary to systematic variation (e.g., weekly, seasonal,
or weather-related variation), noise in different measurements is
uncorrelated and, therefore, unpredictable. Because we separate
the noise from the systematic prediction error, we are able
to improve our predictions and are also able to evaluate the
prediction scheme in a more objective way.

In Section II, we introduce the data. In Section III, we de-
scribe the used method. In Section IV, we develop a prediction
scheme for the next day, and in Section V, we improve these
predictions for short prediction horizons. In Section VI, we
estimate the quality of our predictions. In Section VII, we will
provide conclusions, and in Section VIII, we will discuss our
results.

II. DATA

The study area for this research consists of the urban network
of Almelo, The Netherlands, which is a medium-sized city with
about 70 000 inhabitants and a cross section of about 5 km. Data
were collected at about 20 signalized urban intersections from
September 2004 until September 2005. Vehicles were detected
by inductive loop detectors. The data were processed into vol-
ume measurements per link per time interval. A link represents
a unidirectional road segment that could contain more than one
lane. We define a volume profile Qdl = (qdl1, . . . , qdln) as a
time series of n intervals for day d and link l. In most cases,
measurements were provided in 5-min intervals so that n =
288. However, for about 30% of the links, only measurements
in 30-min intervals were provided. For these links, n = 48.

In Fig. 1, we show the study area, which covers the whole
city of Almelo. The links for which data were collected are
marked in the figure. These links are part of the main urban
roads for which the maximum allowed speed lies between 50
and 70 km/h. Because congestion is relatively rare, travel times
in the study area are often smaller than 15 min.

The volume measurements were inspected, and invalid data
were rejected as was suggested in [16]. Invalid data are the
result of errors in the measurements (e.g., by failures in the
electronics). These errors were detected using certain criteria
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Fig. 1. City of Almelo, The Netherlands. The thick lines correspond with intersection links for which traffic data were collected.

(e.g., volumes should be equal to or larger than 0, volumes
should not exceed a certain maximum threshold, and 24-h
volumes should be larger than 0). Due to the malfunctioning
of detectors during several days or even weeks, a significant
fraction of the volume profiles was rejected. It is worth stressing
that the remaining volume profiles, which are used in this
paper, only contain actual measurements. Thus, we excluded
bad data but did not include “artificial” data or in any other way
manipulated the measurements. Note that this procedure does
not lead to a loss of information, because bad profiles do not
contribute to our analyses.

To create a homogeneous sample with good statistics, we
only included links with at least ten volume profiles per
weekday (Mondays, Tuesdays, etc.) outside the school holiday
period. For links with less than ten profiles, the predictions
become too sensitive to the noise in individual time series, and
the reliability of the predictions can no longer be tested. As
a result, the remaining data set is a sample of 72 intersection
links, of which 48 have 5-min time series.

Within our sample, there are profiles from (un)official public
holidays (Christmas, New Years Day, Eastern, Queensday, As-
cension Day and Pentecost, Christmas Eve, the days between
Christmas and New Years Day, Good Friday, the day after Good
Friday, and the day after Ascension Day). Variations between
individual national holidays can be quite large. On Queensday,
for example, traffic starts earlier than on New Years Day. We
therefore decided to exclude (un)official public holidays from
the sample.

Our time series show the presence of recurrent variations
with 30-min periods [18]. Time intervals of 30 min are too long
to follow these recurrent variations, and they are also too long
to follow sharp changes in demand during the rush hours. We
therefore did not consider links with 30-min time series in our
analyses.

The strength of the volume fluctuations also depends on
the average number of traffic signal cycles per time interval.
If this number is low, the relative variation in the total green
time per time interval will increase, which may lead to a
significant variation in volumes when traffic loads are high. To
reduce this effect, we decided to aggregate our measurements to
10-min rather than 5-min time intervals. As a consequence, we
may lose information. However, in regular situations, volumes
generally do not so dramatically change that this would impose
a problem for our predictions.

