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Abstract 
Macroscopic traffic models are used for long-term projections on road networks and deliver travel 

times and congestion on road sections. Therefore, truthful road capacity values are essential 

parameters within traffic assignment models. Especially correct capacity values for weaving sections 

are of great importance because of their ‘node’ function within traffic models. However, exactly for 

these type of road sections, insufficient capacity values are currently used within the traffic model. 

Since, currently used capacity estimation methods are too time-consuming (microscopic simulation) 

or insufficient, the purpose of this research was to develop a model that estimates capacity values 

for weaving sections relatively fast, delivers truthful capacity values and is an improvement of the 

currently available capacity estimation models.  

Since it is stated that capacity estimation problem cannot be solved by closed-form solutions (i.e. 

mathematical expressions), this research developed a data-analytic model, in the form of a neural 

network, which estimates capacity values by means of a set of independent variables. To do so, a 

dataset including a set of significant variables was gathered first. The model development process is 

an iterative process, which was divided in a pre-training phase, training phase and post-training 

phase. To identify if the neural network meets de demands of the research goal, real-case 

configurations and currently used capacity estimation models have been used to validate the model.  

In the pre-training phase a suitable dataset is found in the appendices of the Dutch Handboek 

Capaciteitswaarden Infrastructuur (CIA). However, during supplementing the dataset, it was found 

that the dataset was not able to reproduce, whereby the complete data grid of CIA is re-simulated. 

The set of significant variables, that were able to implement in the model, where found to be the 

weaving configuration, configuration length, ratio of heavy traffic, ratio of weaving traffic and the 

division of traffic flows. During the training phase optimal structures and settings of the neural 

networks are iteratively found. A network with 10 neurons in the hidden layer delivered the most 

sufficient results. Finally, the estimated capacity values are analysed by means of the neural network 

output (i.e. regression plots, error histograms), a comparison of the estimated capacity values on 

real-case configurations and by comparing the estimation performance of the neural network and 

the currently used methods. It was found, during the post-training phase, that the neural network 

can estimate capacity values for weaving sections with only small errors and outscores the currently 

used methods for capacity estimations. Therefore, this research concluded that the use of a neural 

network delivers (relatively) fast and truthful capacity values for weaving sections. Moreover, the 

developed neural network is found to be an improvement of the currently used capacity estimation 

methods.  

It should however be noted that the use of the neural network is restricted for extraordinary 

weaving configurations. This can be solved by gathering supplementary data for this kind of 

configurations. Furthermore, all capacity values used in this research are simulated with FOSIM, 

which is stated to be the ‘ground-truth’ for this research. It should however be mentioned, that 

uncertainties related to the used simulation settings and validity are present. Moreover, 

configurations where no capacity value can be simulated for, are not included in the neural network. 

Finally, the performance of the neural network can be improved, in future research, by 

implementing variables as speed limit and speed reductions in macroscopic traffic models. 
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1 Problem context and description  
The representation of congestion within macroscopic traffic simulation models is generally executed 

within the traffic assignment model of the macroscopic simulation model (see Paragraph 1.1). 

Congestion is the result of a too high traffic demand related to the road capacity (see Paragraph 1.2). 

Primarily for discontinuities in a road network the importance of correct capacity values is large (see 

Paragraph 1.3). However exactly for these type of road sections, insufficient capacity values are 

currently estimated or too time-consuming processes for estimating truthful capacity values are 

present (see Paragraph 1.4). Therefore, this research has the purpose to develop a solution, which is 

found to be a data analytic model, which can estimate capacity values for weaving sections relatively 

fast, delivers truthful capacity values and is an improvement of the currently available capacity 

estimation models (see Paragraph 1.5). In this chapter the problem context and solution approach is 

broadly discussed. 

1.1 Traffic Assignment models 
Nowadays, different categories of traffic simulation models are used for evaluating traffic operations 

for, amongst others, freeway traffic. In general, three different categories of conventional traffic 

simulation models for freeway traffic can be distinguished, namely: microscopic, mesoscopic and 

macroscopic traffic simulation models. Microscopic traffic simulation models focus on individual 

vehicle movements. These models describe the reaction of every driver depending on the 

surrounding traffic of a certain driver. These reactions are accelerating, braking and lane-changing 

and are based on car-following models (Treiber & Kesting, 2013). Mesoscopic traffic models consist 

of both microscopic and macroscopic aspects of traffic simulation models (Payne, 1979). These 

models maintain individual vehicle representation (microscopic aspect) but with a more aggregate 

representation (macroscopic aspect) of traffic dynamics (Burghout et al., 2006). Macroscopic models 

are often used for strategic transport planning purposes and represents traffic flow on road 

segments in terms of aggregate measures as traffic density, speed and traffic flow. Macroscopic 

models are stated to be able to describe 

collective phenomena such as the evolution of 

congested regions or the propagation of velocity 

waves (Treiber & Kesting, 2013). Thus, the level of 

individual driving behaviour is not described by 

macroscopic models, however it is aggregated to 

a physical relationship through a cost function or 

the fundamental diagram of traffic flow (Bliemer, 

et al., 2012). Regarding the connection to cost 

functions and/or fundamental diagrams, it should 

be noted that macroscopic traffic models use 

capacity values as input, where microscopic traffic 

models can deliver capacity values as output. In 

Figure 1.1 a comparison of the above-mentioned 

categories of models is visually presented.  

Since macroscopic models are capable of modelling route choices and predicting traffic states on 

certain road networks, macroscopic models are extended with traffic assignment/propagation 

models. Traffic assignment models describe the interaction between road travel demand and the 

road infrastructure supply (Bliemer, et al., 2017). More generally, these models describe the 

interaction between flow and capacity. Traffic assignment models do consist of two main models, 

Figure 1.1: Representation of the different traffic simulation 
models (Treiber & Kesting, 2013). 
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between which interaction exist, namely: a route choice sub-model and a network loading sub-

model.  

Where the route choice sub-model determines traffic flows on road segments by means of travel 

demand, the network loading sub-model virtually propagates the traffic through the network and 

yields travel times given the infrastructure supply. Since travel times are, in many models, the most 

determinant attribute for route choice behaviour, the route choice is iteratively adapted to these 

travel times (depending on the equilibrium which is solved). Consequently, due to changing route 

choices, travel times per road segment change due to altered traffic flows. 

Many different traffic assignment models do exist, whereby the above described interaction 

between network loading and route choices do coincide. Bliemer et al. (2017) described that the 

different model types and their capabilities could be classified on the basis of three different type of 

assumptions, which are: spatial, temporal and behavioural assumptions. The following model types 

can be distinguished based on spatial assumptions: unrestrained models, capacity-restrained 

models, capacity-constrained models and capacity- and storage-constrained models. Unrestrained 

models do not consider capacity values and roughly represent free flow traffic. In capacity-restrained 

models it is still possible that flows can exceed road capacity, however travel times increase when 

traffic flows increase. For capacity constrained models it holds that traffic flow cannot exceed 

capacity. Moreover, in capacity- and storage-constrained models it holds that traffic flow will not 

exceed capacity and ensures that queues will spillback to upstream road segments (Bliemer et al., 

2017). In the latter case, travel times for the road segment, where traffic flow exceeds capacity, and 

adjacent road segments will increase due to the modelled spillback given that traffic demand 

exceeds infrastructure supply.  