III. METHOD

Autoregressive models (e.g., ARIMA models) are common
in time-series forecasts. Their forecasts are based on linear
combinations of measurements from previous time intervals.
Travel demand variations are often nonlinear. Several authors,
e.g., [11], [12], and [16], have therefore indicated that they
prefer to use the average historical profile of a whole day for
predictions of a future day. In this case, nonlinear features may
already be captured by the historical profile. These authors also
found day-to-day variations in the shape of volume profiles and
therefore classified various days in different groups. Based on
these results, our first prediction for day d, link l, and time
interval t is equal to the historical mean of the group to which
day d belongs

qbase
dlt =

∑
d′∈D

qobs
d′lt

nD
. (1)

In (1), we call qbase
dlt the baseline prediction, and qobs

dlt is the
measured volume on day d, link l, and time interval t. The group
of days to that day d belongs is denoted by D. We classified
our days in the following groups: Mondays, Tuesdays,
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Fig. 2. (Top) Incident. (Bottom) Event. The baseline prediction does not
follow the measurements. The measurements are 30-min time series.

Wednesdays, Thursdays, Fridays, Saturdays, Sundays, and the
school holiday period. Group D consists of nD days.

In real-time applications, D contains all days from the previ-
ous year, i.e., from day d of the previous year until day d − 1.
When we would test our prediction scheme for all days in one
year, the training and test sets would have to contain at least two
years of data. Since our data set only contains one year of data
and since we think that a baseline prediction should be based
on the yearly average, we did not distinguish between a test set
and a training set. Although we affirm that this is not correct,
we do not think that it will influence the results in a significant
way. First, traffic flows usually do not dramatically change from
year to year. Second, the yearly average remains more or less
the same if it is based on many profiles, e.g., if nD ≥ 10.

When large events take place, traffic flows may be influenced
by the visitors of these events. At certain locations, this will
lead to a significant increase of traffic just before the event
has started and after the event has finished. In Almelo, home
matches of the local professional football club can be counted
among such events. We excluded the match-related volumes,
and we do not consider them in this paper. Traffic flows can
also abruptly change as a result of incidents. Incidents are
left into the sample but only form a marginal fraction of all
measurements (about 0.1%). In Fig. 2, we show an example of
an incident and an event. In both cases, baseline predictions are
well off the measured time series. Note that, for this illustration,
we used 30-min aggregates to minimize the disturbing influence
of noise.

Baseline predictions sometimes also do not follow the mea-
surements in a regular situation. This is illustrated in the upper
panel of Fig. 2. In this example, the baseline prediction system-
atically lies below the measurements. Apparently, traffic counts
show systematic variations in time, which cannot be described
by the regular day-to-day variation alone. Such variations can
have different causes, for example, seasonal effects, changing
weather conditions, or road works.

From a visual inspection of the 10-min time series, we
suspect that a large amount of the variation between successive
time intervals is random. This variation is called noise. The
amount of noise is an important quantity. If the amount of noise
increases, systematic variations can less easily be detected.
It also gives a lower limit for the predictive power, because
noise cannot be predicted. Noise can have different causes.
It can be caused by the random arrival process of cars. This
process results in different headways between the following
cars, which is an important source of variation on highways.
In urban areas, traffic flows are interrupted by traffic signals.
In this case, variable and unknown green times of these signals
may contribute to the noise. In practice, all variations that have
short time scales and that do not follow a recurrent pattern can
be considered to be noise.

A measurement on day d, at link l, and in time interval t can
thus be described in the following terms:

qobs
dlt = qpred

dlt + εdlt + νdlt (2)

with qpred
dlt being the predicted volume (e.g., the baseline predic-

tion), εdlt being the systematic variation between measurement
and prediction, i.e., the prediction error, and νdlt being the noise
on day d, at link l, and in time interval t.

The objective is to develop a prediction scheme that mini-
mizes the systematic variation or prediction error. There are two
extreme approaches to reach this objective. First, the external
processes that lead to systematic variations can be studied in
detail, so that the relation between the two can be modeled
(e.g., the relation between weather and travel demand). The
advantage of this approach is that it provides insight into
the variation of travel demand. The disadvantage is that it is
complicated and requires many reliable data sources, which are
often not available. Another approach is a black-box approach.
In this approach, correlations in historical data are found by
certain mathematical techniques (e.g., neural networks), and
these correlations are used in the prediction scheme.

In this paper, we apply an intermediate approach. Our
method is based on the following assumption. The single most
important temporal correlation in the systematic variation is
that between successive epochs (which can have different time
scales). In particular, we assume that, due to seasonal effects,
there is a positive correlation between the systematic variations,
i.e., εdlt and εd+1,lt, of successive days. If there is more traffic
than average on a particular day, then the probability is high that
the next day will also show more traffic.

The improvement of the baseline prediction is quite simple in
this case. The relative systematic variation c (with ε = cqpred)
results from the ratio between the observation and the baseline
prediction. Suppose that this ratio is 1.10, i.e., c is estimated
to be 10%. Depending on the strength of the correlation be-
tween the relative systematic variations of successive days, the
updated 24-h prediction for the next day then lies between 1.00
(in case of no correlation) and 1.10 (in case the correlation
coefficient is 1) times the baseline prediction of that day. In
Section IV, we explain how we optimize the 24-h prediction.

We also assume a positive correlation between the systematic
variations, i.e., εdlt and εdl,t+1, of successive time intervals. If
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there is more traffic than normal during the present time inter-
val, then there will also probably be more traffic during the next
time interval. In fact, we assume that, in general, this correlation
ρ(εdlt, εdlt+1) ≈ 1. The logic behind this assumption is that
systematic variation slowly changes. Their time scales can be
longer than a day (e.g., seasonal variations) and are often longer
than an hour (e.g., weather-related variations). This is illustrated
by the systematic difference between the measurement and the
baseline prediction in the upper panel of Fig. 2.

The update of the 24-h prediction is called the short-term
prediction. The estimate of this prediction is comparable to
that of the 24-h prediction. The relative systematic variation c,
which is estimated in the present and previous time intervals,
is used to update the prediction for the next time interval(s).
In Section V, we explain how we optimize the short-term
prediction.

There may also exist a spatial correlation between two links l
and k that are incident, i.e., εdlt and εdkt. If there is more
traffic than normal on a certain link, then there probably will
also be more traffic on a neighboring link. However, we did not
consider these spatial correlations, because the spatial sampling
of links is limited in our sample.

In the previous paragraphs, we explained the basic concept of
our prediction scheme, which will be described in more detail
in the next sections. We do not consider other correlations, nor
do we try to model these covariances.

The update of the short-term prediction is complicated due to
the noise in the measurements. The most important character-
istic of this noise is that the noise in different measurements
is uncorrelated so that ρ(νi, νj) = 0 for i �= j. This implies
that, for aggregated measurements, the variance of the noise
adds up. The total volume is proportional to the number of
measurements (each measurement within a fixed time interval).
Thus, the variance in the noise is proportional to the expected
volume for a given traffic regime. In fact, qpred + ν is Poisson
distributed when the volumes are small [18]. In that case, for
var(ν), which is the variance in ν, it holds that

var(ν) = qpred. (3)

The root mean square (RMS) of the residuals, i.e., qobs −
qpred, is an indicator for the quality of the prediction scheme.
In Sections IV and V, we will present predictions for which
we tried to minimize the RMS of the residuals. However,
the residuals also contain noise. For a fair evaluation of the
prediction scheme, we therefore need to separate the prediction
error (remaining systematic variation) from the noise. This is
done in Section VI.

According to the previous approximation of the noise, the
mean square of the residuals can be approximated by

1
n

∑
dlt

(
qobs
dlt − qpred

dlt

)2

= (cq̄pred)2 + q̄pred (4)

where qpred = 1
n

∑
dlt

qpred
dlt , and n is the total number of resid-

uals. The left-hand side of the equation describes the total
quadratic variation with respect to the prediction. The first term
of the right-hand side describes the total quadratic systematic

Fig. 3. Daily volume residuals (relative to the baseline prediction) for suc-
cessive working days. (Top) Successive weekdays. (Bottom) Mondays versus
Fridays.

variation, and the second term describes the variance of the
noise. Thus, the (average) relative prediction error c can be
estimated from (4).

The assumptions and findings about systematic variation and
noise form the basis of the prediction scheme described in this
paper. However, it should be stressed that these are assump-
tions. Equation (3) is an approximation. It is plausible that the
variation in green time increases toward intersections that serve
high volumes, e.g., due to the fact that the number of signal
cycles per time lag decreases. In that case, the contribution
to the “noise” will increase. For large volumes, we therefore
expect var(ν) > qpred. As a result, (3) probably gives a lower
limit for the variance of the noise. Moreover, the correlation be-
tween systematic variations in successive time intervals cannot
always be close to 1, because systematic differences between
predictions and measurements are not constant all the time.
Finally, there may be other correlations than those between
successive epochs. However, in the following sections, we show
that our assumptions lead to a prediction method that is simple
and effective.