Temporal assumptions do concern the choice of time periods regarding travel demand (flow over 

time) and route choice loading. Where, dynamic models consider time-varying travel demand and 

multiply periods for route choice within each time period, static models consider a stationary travel 

demand and only a single time period for route choice and network loading. Finally, behavioural 

assumptions do concern allocation models for route choice. Where, all-or-nothing models allocate 

all travellers to follow the fastest route on given travel times (Bliemer et al., 2017), equilibrium 

models allocate travellers, which are stated to be non-cooperative, based on a certain user 

equilibrium. This user equilibrium holds that no individual driver can unilaterally reduce its travel 

times by shifting to another route (Wardrop, 1952). 

Furthermore, temporal interactions on road networks are described by wave speeds and vehicle 

propagation speeds. Wave speeds are used to propagate traffic states through the road network. 

Wave speeds in the hypocritical branch (i.e. traffic densities lower than the critical density) are 

considered as forward waves. The wave speeds in the hypocritical branch are equal to the slope of 

the hypocritical branch of the fundamental diagram, which will be discussed in Chapter 3.1. When 

traffic densities are higher than the critical density, or when traffic flow exceeds capacity, backward 

wave speeds arise which propagate backwards on road segments. In this manner, queues and 

potential spillback arise on upstream road segments (Bliemer et al., 2017). These aspects of queue 

build-op and spillback only plays a role for capacity constrained models, since these models include 

hypocritical branches of the fundamental diagram. This means that actual flow rates on a link 

segment also depend on the upstream and downstream links. In other words, an interaction 

between traffic states on adjacent road section is present. Hence, output variables as (link) travel 

time are derived from cumulative inflows and outflows from that link segment (Bliemer et al., 2012). 

In this manner, it is feasible to calculate dynamic features as queuing, spillback and shockwaves. 
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In case of the software package OmniTRANS the traffic propagation or network loading sub-models 

MaDAM (dynamic) and STAQ (quasi-dynamic) are offered. MaDAM is a macroscopic and dynamic 

model used in OmniTRANS on behalf of realistic modeling of congestion dynamics. Several types of 

fundamental diagrams can be assumed within MaDAM (Bliemer, et al., 2017), which has four input 

parameters related to the fundamental diagram: the roadway free-flow speed, the speed-at-

capacity, the capacity and the jam density (Rakha & Crowther, 2002). These input parameters are set 

for every link in then network before the simulation starts and are fixed during the simulation.  

On the other hand, STAQ is a quasi-dynamic model, which has more realistic outcomes than static 

models and less calculation time than dynamic traffic assignment models. Since the computational 

efficiency of the STAQ model is relatively high in combination with its realism, it is recommended to 

use STAQ for calculations on larger road networks (Bliemer et al., 2012). Since both MaDAM and 

STAQ are models which are consistent with traffic flow theory, displayed in a well-known 

fundamental diagram, the outcome highly depends on the shape of the used fundamental diagram 

and the explicit capacity constraints of road sections (Bliemer et al., 2017).  

1.2 Importance of road capacity parameter within assignment models 
In case the (fixed) parameter of the capacity of a certain road section does not correspond with the 

actual capacity of the road section, implausible computations of the traffic conditions on certain 

road sections are made. Moreover, due to the interaction between traffic states on adjacent road 

sections in combination with capacity constraints which are taken into account in these macroscopic 

models, incorrect capacity values could negatively influence the plausibility of the complete network 

performance.  

After all, correct capacity values for road segments are an important input parameter for the 

network loading sub-model. Since, interactions exist between the route choice sub-model and 

network loading sub-model, the output of traffic assignment models strongly depend on the 

capacity value for road segments. Capacity values can be fixed or dynamic, where fixed capacity 

values are constant over time and dynamic values do vary over time (per iteration or simulation) due 

to changing dynamic variables (i.e. traffic flow and composition). When the (fixed or dynamic) 

parameter of the capacity of a certain road section does not correspond with the actual capacity of 

the road section, implausible computation of travel times on the road section itself and the up- and 

downstream road sections are made. As a result, implausible input for the route choice sub-model is 

delivered, which results in a worse performance for a larger share of the road network. Hence, the 

road section capacity is a weighty parameter which is a determinant for the plausibility of the 

resulting congestion pattern (e.g. location and extent of the traffic jam) and the derived road 

network effectiveness indicators (e.g. speed, (link) travel times and vehicle-loss-hours). Therefore, 

the output of the traffic assignment model could become implausible due to the interaction 

between the two sub-models in combination with inaccurate values for the earlier mentioned four 

fundamental diagram related parameters.  

1.3 The role of weaving section capacity  
Discontinuities in a road network are prominent sources of the emergence of congestion. For 

freeway networks these discontinuities are weaving sections, merging lanes, lane drops and to a 

lesser extend diverges. Weaving sections are specific points of interest in macroscopic models, since 

here interaction between weaving and non-weaving vehicles plays a role, which reduces the ‘base 

capacity’ of these road sections. The base capacity can be seen as the theoretical maximum number 

of vehicles that can pass a road section without any discontinuities. In case of regular lane drops, 

capacity reductions are currently present in traffic assignment models. However, for merging lanes 

and weaving sections this is not the case. Moreover, it could be stated that weaving sections and 



10 
 

merging lanes roughly represent nodes in a road network. Therefore, the network performance 

highly depends on the performance of these specific sections and lanes. This is due to the fact that 

sending or outflow rates are decomposed in different directions at weaving sections and merging 

lanes. Therefore, is stated that intersections and its adjacent merging lanes or weaving sections are 

decisive for the operation of the complete road network (Rijkswaterstaat, 2015). Moreover, at the 

above described road sections mandatory lane changes are necessary for drivers to reach their 

desired destination. The obligatory merging manoeuvres cause turbulence in the traffic stream, 

which explains that capacity values for weaving sections and merging sections are lower than 

capacity values for upstream located road sections. Rakha and Zhang, 2006 state that the 

introduction of lane changes within a traffic streams reduces the capacity in a fashion that is 

proportional to the level of turbulence within a weaving section. So called third order (quasi) 

dynamic traffic assignment models do already model the turbulence effects in their traffic 

propagation model. However, the most used models are first order implementations of these 

models, including STAQ, which not model the effects of turbulence. For these models, a reduced 

capacity value due to turbulence should be implemented. Furthermore, it is stated that capacity 

values for these essential sections are largely influenced by dynamic variables. These explanatory 

variables concern, amongst others, weaving flow rate, traffic flow composition and (entering) speed 

(Vermijs R. , 1998). Depending on the type of macroscopic model, the values for these explanatory 

variables are varying over time, while capacity values in many macroscopic traffic assignment 

models assumed to be fixed values and do not vary over time.  

1.4 Current Practice 
Currently, in the Dutch state of practice of transport modelling, capacity values for highway road 

segments, including weaving sections, are derived from the “Handboek Capaciteitswaarden 

Infrastructuur Autosnelwegen” (abbreviated as CIA), which is a manual for deriving capacity values 

for highway road segments published by the Dutch highway road authority. However, the CIA does 

not sufficiently provide unambiguous capacity values. This is due to the fact that capacity values in 

the CIA are point estimations (non-continuous) concerning road and environmental configurations 

under standard conditions (e.g. dry weather, good pavement conditions, no objects near road).  

With point-estimations it is meant that CIA provides capacity values for road configurations with a 

certain combination of values for critical variables. Critical variables according to CIA are the weaving 

section length, weaving ratio and ratio heavy traffic. For certain weaving configurations (i.e. 2+2 

weaving sections), CIA provides capacity values with, roughly three varying values per category of 

critical variables. This results in 3³ ≡ 27 capacity values per weaving configuration. A deviation of the 

standard conditions, which will be discussed in Chapter 3.1, or values for critical variables will lead to 

different capacity values and could force the implementation of reduction factors to derive a more 

plausible capacity value. It is however not conclusive to multiply several reduction factors leading to 

a capacity value under more than one divergent condition.  

Furthermore, finding an effective capacity value by interpolation between capacity values under 

standard conditions (e.g. weaving section length) is stated to be doubtful (Rijkswaterstaat, 2015). In 

addition, previous research found that parameters as heavy-traffic ratio do not have a linear relation 

with road capacity (Semeida, 2013). Moreover, the CIA states that the positive contribution of the 

length of a weaving segment to the road capacity relatively decreases as the length increases 

(Rijkswaterstaat, 2015). This also suggests that the relation between some variables (in this example 

weaving section length) is non-linear with road capacity, which means linear interpolation will be 

inadequate. Due to a combination of non-linear patterns and a deficient number of point-

estimations of capacity, simple non-linear interpolation between capacity values under certain 

conditions will, most probably, not provide sufficient results.  
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Moreover, due to a growing road network and dynamic traffic conditions in macroscopic traffic 

models, it is time-consuming and ineffective to derive capacity values manually per road section by a 

derivation of capacity values in CIA or by microscopic traffic simulation. In other words, due to a 

theoretical infinite number of combinations of values for independent variables, simply performing 

microscopic traffic simulations is not plausible due to its time-consuming characteristics and the 

iteratively changing values of the independent variables. Furthermore, it is stated that a generation 

of a simple closed-form solution for capacity values given the specification of the other variables is 

not possible (Transportation Research Board, 2000). Solutions for solving these sorts of systems 

which are too complex for closed-form solutions, are stated to be mathematical modelling or 

computer simulation.  

1.5 Solution Approach 
In short, a necessity does exist for implementing capacity values, which are reduced compared to 

the ‘base capacity’ due to turbulence on weaving sections. The currently used or developed methods 

for generating capacity values for weaving sections are insufficient or are too time-consuming to 

implement within traffic assignment models. Therefore, a solution should be developed which can 

estimate capacity values relatively fast, which delivers truthful capacity values (i.e. corresponding 

with currently used capacity values) and is an improvement of the current capacity estimation 

models.  

Previous research already estimated and expressed road capacities by means of linear regression 

and neural network techniques (Awad, 2004; Semeida, 2013). However, these 

estimations/expressions of capacity values are based on capacity values from the HCM and field data 

respectively. Since road conditions and traffic behaviour do vary per country, these capacity 

expressions are not applicable for the Dutch situation. Nevertheless, results from other previous 

research showed that it is possible to train neural networks, which is a form of mathematical 

modelling, able to approximate outcomes of traffic simulations with a high accuracy. Moreover, it 

was found that the method can be applied broadly within the field of traffic analysis and transport 

planning. The application of these kind of meta-models are less time consuming than executing 

traffic simulations (Gora & Bardoński, 2017). Furthermore, a meta-model, or in this case a model 

based on the outcomes of the microscopic traffic simulation model, simplifies the simulation model 

in two ways: the response of the meta-model is stated to be more deterministic than the original 

simulation model and the run times of the meta-model are generally much shorter than the original 

simulation (Barton & Meckesheimer, 2006). For these reasons, designing a meta-model to estimate 

road capacity values is preferred over implementing microscopic traffic simulations to estimate 

capacity values. 

Since capacity values are important parameters in traffic assignment models and inappropriate 

interpolations between fixed capacity values are currently used, it is desired to develop a data-

driven meta model which is able to estimate dynamic capacity values for weaving sections given a 

set of both static (e.g. weaving section length) and dynamic (e.g. flow rate, flow composition) 

explanatory variables influencing road capacity. For computational and model efficiency it is 

essential for the meta model that it could directly be connected to traffic assignment models within 

macroscopic traffic simulation models as OmniTRANS. Since, the meta model should be suitable for 

macroscopic traffic simulation models, certain boundary conditions regarding the explanatory 

variables are necessary. In other words, the meta model should preferably only contain input 

parameters for estimating capacity values which are already available as an input or can be derived 

from other input variables in traffic assignment models and/or microscopic traffic simulation 

models. 
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2 Research goal, strategy and questions  
In this section the purpose and the desired results of the research are defined. Furthermore, the 

research questions and the research strategy elaborated. 

2.1 Research goal 
The aim of this research, derived from the problem context, is: 

 The aim of this research is to develop a model, applicable within macroscopic capacity 

 constrained traffic assignment models, which estimates the capacity value for weaving 

 sections given a set of explanatory variables*. 

* The set of variables that significantly influences the capacity at given road segments is described 

later in this research. 

2.2 Research questions 
To attain the research goal, the research is set up with three main research question, which are 
divided into several sub questions. The research strategy to answer these research questions are 
discussed in section 2.3. 

1. Which variables do significantly influence the value of road capacity for weaving sections? 

a. Which type of road capacity is most suitable for the meta model and how is it 

defined? 

b. Which variables influence the road capacity according to the literature? 

c. Which variables do significantly influence the road capacity for weaving sections and 

merging lanes?  

d. Which of the explanatory variables are available in traffic assignment models and/or 

microscopic simulation models or could easily be derived or added? 

 
2. What is the most suitable meta model and how should it be developed? 

a. According to the literature, which kind of data analytic models are available? 

b. Which type of data analytic model is the most suitable for the desired meta model? 

c. Which data is available and how can the dataset be supplemented? 

d. How can discrepancies or omissions between the available data and the significant 

variables (question 1c) be solved?  

e. In which manner should the available or simulated data be implemented in the meta 

model?  

f. In which manner the data should be structured within the meta model? 

 
3. In which manner should the meta model be validated and/or applied in a test case?  

a. What is/are (a) suitable method(s) for training and testing the meta model? 

b. Which performance indexes are suitable for describing model performance? 

c. Which options of model validations are available and can reasonably be used?  

d. How does the model perform when applying it to NRM configurations and how can 

this performance be defined?  
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2.3 Research strategy 
In this paragraph the challenges to reach the goal of the 

research are presented. First, a proper definition of road 

capacity is found. Then the capacity-influencing variables 

for weaving sections are elaborated. Since it is found in 

Chapter 0 that a dataset of capacity values is a necessity 

for estimating ‘other’ capacity values, a dataset with 

varying values for the significant variables is constructed. 