IV. TWENTY-FOUR-HOUR PREDICTION

In the previous section, we assumed that systematic
variations in traffic flows are correlated on successive days. In
Fig. 3, we show that this correlation indeed exists for urban
volumes in Almelo. Per link, we show the relative residuals
(between baseline predictions and measurements) of daily
traffic volumes for successive working days. The top panel
shows the residuals for successive weekdays. The bottom panel
shows the residuals for successive working days that are not
successive weekdays, i.e., Fridays versus Mondays. In both
cases, there is a positive correlation between the residuals
(correlation coefficients of 0.81 and 0.64, respectively).

As explained in the previous section, this correlation implies
that we can use the ratio between the measurement and the
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baseline prediction of the present day to update the prediction
for the next day. This was done as follows:

q24
d+1lt = qbase

d+1lt

⎛
⎜⎜⎜⎝

t+s∑
t′=t−s

qobs
dlt′

t+s∑
t′=t−s

qbase
dlt′

⎞
⎟⎟⎟⎠

p

. (5)

In (5), the 24-h prediction q24
d+1lt for day d + 1, link l, and

time interval t is equal to the baseline prediction multiplied by
an update factor. This update factor is an exponent p of the
ratio between the (central moving) averages of measurements
and baseline predictions from day d. The central moving av-
erages are taken in the interval [t − s, t + s] with 2s as the
box width. To limit the disturbing influence of noise in the
update, the box width of this interval was chosen to be at
least 1 h.

The exponent p lies between 0 and 1. If there would be
no correlation between the residuals of two successive days,
it would be impossible to update the prediction with measure-
ments from the previous day (p = 0). On the other hand, if this
correlation is equal to 1, the prediction is simply multiplied by
the ratio between the measurement and the baseline prediction
(p = 1).

By trying different values for p and s, we found that the RMS
of the residuals for the 24-h prediction is relatively low when
the box width for the central moving average is larger than 1 h
and when p lies between 0.5 and 1.0. Although results within
these ranges do not very strongly vary, we conclude that the
RMS of the residuals was minimized for our data set when the
box width is 3 h (s = 9) and p = 0.8 and 0.5 for successive and
nonsuccessive weekdays, respectively. Note that p is smaller
for nonsuccessive weekdays, because the correlation between
the residuals is weaker for these days (see the bottom panel of
Fig. 3).

The 24-h prediction is, in general, updated by volumes from
the previous day (with p = 0.8). The exceptions are Mondays
and Saturdays, because a Monday follows the weekend, and
a Saturday follows a working day. The prediction for these
days were updated with the volumes of the previous Friday and
Sunday, respectively (with p = 0.5). It is also possible to update
these predictions with the volumes of the previous Monday and
Saturday, respectively. We did not find significant differences
between these different updates.

V. SHORT-TERM PREDICTION

In addition to day-to-day variations and seasonal variations,
there may be other variations that have shorter time scales
(for example, weather-related variations). These variations may
not be included in the 24-h prediction. Actual measurements
and 24-h predictions, however, can be combined to update the
prediction for the short term, e.g., [12].

As explained in Section III, a positive correlation between
residuals in successive intervals implies that we can use the
ratio between the measurement and the 24-h prediction of
the previous interval(s) to update the prediction for the next

interval(s). Comparable with (5), we could update the short-
term prediction

qst
dlt+T = q24

dlt+T

⎛
⎜⎜⎜⎝

t∑
t′=t−r

qobs
dlt′

t∑
t′=t−r

q24
dlt′

⎞
⎟⎟⎟⎠

h(T )

. (6)

In (6), the short-term prediction qst
dlt+T on day d, at link l, and

in time-interval t + T is equal to the 24-h prediction multiplied
by an update factor. This update factor is a power h(T ) of the
ratio between the (moving) averages of measurements and 24-h
predictions from the previous time intervals. The number of
time intervals is defined by the interval [t − r, t] with r ≥ 0.
The prediction is for the near future with time horizon T ≥ 1
(with one unit corresponding to 10 min in this case).

The exponent h(T ) lies between 0 and 1. If there would be
no correlation between the residuals of successive intervals,
it would be impossible to update the prediction for the next
interval with measurements from the previous interval(s). In
that case, h(1) = 0. On the other hand, if this correlation
would be equal to 1, the prediction is simply multiplied by
the ratio between the measurement and the 24-h prediction
(h(1)=1). The power h(T ) is also decreasing with T , because
the correlation between the residuals will become weaker for
larger time lags. Beyond a certain time horizon h(T ) = 0, the
short-term prediction will be equal to the 24-h prediction.