With a dataset consisting of capacity values, a data-

analytic model is developed for estimating capacity values 

for real-case configurations. Before applying the model on 

real-case configurations, the model is firstly trained and 

tested on the dataset with currently present values of 

independent and dependent variables. In Figure 2.1 a 

summary of the research strategy is presented which will 

be extensively discussed in this paragraph.  

First of all, several definitions of road capacity do exist, of 

which a corresponding definition with traffic assignment 

models is selected. CIA considers more than one type of 

capacity value, namely the free capacity and the capacity under congestion (Rijkswaterstaat, 2015), 

an unambiguous capacity definition does not exist. Hence, it is essential to firstly define a proper 

capacity value for using in the desired model. The desired capacity value should correspond with the 

assumptions and definitions within/made by the traffic assignment model, since the desired model 

could be possibly applied within traffic assignment models. Therefore, the most suitable capacity 

definition depends on the traffic assignment model. Since, the capacity definition is already essential 

for the remaining content of the research, the currently available capacity definitions and the most 

suitable capacity definition for application within the model will be discussed in Chapter 3.1. 

Secondly, the capacity values are dependent on certain variables concerning road geometry, traffic 

composition and other environmental factors. Therefore, a literature and/or simulation study 

examines which variables do significantly influence road capacity. According to the CIA and previous 

research, some variables influencing road capacity are (amongst others): lane width, heavy-vehicles 

ratio, number of lanes, free flow speed or maximum allowed speed (Awad, 2004; Rijkswaterstaat, 

2015; Semeida, 2013). These capacity-influencing variables are elaborated in Chapter 3.2. 

Furthermore, a quantitative analysis on the influence of these variables on capacity is presented in 

Chapter 4.1. The quantitative analysis on the influence of the variables is made for two reasons, 

namely: it provides an insight in the capabilities of the model for pattern recognition and it indicates 

the insignificant variables. 

Since some variables do not have a large contribution to the capacity values, not all variables could 

be considered in the model. Furthermore, some variables are (strongly) mutually correlated, for 

example the total lanes and median with. In such cases, it is inefficient to implement both mutual 

correlated variables. Hereby, it becomes inefficient to implement both mutual correlated variables, 

for example total lanes and median with. Therefore, the variables which are taken into account in 

the meta model are elaborated. Moreover, the explanatory variables which are applied in the meta 

model should, preferably, be available in or could directly be derived from the traffic assignment 

model. For example, the distance between the driving lane and crush-barrier could theoretically 

influence road capacity. However, when this variable is not available in traffic assignment models or 

Figure 2.1: Summarized overview of the research strategy 
represented by a flow chart.  
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is not easily to derive or add, the explanatory variable cannot be used within traffic assignment 

models and the meta model. 

In Chapter 0 it is stated that a model will be developed that can estimate capacity values relatively 

fast, which delivers truthful capacity values and is an improvement of the current capacity 

estimation models. Since this model is stated to be trained by means of capacity values belonging to 

certain weaving configurations, data is firstly gathered and structured to create a data grid/-set 

before developing the data-driven model.  Several options do exist to derive capacity values, 

namely: by means of microscopic simulation and/or measured capacity values on the Dutch 

freeways. Measured capacity values are hard to derive due to the fact that it is costly and time 

consuming to determine the extent of weaving traffic on weaving sections. Furthermore, micro 

simulation makes it possible to supplement the available data by varying in values for explanatory 

variables. A disadvantage of data gathering by means of measured capacity is the lack of this 

possibilities in varying in values for explanatory variables. For these reasons, it is preferred to gather 

data by means of micro simulation. For this research the micro simulation software of FOSIM is used. 

Furthermore, FOSIM is validated for Dutch freeway traffic (Vermijs R. , 1998). Therefore, it is not 

necessary to re-calibrate the model-parameters, as driver characteristics, within FOSIM for all other 

configurations (Dijker & Knoppers, 2006). However, by using FOSIM some restrictions do apply, 

amongst others: the number of independent variables which can be implemented. Fortunately, a 

dataset for weaving sections derived from FOSIM simulations is already present in CIA. Therefore, 

the use of FOSIM will prevent a bias between the available and created data. Moreover, to prevent a 

bias with the CIA data, the simulation design should correspond with the design used in CIA. FOSIM 

will be further introduced in Section 3.4, in the theoretical framework. In Section 4.4  the used 

settings and simulation design will be discussed. 

As stated above, a dataset of capacity values for weaving sections is already present in CIA, which is 

described in Chapter 3. Roughly, it contains capacity values for varying values for the explanatory 

variables. For estimating a meta-model, the dataset should match with real case configurations, 

which should be indicated. However, the dataset is most likely to be incomplete for the purpose of 

estimating a meta-model. In other words, the range of varying values for the explanatory is not 

sufficient to match with real-case configurations. For this reason, supplementary data is gathered 

with FOSIM, as described in previous paragraph. Since the design of the dataset is a component of 

the iterative process of model design, it is hard to define the efficient size of the dataset at this 

moment. For weaving sections, it holds that many configurations do or could exist. The weaving 

configuration has a marked effect on traffic operations and thus influences capacity values for these 

road sections (Transportation Research Board, 2000). Therefore, it would be time-consuming to 

simulate a broad range of values for explanatory variables for all configurations. Since the weaving 

configurations can be classified in different types of classes (e.g. symmetric or nonsymmetric), a 

broad range of values for explanatory variables will initially only be simulated for one type of 

weaving configuration, assuming a meta model can predict beyond several classes. As stated before, 

both the already available dataset and the desired ranges of values for explanatory variables are 

described in the theoretical framework in Chapter 3. 

When both the most suitable capacity definition and its (most) influencing variables are determined 

and a suitable dataset is gathered, it is desired to process these into a model. The model does 

estimate the desired road capacity values based on a dataset with capacity values and the 

explanatory variables. According to previous research, regression models for predicting road 

capacity do give less confident results than neural network models (Awad, 2004; Kadari et al., 2015; 

Semeida, 2012; Semeida, 2013; Yap et al., 2015). Moreover, it is stated that neural network 
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technique models are able to predict capacity values for all weaving configurations together, and is 

easily able to identify the different hidden patterns across configurations (Awad, 2004). Therefore, 

on first sight it is preferred to use a neural network technique to predict capacity values for weaving 

sections. However, the precise type, design and architecture of the meta model should be defined 

and elaborated. More literature and arguments for the model choice and architecture is elaborated 

upon in the next Chapter 3.5. 

Since, several types of weaving configurations are modelled, it will be discovered if more than one 

model is desired. In other words, it will be investigated if separate model types of weaving sections 

(i.e. symmetric and non-symmetric) do improve the total model results. Moreover, it could be that 

the model performance will improve if some weaving section configurations are separated into 

another sub-model. Firstly, this can be discovered by means of an analysis of patterns in the data. 

Furthermore, this could be discovered during the iterative process of the model development. In 

other words, if the model results improve when the model is split in two structures, a model 

architecture with two sub-models will be preferred. However, one can state that the meta model 

should be able to categorize this eventual segregation itself since the models are stated to be able to 

find hidden patterns in (large) datasets.  

Once the model architecture is defined, the model is 

trained and tested with the available dataset. For 

this reason, the data will be separated into a 

training, validation and testing dataset. Generally, 

the training dataset make up approximately 70% of 

the full data set, where both the validation and 

testing dataset make up 15% each of the full data set 

(Hagan et al., 2014). Where the training set will be 

used to fit the meta model(s) to the data, the 

validation dataset is used to estimate the prediction 

error for the model selection. Finally, the test 

dataset is used for the assessment of the generalization error of the final chosen model (Hastie et 

al., 2001). It should be noted that it is of high importance that all the datasets represent the total 

dataset well. In other words: all the three datasets should contain approximately sufficiently similar 

scatter plots of value ranges for explanatory variables. For example: it is prevented that the training 

set only contains data points for short weaving sections and the test set only contains data points 

representing long weaving sections. Moreover, it is analysed if the model is performing worse for 

specific weaving configurations or combinations of values of explanatory variables. For example: the 

overall error of the model can be sufficient, however for some configurations the model could 

perform worse. Then the overall error could be improved by increasing model performance for that 

region of these configurations. For this purpose, regression plots of model errors could provide 

insights in both the competence of the model to interpolate or extrapolate and miscalculations for 

specific configurations (outliers). Regression plots display the trained output versus the target values 

and provide in that manner an insight in model errors for every specific combination of explanatory 

variables in the dataset. For example: running a separate dataset with only a specific type of weaving 

configurations can identify potential malfunctions of the model. Since the model architecture could 

be changed due to the results of the model training and validation, the model development 

processes is an iterative process, which is shown in Figure 2.2. For example, when the model does 

not perform on certain types of weaving sections, the dataset will be extended with more data 

points for these specific types to improve predictions for these configurations. Obviously, this also 

means that the performance is again evaluated for the other configurations as well. Besides, the 

Figure 2.2: Overview of the iterative model development process 
(Hagan et al., 2014). 
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model architecture itself could be adapted to improve predictions of the meta model (Kadari et al., 

2015). More literature on model architecture and the training process is described in Chapter 3.5. 

The training process itself is described in Chapter 5, which is completely dedicated to the training 

process. 

Finally, the outputs of the trained model are analysed which process is better known as post-training 

analysis. For this case, the post-training analysis consists of three different elements. The first 

analysis is made of the model performance on the available dataset, which is divided in a training, 

testing and validation set. The second component is the analysis of the model performance on the 

real-case configurations to evaluate the ability of the model to interpolate and extrapolate as well. 

For this research it is assumed that the configurations which are available in the NRM-West model 

are representative for all Dutch weaving sections. The NRM models are strategic macroscopic 

models from Rijkswaterstaat used for long-term projection on the Dutch freeways (Rijkswaterstaat, 

2018). Therefore, real-case configurations are derived from the NRM-West model because other 

capacity estimation methods have been applied on these configurations and it is safe to assume that 

it consists of a representative set of cases for the rest of the Netherlands. For this analysis, the 

weaving sections and traffic conditions which are currently present in real-case are the input of the 

data analytic model. The capacity values which are subsequently estimated by the data analytic 

model are compared to the simulated capacity values of the same configurations.  

The last component of the post-training analysis is an analysis on the improvement (or 

deterioration) of the data analytic model. This is discussed by means of a comparison between the 

estimated capacity values by the data analytic model, the simulated capacity values (ground truth) 

and the previous estimated capacity values for the available real-case configurations. Capacity values 

are currently predicted by a calculation method incorporated in QBLOK, which is the standard 

network loading model of the Dutch NRM models. Furthermore, a nearest neighbour-based method 

has been developed for estimating capacity values. The nearest neighbour-based method compares 

the NRM configuration with the present configurations in the CIA manual and selects the capacity 

value of the most similar configuration. In this manner, it can be assessed if an implementation of 

the meta model will result in more accurate capacity values. The post-training phase of the model 

estimation is elaborated in Chapter 6. 

Optionally, the meta model can be applied within macroscopic traffic simulation models, for 

example: the NRM-West model within OmniTRANS. Several options for implementing the meta 

model within traffic simulation models do exist. The main directions of implementing the model is by 

implementing it within the dynamic network loading sub-model or by implementing it after every 

iteration. However, the implementation om the meta model itself is not a component of this 

research. Although, by implementing the meta model, resulting traffic states, queues and spillback 

under the predicted capacity values can be compared to the output with the currently used capacity 

values. Moreover, resulting congestion images and locations can be compared to the output of the 

model using current capacity estimation methods and real-life congestion images using Google 

Traffic (Possel, 2017).  
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To summarize, in Figure 2.3 the model development process, as shown in Figure 2.2, is merged with 

the research strategy flow chart. The three phases of the model development are also the 

fundament for the structure of this research. In Chapter 3 a theoretical framework is presented 

which discusses the components of this research in a theoretical manner. In Chapter 4 the pre-

training phase of the model development is elaborated. The pre-training phase comprise the 

definition of a suitable capacity definition, the inventory of the significant variables and the 

gathering of capacity values for the dataset. Subsequently, the training process will be described in 

Chapter 5 which includes the selection of the structure of the data analytic model and settings for 

the model training. In Chapter 6 , where the post-training phase is described, the output of the data 

analytic model is analysed. Furthermore, the data analytic model will be applied on real-case 

configurations, by doing so, a comparison in model performance can be made for different capacity 

estimation models.  

 

 

 

 

 

Figure 2.3: The model development process (to: Hagan et al., 2014) merged with the activities of the research strategy. 
Where the total model development process can be divided in the pre-training phase, training process and post-training 
phase. 
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3 Theoretical Framework  
Before discussing the model estimation phases (pre-training, training and post-training phase), 

this chapter elaborates on the available literature and previous research on the aspects 

concerning this research. The chapter is divided in five sections, which all concern a specific 

component of the research, corresponding with the flow chart in Figure 2.1 , namely: capacity 

definition, variables influencing capacity, (available) dataset(s), model selection and structure(s) 

and finally model training and testing. Besides, this chapter endeavours to answer all descriptive 

research questions by means of literature review and summarizes these answers (or answer 

approach) at the end of this chapter. 

3.1 Introduction to Road Capacity 
Road capacity, often abbreviated with the capital letter C, is roughly defined as the maximum flow 

per lane (Treiber & Kesting, 2013). However, some different interpretations on this definition have 

been arising. Therefore, several different definitions of road capacity and road capacity values do 

currently exist. For this reason, the most ‘suitable’ definition of capacity applicable for this research 

should be chosen. To do so, a current set of commonly used capacity definitions will be discussed in 

this chapter. Finally, the most ‘suitable’ capacity definition for application within macroscopic traffic 

simulation models, from the elaborated set of capacity definitions, for this research is chosen. 