The problem with this prediction and with any extrapolation
method that uses moving averages (how sophisticated they
might be) is that the measurements contain noise that contam-
inates the prediction. Noise can be reduced when the length of
the interval [t − r, t] is increased. Unfortunately, by increasing
the length of this interval, the correlation between historical
flows and future flows will decrease. This will diminish the
quality of the short-term predictions as well. In fact, we could
not find any interval length r for which the prediction was an
improvement compared with the 24-h prediction.

To tackle this problem, we tried to filter the noise. For this
purpose, we used a Kalman filter [19]. The principle of this
filter is that the noise in the measurements is smoothed by
expected model values, which are given by a state equation.
The measurements are given by the measurement equation

qobs
dlt = qdlt + νdlt (7)

with qdlt being the true volume and νdlt being the measurement
noise on day d, at link l, and in time interval t. We used the
following state equation, in which we estimated the volume of
the next time step by the expected increase (or decrease) in the
24-h prediction:

qest
dlt = qkal

dlt−1 +
(
q24
dlt − q24

dlt−1

)
. (8)

The filtered volume qkal
dlt is calculated by taking the linear

combination of the state estimate qest
dlt and the measured volume

qobs
dlt , in which the total variance due to model errors and

measurement noise is minimized (for details, see [19]). For this
recipe, we need an estimate for the variance of the noise Rdlt
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and for the variance of the model error Qdlt. Because the state
equation does not contain other variables besides the volume
q, no covariances need to be considered. According to (3), the
variance of the measurement noise can be approximated by the
expected volume. Thus

Rdlt = q24
dlt. (9)

Following the reasoning behind (3) and (4), we estimated the
variance of the model error in the following way:

Qdlt =
(
c′q24

dlt

)2 +
(
q24
dlt−1 + q24

dlt

)
/ND. (10)

The model error contains some measurement noise, because
it is based on historical measurements. This is described by the
second term in (10). If the number of days ND in group D is
large, this noise term becomes negligibly small. The first term in
(10) describes the systematic model error due to imperfections
in the 24-h prediction. According to the state equation (8), we
look for the error in the difference between two successive
predictions. The variance due to the (systematic) error in a
single prediction is given by the first term of the right-hand side
of (4). Similarly, the first term of the right-hand side of (10)
gives the variance due to the error in the difference between
two successive predictions.

Because the relative error in a single prediction c only varies
slowly with time, we expect that the relative error in the
difference c′ should be small. However, it is almost impossible
to directly estimate c′. We therefore indirectly estimated c′ by
trying to minimize the RMS of the residuals in the short-term
prediction (see below), i.e., we tried different values for c′.
We found low RMS values when c′ lies around 0.01 (1%) for
working days and around 0.1 (10%) for weekends. The estimate
of c′ thus appears to be dependent on the day of the week.
However, we also find that residuals in short-term predictions
are not very sensitive to variations in c′. For values of c′ between
0.01 and 0.1, the RMSs of the residuals are comparable, and
they are all significantly smaller than the RMS of the 24-h
prediction residuals. We set c′ at a fixed value of 0.03, because
we found that the overall RMS of the residuals in the short-term
prediction is minimal for this value. We stress that, since c′ is
different for various groups of days, the chosen value can hardly
be seen as a “fit” to the data.

Given the filtered data, we tried different values for the max-
imum time horizon and for the power h(1), which is required
for the prediction of the next time interval. From this, i.e., by
minimizing the RMS in the residuals, we derived the following
equation for the short-term prediction:

qst
dlt+T = q24

dlt+T

⎛
⎜⎜⎜⎝

t∑
t′=t−5

qkal
dlt′

t∑
t′=t−5

q24
dlt′

⎞
⎟⎟⎟⎠

0.8−0.1T

. (11)

This equation is comparable with (6), but here, the raw
measurements qobs

dlt′ are replaced by the filtered measurements
qkal
dlt′ . The power h(T ) = 0.8 − 0.1T . The correlation between

systematic variations in two time intervals decreases with the

Fig. 4. Two examples of predictions with a 10-min horizon compared with
the measurements. The measurements are 10-min aggregates of raw data.

length of the time lag between these intervals. As a conse-
quence, the power of the update is maximal for the shortest
prediction horizon (next time interval) and gradually decreases
with prediction horizon T . The maximum horizon is eight
intervals, i.e., in 80 min, the prediction will be equal to the 24-h
prediction. The length of the historical time interval [t − r, t],
which is used to update the short-term prediction, is 1 h (six
intervals). Note that the RMS of the residuals for the short-term
prediction is not very sensitive to the power h(T ). The RMS is
relatively low when h(1) lies between 0.5 and 1.0 and when the
maximum horizon lies between 50 and 100 min.

In Fig. 4, we show two examples of predictions with a 10-min
horizon. The predictions appear to follow the measurements
quite well. In both cases, the remaining variation is mainly
caused by the measurement noise.

VI. ACCURACY OF PREDICTIONS

It was already mentioned in Section III that, for this evalua-
tion, we do not separate between a test and a training set. It was
argued that, for a baseline prediction, this will not cause any big
problems. For a 24-h prediction and a short-term prediction,
the consequences are also limited. Although these predictions
are direct or indirect updates of the baseline prediction, they
are otherwise derived in exactly the same way as in a real-time
prediction. We affirm that we used the whole data set to fine-
tune the free parameters in these predictions without using an
independent data set to test them. However, the number of free
parameters is very small compared to the number of profiles.
Moreover, we used the same values for all predictions, despite
the fact that there are significant differences between different
days, links, and times of the day. We therefore argue that the
results from the evaluation in Section VI are also valid for real-
time predictions.

Predictions can be validated by an a posteriori compari-
son between predictions and measurements. In the previous
sections, we used a standard measure for validation, i.e., the
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Fig. 5. Relative prediction errors in baseline predictions, 24-h predictions, and short-term predictions for Mondays, Tuesdays to Fridays, weekends, and the
holiday period.

RMS of the residuals. Another measure is the mean absolute
value of the residuals. Often, relative values (with respect to
the prediction itself) are also given. Relative measures can be
put in percentages, and they give complementary information.
Absolute measures are often called absolute prediction errors,
while the relative measures are called relative prediction errors.

Unfortunately, these measures are not real prediction
errors, because the residuals also contain (measurement) noise
[ν in (2)]. The standard deviation in the noise is proportional
to the square root of the expected volume. The absolute “pre-
diction error” therefore increases with the volume, while the
relative “prediction error” decreases with the volume. In other
words, the “prediction error” depends on the magnitude of the
link flow. This result is nicely illustrated in Fig. 4. The volumes
in the upper panel are four times larger than those in the
bottom panel. The relative variation in the residuals is indeed
significantly smaller in the upper panel, while the absolute
variation is significantly smaller in the bottom panel. In fact, the
real prediction errors [ε in (2)] are negligibly small compared
with the noise, and the quality of both predictions is actually
quite comparable. The measures that are referred to as absolute
and relative prediction errors in the literature might as well be
considered to be measures for the noise. They are therefore not
suitable to evaluate the quality of a prediction scheme.

The noise and prediction errors are uncorrelated so that both
variances add up, which is indicated by (4) in Section III.
According to this equation, the average quadratic prediction
error can thus be estimated as the difference between the mean
square of the residuals (total variance) and the variance of
the noise. For a fair evaluation of the prediction scheme, it is
therefore crucial to have some knowledge about the amount of
noise. In Section III, we explained that the noise of the first
order can be approximated by a Poisson distribution but that this
estimate is probably a lower limit. However, without a better
estimate, we used this to estimate the prediction errors.

In Fig. 5, we show the average relative prediction errors
for Mondays (upper left), Tuesdays until Fridays (upper right),

weekends (bottom left), and school holidays (bottom right).
For a smooth result (to minimize the effects of noise in the
figure), we show the prediction errors for 30-min aggregates (in
which predictions with a 30-min horizon are included). From
Fig. 5, we can conclude that both short-term predictions (solid
lines) and 24-h predictions (dashed lines) are significantly more
reliable than baseline predictions (dotted lines). Short-term
predictions are significantly more reliable than 24-h predictions
on Mondays, on weekends, and during the holiday period, but
the two predictions are quite comparable for the other work-
ing days. Predictions are probably less reliable on Mondays,
because they cannot be updated by traffic information from
the previous day (which would be a Sunday). Note that, even
for short prediction horizons, it is difficult to estimate reliable
predictions for the Monday morning rush hour.