3.1.1 Road Capacity Definitions  
In the CIA road capacity is defined as: “The maximum number of motor vehicles per unit of time 

(mostly expressed as mv/h) of which it can be reasonably assumed that it can traverse a section or 

uniform segment of a road lane or road way during a certain period of time under prevailing road, 

traffic, control and environmental conditions.” (Rijkswaterstaat, 2015). Obviously, the CIA has 

derived its capacity definition from the well-known Highway Capacity Manual of the Transportation 

Research Board. The HCM defines road capacity as: “The maximum hourly rate at which persons or 

vehicles reasonably can be expected to traverse a point or uniform section of a lane or roadway 

during a given time period under prevailing roadway, traffic, and control conditions.” 

(Transportation Research Board, 2000).  

Since traffic flow and thus road capacity is dependent of the prevailing road, traffic and control 

conditions, capacity values do alternate for different road, traffic and control conditions. Moreover, 

due to constantly changing composition of different drivers, their driving behaviour and their made 

choices, road capacity values are not fixed quantities but stochastic variables. Nevertheless, it is 

found that many road authorities, including Rijkswaterstaat/CIA, do work with static values for road 

capacities (Rijkswaterstaat, 2015; Calvert et al., 2016). 

As stated above, the capacity values are dependent of prevailing road, traffic and control conditions. 

Both the Highway Capacity Manual (HCM) and the Handboek Capaciteitswaarden Infrastructuur 

Autosnelwegen (CIA) do provide capacity values for certain road configurations under base 

conditions. Therefore, the given (standard) road capacity values do only hold in case the prevailing 

road, traffic and control conditions correspond with the base conditions. The base conditions 

defined by CIA are, amongst others, that: the road is designed according current guidelines for 

designing highways; no large objects are situated directly next to the highway (for example: acoustic 

shielding); the road is not on a slope; in daylight under dry weather; the pavement is in good 

condition and without any form of traffic management measures (Rijkswaterstaat, 2015). 

Above the prevailing base conditions, the definition of the road capacity has other implications, 

namely the ‘dependency on traffic composition’ and ‘during a given period of time’. As earlier 
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described, the road capacity is not a fixed value due to the stochastic element in traffic composition. 

Amongst other things, the number of heavy vehicles (trucks etc.) do have an influence on the 

capacity value and do change over time. Therefore, the CIA provides standard capacity values with a 

share of fifteen percent of heavy traffic of the total traffic flow. This value is seen as a frequent ratio 

of heavy traffic. Furthermore, the ‘during a given period of time’ component of the capacity 

definition plays a significant role. The capacity value depends on the used definition of the 

aggregation level of time. In case traffic flow will be measured with an aggregation level of one 

minute, the (median) measured capacity value, based on the maximal traffic intensity, will be higher 

than capacity values measured with an aggregation level of fifteen minutes.  

According to CIA three methods exist to assess capacity values for a given road section. First of all, 

the capacity values can be assessed by means of microscopic traffic simulations. Since the dynamic 

traffic model FOSIM is specially calibrated and validated for the Dutch highways, Rijkswaterstaat (as 

author of the CIA) uses this model to assess capacity values. Therefore, capacity values in CIA are all 

derived from FOSIM simulations. These capacity values are currently used in Dutch practice. 

Secondly, the capacity value can be assessed by means of measurement data. According to CIA, the 

Brilon method or fundamental diagram method can be used assessing capacity values. The Brilon 

method provides a capacity observation as the downstream intensity during a time interval in the 

time interval before the interval that congestion occurs. Here, congestion is defined as a speed 

detection below a certain threshold at an upstream detector (Leferink, 2013).  

Furthermore, the capacity can also be assessed by means of the fundamental diagram method.  By 

using this method, the measured traffic intensity will be displayed on the y-axis and the 

corresponding traffic density will be displayed on the x-axis of the fundamental diagram or a 

derivate of the fundamental diagram. Afterwards, the measured data will be fitted to a fundamental 

diagram. Because of this, the capacity can be derived from the fitted fundamental diagram. An 

example of this fundamental diagram and the fitting of the data is shown in Figure 3.1. 

Finally, Minderhoud et al., 1997 made a broader inventory of available capacity assessment methods 

and concluded that the product limit method, of which the Brilon method is a derivative, is preferred 

above the empirical distribution method and fundamental diagram method respectively. 

 

Figure 3.1:  Example of a fit from measured data to a fundamental diagram. Here, the traffic intensity (veh/h) is 
displayed on the y-axis and the traffic density (veh/km) is displayed on the x-axis (to: Rijkswaterstaat, 2015). 
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Next to the above described free capacity definition (or: inflow capacity) also a congestion capacity 

(or: outflow capacity) definition exists. The CIA defines the outflow capacity as the capacity when 

congestion has occurred. It could be measured through the downstream traffic intensities once 

congestion has occurred upstream (Rijkswaterstaat, 2015). It is found that the difference between 

the free capacity and outflow capacity, which is known as capacity drop, is strongly dependent on 

the local situation. However, research found that the difference between the free and outflow 

capacity is mostly between ten to fifteen percent (Grontmij, 2009). 

3.1.2 Most Suitable Capacity Definition 
As stated above, it is needed to choose the most suitable (set of) capacity value(s) to be assessed 

with the meta model. The terminology ‘most suitable’ means in this case the set of capacity value(s) 

which correspond, preferably seamlessly, with the capacity definition within traffic assignment 

models. To find the ‘most suitable’ capacity definition for this research, a closer look to fundamental 

diagrams and their corresponding capacity values is desired.  All traffic assignment models, including 

capacity constrained traffic assignment models, assume a fundamental diagram. The fundamental 

diagram is defined by a hypocritical branch and hypercritical branch. Here the hypocritical branch 

represents traffic conditions with densities lower than the critical density or flows lower than the 

critical flow. The hypercritical branch represents traffic conditions for densities higher than the 

critical density or traffic flows higher than the critical flow. In Figure 3.2 it is illustrated that the 

hypocritical (blue part) and hypercritical (red part) branch of the fundamental diagram are separated 

by the value for capacity (C). It therefore should be defined if the desired capacity definition 

represents traffic flows at the hypocritical or hypercritical branch. Since traffic flows at the 

hypercritical branch are mostly instable, traffic flows at the hypocritical branch are more stable to 

calculate average traffic conditions. For the concerning traffic assignment models, this value is 

defined as the maximum flow through any part of a road section also known as the physical road 

capacity (Bliemer et al., 2017). This definition of the capacity value at the hypocritical branch lies in 

line with the definition of the free capacity by Rijkswaterstaat. Moreover, capacity values which are 

already used within OmniTRANS are derived from the highway capacity manual published by 

Rijkswaterstaat. For these reasons, the most suitable capacity definition of this research is the 

definition of the free capacity of Rijkswaterstaat, namely: “The maximum number of motor vehicles 

per unit of time (mostly expressed as mv/h) of which it can be reasonably assumed that it can 

traverse a section or uniform segment of an road lane or road way during a certain period of time 

under prevailing road, traffic, control and environmental conditions” (Rijkswaterstaat, 2015). Since 

capacity values are and will be derived by means of FOSIM simulations, the capacity is made 

operational by the maximum number of vehicles per hour that can pass a certain road section 

(detector downstream of the diverge) within a time interval of 15 minutes.  