Apart from the Monday morning rush hour, estimated errors
of short-term predictions are around 5% during the working
day, while predictions become less reliable in the evening
period and in the weekends. This is not very surprising,
since less predictable recreational traffic is dominant in these
periods.

In theory, predictions can be improved when errors are
around 5%. However, as mentioned before, the noise is prob-
ably underestimated. The prediction errors may therefore be
overestimated. The predictions could be considered to be op-
timal when no systematic trends (larger than 10 min) are left in
the residuals. This would be the case if residuals of successive
time intervals are uncorrelated. The randomness of residuals
is usually tested by a Ljung–Box test. The null hypothesis
states that the residuals in the time series are uncorrelated. We
performed the Ljung–Box test and estimated in how many cases
the null hypothesis is rejected. We used a 95% confidence level.
We found that the fraction of rejected profiles is about 90% for
the baseline prediction, about 80% for the 24-h prediction, and
less than 30% for the short-term prediction. In other words, for
about 70% of the short-term predictions, there is no evidence
that systematic variation is left in the residuals.
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Fig. 6. Correlation between residuals of successive time intervals for baseline, 24-h, and short-term predictions during (upper panel) weekends and (bottom
panel) working days. Left panel: 10-min time series. Right panel: 30-min time series. The symbols represent link values.

The Ljung–Box test also includes the autocorrelation of long
time lags. Because residuals with long time lags are less corre-
lated or uncorrelated, they may “overshadow” the correlation
for short time lags. We therefore separately considered the
autocorrelation of residuals with a time lag of one interval, i.e.,
we analyzed the correlation of successive residuals. Because
the systematic variation relatively slowly changes, it is quite
likely that, when the prediction is systematically too high in
one interval, the systematic component will also be too high
in the next interval. Thus, in that case, we would expect that
successive residuals are positively correlated.

In Fig. 6, we show the correlation between the successive
residuals. We distinguished between different links, so that for
each link, we got an estimate of the average correlation. The
results are shown for weekends (upper panel) and working days
(bottom panel). We show the correlation for both 10-min time
series (left panel) and 30-min aggregates (right panel). It can
be seen that, for the short-term predictions (solid symbols),
most links show a very small positive correlation during work-
ing days. For the weekends and for all baseline predictions
(crosses), correlations between successive residuals are signif-
icantly larger (in some cases, with correlation coefficients of
0.8). The figure also nicely illustrates that the 24-h prediction
(open symbols) is in between the baseline and the short-term
prediction.

Since the number of residuals is very large (the number of
days times the number of time intervals), even small corre-
lations are still significant. There will always be some cor-
relation left in the residuals, because no prediction scheme
is perfect. We therefore do not claim that the residuals of
short-term predictions are random. However, from Figs. 5
and 6, we can conclude that our short-term and 24-h predic-
tions are an important improvement compared with baseline
predictions. Moreover, apart from weekends, evenings, and
the Monday morning rush hour, errors in short-term predic-
tions and, to a lesser extent, 24-h predictions are negligibly
small.

VII. CONCLUSION

We have developed a prediction scheme based on volume
data that were collected at about 20 urban intersections in the
Dutch city of Almelo.

Our prediction scheme consists of three steps. In the first
step, we have made a baseline prediction for a given day, lo-
cation, and time interval. We have classified days into working
days (Monday to Friday), weekends, and the school holiday
period and defined the baseline prediction as the historical
(yearly) average over all days belonging to the same group. In
the second step, we have made a prediction for 24 h ahead, in
which the baseline prediction is updated by the profile from a
previous day. In the third step, flows from the previous hour(s)
have been used to update predictions for the short term.

We have found that prediction errors in short-term and 24-h
predictions are significantly lower than those in baseline pre-
dictions. We have also found that predictions are less reliable
for a Monday morning rush hour, evenings, and weekends. The
Monday morning rush hour is less predictable, because it is the
start of a new week for commuters. In the evenings and week-
ends, traffic is dominated by people with less-predictable recre-
ational motives. However, apart from these periods, we have
found that short-term predictions have negligibly small errors.

Prediction of link flows can be applied for the management
of traffic-control systems, e.g., [20] and [21]. Predictions can
be used to optimize intersection traffic light split times. In fact,
some authors already have developed traffic control systems
that can adapt to a changing travel demand, e.g., [22] and [23].
In these cases, artificial neural networks are being used. The
prediction scheme that is introduced in this paper may also be
used for that purpose.