 

Figure 3.2: Several examples of fundamental diagrams that can be assumed in traffic assignment model. Where the blue 
part of the fundamental diagram represents the hypocritical branch and the red section the hypercritical branch 
(Bliemer, et al., 2017).  
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3.2 Variables Influencing Road Capacity 
Since the provided capacity values in CIA and HCM do only hold if the road configuration and 

environmental context correspond to the base conditions, any deviation of these conditions will hold 

that the provided capacity value is not legitimate anymore. Therefore, reduction factors are needed 

to correct the capacity values. In this chapter the general and weaving section and merging lane 

specific variables influencing capacity values will be distinguished. Furthermore, restrictions and 

limitations of using these explanatory variables in the final meta model will be discussed.  

3.2.1 General variables 
As stated in the previous paragraph on 

road capacity, capacity values only hold if 

the road configurations and 

environmental context correspond to the 

so-to-say standard conditions. According 

to the CIA the deviating circumstances 

could be distinguished in six main 

categories, namely: infrastructural 

factors; environmental factors; traffic 

factors; traffic management factors; 

developments in in-car systems and ITS 

and incidental factors. These factors are 

derived from available research and HCM 

(Rijkswaterstaat, 2015). For almost every 

deviation a reduction factor is given. This 

reduction factor should be multiplied 

with the capacity value under base 

conditions to assess the actual road 

capacity value. However, actual capacity 

values become untrustworthy if more 

than two reduction factors are applied 

(Rijkswaterstaat, 2015). In Figure 3.3 the 

general variables derived from the CIA 

are summarized. In addition, more research on influencing variables for road capacity is available. 

Calvert et al., 2016 do also recognise the need for accurate stochastic capacity values as input for 

traffic models. They found that capacity values on workdays are 4% higher than on weekend days 

and a decrease of the capacity drop of 8% in comparison with workdays. Moreover, it is found that 

variable speed limits on freeways reduce the chance of traffic break down (Geistefeldt, 2011). 

However, it should be remarked, as already stated, that not all variables can be taken into account in 

the meta model, since not all variables are present or taken into account in traffic assignment 

models. Moreover, influencing variables could only be implemented in the meta model if they are 

present in the available data or could be added (by simulation or measured data) to the currently 

available data. Clearly, some restrictions do hold for implementing these general variables in the 

meta model. These restrictions will be discussed in Paragraph 3.2.4. 

 

 

Figure 3.3: Overview of the general capacity influencing variables 
according to CIA. 
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3.2.2 Driving behaviour on Weaving sections  
In this section the specific variables that influence road capacity for weave sections will be 

elaborated. Since weaving sections are acknowledged as concentrated/high turbulence areas within 

the freeway system (Zhang, 2005; Al-Jameel, 2011; Roess, 1988) and capacity is negatively 

influenced by an increased level of turbulence (Rakha & Zhang, 2006; Van Beinum et al., 2018), the 

driving behaviour on weaving sections is analysed first.  

On weaving sections and directly up- and downstream at weaving sections, drivers are required to 

perform driving manoeuvres to enter or exit the mainline of the freeway, or to cooperate and/or 

anticipate on the weaving traffic. These manoeuvres include (desired or) required lane changes and 

change in speed and headways (Van Beinum et al., 2018). The individual driving manoeuvres are 

visualised and are shown in Figure 3.4. When summarized, the individual driving manoeuvres are: 

gap search, adjust speed, execute lane changes and adjust lead headway (Vermijs R. , 1998).  

 

Figure 3.4: Schematic overview of the individual driving manoeuvres on weaving sections (Vermijs R. , 1998). 

Due to these manoeuvres, changes in lane flow distribution, greater speed variability and changes in 

headway distribution (on the different lanes) will arise. These phenomena are referred to as 

turbulence, which negatively influence highway capacity (Van Beinum et al., 2018). In other words, 

when lane changes are mandatory in high density traffic, the procedures of gap-searching and lane 

changing lead to braking manoeuvres which cause lower traffic speeds and as a consequence traffic-

breakdowns.  

Van Beinum et al., 2018 have developed a more extensive theoretical framework for turbulence 

compared to Vermijs, 1998 (Figure 3.4). In this framework, shown in Figure 3.5, the phenomena 

turbulence is structured considering three parts, namely: driving manoeuvres, microscopic 

behaviour and macroscopic effects. Here, the individual driving manoeuvres are coupled to 

microscopic behaviour of drivers. The lateral and longitudinal behaviour, which are both 

microscopic, do result in macroscopic effects as a change in density (vehicles per kilometre per lane), 

speed and headway. These macroscopic changes are directly influencing (the degree of) turbulence 

since turbulence is defined as the joint effort of changes in lane flow distribution, greater speed 

variability and changes in headway distributions.  
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Figure 3.5: Theoretical framework for turbulence near freeway discontinuities (including weave sections) (van Beinum et 
al., 2016). 

In the next paragraph the variables influencing road capacity are described qualitatively by means of 

a literature review. These variables could, theoretically, all be traced back to the components of 

turbulence as shown in Figure 3.4 and Figure 3.5. 

3.2.3 Weaving section specific variables 
Elaborating on the obtained knowledge about the driving behaviour and adjacent turbulence on 

weaving sections, the variables influencing capacity for weaving sections specific are investigated 

based on a literature study. A more quantitative analysis, based on a data-analysis, of the influence 

of the separate variables on capacity is made in Chapter 4. 

The impact of lane changes on freeway operations is stated to be a function of traffic composition, 

weaving/merging demand level, site geometry, information and signage system, and driver 

characteristics (Al-Kaisy et al., 1999). Based on this statement and research on capacity values of 

merging, weaving and diverging sections, the following influencing variables are summed up (Awad, 

2004; Rakha & Zhang, 2006; Transportation Research Board, 2000; Rijkswaterstaat, 2015; Vermijs, 

1998; Zhang, 2005): 

• Weaving section configuration; 

• Weaving section length; 

• Traffic composition; 

• Ratio of weaving traffic; 

• Allowed speed; 

• Speed differences between vehicles. 

3.2.3.1 Weaving Section Configuration 

A well-formulated definition for the weaving configuration is given by the Transportation Research 

Board in the Highway Capacity Manual. The weaving configuration is namely defined as: ‘The 

organization and continuity of lanes in a weaving segment, which determines lane-changing 

characteristics.’ (Transportation Research Board, 2000).  Since it is found that the weaving 

configuration influences lane-changing characteristics, which has impact on the turbulence in the 

traffic flow (Rakha & Zhang, 2006), it can be concluded that the weaving configuration do have a 

certain influence on road capacity.  

Hence, the weaving or merging configuration do influence road capacity. Actually, the configuration 

of a weaving section can have several different components which influence the road capacity. 
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Three main components of the configuration can be identified, namely: the number of available 

lanes, the availability of a taper merge or diverge and especially for weaving sections the 

arrangement of lanes (i.e. the difference between a symmetric 2+1 and 1+2 configuration). 

For this reason, the HCM classify the weaving configuration in several weaving types. The Weave 

type is defined as a classification scheme that categorizes weaving configuration into one of the tree 

types, namely type A, B and C (Transportation Research Board, 2000). These three types of weaving 

configurations are separated by means of the (minimum) required lane changes for the weaving 

traffic to reach their destination. In Figure 3.6 three examples for the different weaving types are 

separated.  