VIII. DISCUSSION

Our approach is useful for several reasons. First, the explicit
assumptions about temporal correlations in link flows appear



THOMAS et al.: PREDICTIONS OF URBAN VOLUMES IN SINGLE TIME SERIES 79

to be logical, and they therefore provide a simple method that
produces reliable predictions. We did not use spatial correla-
tions, because the spatial sampling of links is limited in our
sample. We therefore concluded that the inclusion of spatial
correlations would hardly improve our predictions. Although
the predictions significantly improve when we adopt simple
temporal correlations, this does not mean that the method
can automatically be used for other traffic parameters like
travel time, because these parameters may show different
correlations.

Second, in this paper, we explicitly separated systematic
variation from noise. Such an approach is not common in this
research area. Current validation measures, which do not sep-
arate the noise from the prediction error, cannot be considered
to be appropriate validation measures for prediction schemes.
We have also shown that predictions can be improved when the
(knowledge about the amount of) noise is taken into account. If
the noise is not taken into account, extrapolation methods may
deliver noisy predictions with an inferior quality.

An important issue is how the algorithm performs under
different traffic conditions. Although, most of the time, con-
gestion levels in the city of Almelo are low, many different
traffic situations occur. In our sample, both periods with light
traffic and rush hours are included. The sample also contains
low- and high-capacity roads, which serve low and high flows,
respectively. Moreover, the signaling can be different from
intersection to intersection. In some cases, the signals are fixed
and have quite long cycle times. In other cases, the signals are
vehicle actuated. In these different situations, noise levels may
also be different. Nevertheless, according to Fig. 5, the quality
of the prediction is similar during rush hours when the loads are
heavy and during the off peak when traffic is lighter. According
to Fig. 6, the quality of the predictions during working days is
also similar for roads that serve little traffic and high-capacity
roads that tend to have signaling with longer cycle times.

The main difference in the quality of the prediction is be-
tween working days and weekends. The demand in weekends
is mainly caused by recreational traffic, which has fewer regular
patterns. It appears, however, that the prediction algorithm
shows similar results for the aforementioned different traffic
conditions.

It is quite remarkable that the 24-h prediction is such a
strong improvement compared with the baseline prediction.
The quality of this prediction only depends on the strength
of the correlation between the demands on successive days.
The predictions are very reliable for Tuesdays, Wednesdays,
Thursdays, and Fridays, because these days follow days with
similar demand patterns. Because of weekly variations and the
fact that Saturdays, Sundays, and Mondays do not show similar
demand profiles, 24-h predictions are less reliable for weekends
and Mondays.

The success of the 24-h prediction is the result of the
slow-changing systematic variation in demand, which does
not depend on the traffic condition. The estimate of the 24-h
prediction also hardly depends on the noise levels. This is
different for the short-term prediction, in which we explicitly
used noise levels to improve the prediction. Although these
noise levels may vary for different traffic situations, we still

find that the short-term prediction is almost always a significant
improvement compared with the 24-h prediction.

The robustness of the short-term prediction can be explained
as follows. The effectiveness of the Kalman filter depends on
the estimated ratio of the noise and systematic error in the
state equation. The latter one was described by c′ in (10). The
exact noise level does not have to be known, because c′ is also
unknown. We chose c′ so that the short-term prediction became
optimal. It is thus possible to improve the prediction without
an exact estimate of the noise. Although it is quite likely that
the optimal value of c′ depends on the traffic situation, we
found that the quality of the short-term prediction is not very
sensitive to some variation in c′. The results show that we
are able to improve the short-term prediction under different
circumstances when we at least know the order of magnitude
for the noise.

Although the algorithm appears to be robust under different
traffic situations, it should actually be tested during structural
congestion. We were not able to validate our algorithm for
congested areas, because these measurements are lacking in our
data set. However, the algorithm might be tested in other studies
that provide traffic count predictions in large metropolitan
areas.

Throughout this paper, we optimized our prediction scheme
by trying different values for the free parameters. From a
theoretical point of view, one might consider introducing more
generic optimizing algorithms. In this paper, our main objective
was to show that reliable predictions are possible by using this
practical approach. However, we do not consider this paper
as finished but rather as a starting point for exploring more
applications, for example, travel time predictions. It is possible
that for those applications a more generic extension of this
algorithm, e.g., by including Bayesian inference statistics, is
desirable.
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