 

Figure 3.6: Examples of the three different weaving types according to the Highway Capacity Manual (To: 
Transportation Research Board, 2000). 

From Figure 3.6 the three different weaving types and the (minimum) required lane changes per 

configuration type are shown. It can be seen that at least one lane change per direction is needed 

for configuration type A. For weaving type B (taper configurations) only one direction is required to 

make a singular lane change. Weaving type C involves at least two lane changes for one direction 

while the other direction can change destination without any required lane change.  

The reason for this segmentation of the weaving configurations is made because of the different 

impact of the different lane-change characteristics. For example: a weaving flow of 500 vehicles per 

hour on configuration A and C implies 500 required lane changes where a weaving flow of 500 

vehicles per hour on configuration B could imply 250 required lane changes. 

Moreover, the configuration effects the proportional use of lanes by weaving and non-weaving 

vehicles (Transportation Research Board, 2000). In other words, drivers do have less flexibility in lane 

use for configuration type A, since the weaving vehicles must primary occupy the two lanes adjacent 

to the crown lane. For type B segments this effect is stated to be the least severe, since this 

configuration type require the fewest required lane changes, namely [0,1] or [1,0].  

3.2.3.2 Weaving Section Length 

In the literature it is found that the length of a weaving section theoretically will influence road 

capacity. The length of a weaving sections namely constrains the time and space in which the driver 

must execute the driving manoeuvres described in Figure 3.4 to execute a (required) lane change 

(Transportation Research Board, 2000). Regarding the driving manoeuvres required for lane 

changing, an increased length of a weaving section provides favourable opportunities for drivers to 

search a sufficient gap and adjusting their speed. Moreover, an increased length implies more 

available time for cooperative behaviour by performing cooperative lane changing or yielding to 

create gaps (Marczak et al., 2013). 

However, it is found that the impact of the configuration length on capacity decreases as the length 

of the weaving sections increases (Rakha & Zhang, 2006). In other words, adding extra length to a 

relative short weaving section has more impact on road capacity than adding length to a relative 

long weaving section. CIA does also discuss this relation, it is namely stated that: “in case the length 
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of a weaving section increases, capacity will increase as well. However, at an increasing length the 

increase of capacity will increase relatively less. This can be explained by the fact that most lane 

changes are made at the beginning of a weaving section. Therefore, the supplementary length of a 

long weaving section has a relatively limited effect on road capacity” (Rijkswaterstaat, 2015).   

Van Beinum et al., 2018 and Marczak et al., 2013 confirm in their researches that most of the lane 

changes are performed at the beginning of the weaving section. Moreover, Al-Jameel, 2011 did also 

found that capacity values do increase at an expansion of configuration length, primarily for short 

weaving configurations. At a certain length, an increase in length do not have a significant influence 

on road capacity. Furthermore, it is found that the influence of configuration length is not an 

isolated variable. Al-Jameel namely found that the influence of configuration length is larger for 

weaving sections with four lanes than for weaving sections with two lanes. 

Regarding the patterns found in this section, the configuration length does significantly influence 

road capacity. It is stated that the greater impact of increasing configuration length lies primarily at 

short configuration lengths. At longer configurations, an increase of length has relatively less or no 

impact on road capacity. 

3.2.3.3 Traffic Composition 

A component of the traffic composition is the ratio of heavy traffic, the ratio of heavy traffic is 

defined by the relative share of trucks on the total traffic flow. According to the guidelines for 

estimating capacity values, road capacity is influenced by the ratio of heavy traffic. This can be 

explained by the smaller accelerating performance of trucks, the reduction of sight for other drivers 

and because trucks cannot easily change lanes (Rijkswaterstaat, 2015). For these reasons, capacity 

values for traffic conditions with deviating ratios of heavy traffic are (or could be) rectified by means 

of reduction factors. These reduction factors are derived from the representation of number of cars 

by trucks. In other words: a truck could be counted as two regular vehicles. This linear relationship of 

corrections factors is also utilized by Awad, 2004 in his research on estimating road capacity by 

means of multiple linear regression and neural network modelling. Al-Jameel, 2011 does also 

endorse that the ratio of heavy traffic negatively influences road capacity. Moreover, it is found that 

the influence of the ratio heavy traffic differs according to the number of total lanes in the weaving 

section. 

However, for merging sections it is stated that these reduction factors cannot simply be applied for 

traffic situations with a traffic flow of more than 750 trucks per hour. Then the most right lane is 

namely occupied with a large number of trucks, whereby lane changing is extremely hindered 

(Rijkswaterstaat, 2015). When assuming for weaving sections that non-weaving tucks will use the 

two most right lanes, this restriction do also hold for weaving sections. Furthermore, previous 

research found that the relationship between road capacity and the ratio heavy traffic is not linear 

(Semeida, 2013; Jiang & Adeli, 2004). This founding implicates that the often used (linear) reduction 

factors based on CIA are not legitimate.  

Other aspects of traffic composition are the familiarity of drivers with the specific road conditions or 

weaving section, which is already shown in Figure 3.3. In the literature it is found that the familiarity 

of a driver with the route clearly influences the driving process (Intini, 2016). Furthermore, the 

driving behaviour in certain geographical regions can differ in relation to driving behaviour in 

another geographical region. This is found in a study on driving attitudes and behaviour in rural and 

urban areas in Norway. Here it was concluded that differences in attitudes and self-reported 

behaviour were significant due to type of geographical area (Nordfjærn et al., 2010). For the Dutch 
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practice it is only stated that personal driving style can deviate a lot from the average driving style 

(Ligterink, 2016). 

3.2.3.4 Ratio of weaving traffic 

Next to the ratio of heavy traffic, the ratio of weaving traffic also is a capacity influencing variable. 

The ratio of weaving traffic is a measure which represents the number of lane changes on weaving 

sections. Lane changes increase the level of turbulence which negatively influence capacity. The 

ratio of weaving traffic can be expressed in three components, namely: the ratio of weaving traffic 

from origin 1 (WR1), the ratio of weaving traffic from origin 2 (WR2) and the volume ratio (VR). In 

Figure 3.7 a schematic overview is shown of a 2+1 weaving sections with its origins and weaving 

traffic. The weaving ratio is equal to the amount of weaving traffic from an origin compared to the 

continuous traffic from the same origin. For example, when 1000 vehicles come from origin 1, where 

300 vehicles go to destination 2 and 700 to destination 1, the weaving ratio will be 300/1000 = 30%. 

The volume ratio is defined as the total weaving vehicles compared to the total weaving and non-

weaving traffic.  

 

In the capacity-value tables of CIA, no volume ratio is calculated. On contrary, CIA provides the 

weaving ratios for both origins. When both weaving flows are known, the volume ratio can be 

calculated by: 𝑉𝑅 =
𝑊𝑒𝑎𝑣𝑖𝑛𝑔𝐹𝑙𝑜𝑤1+𝑊𝑒𝑎𝑣𝑖𝑛𝑔𝐹𝑙𝑜𝑤2

𝐹𝑙𝑜𝑤1+𝐹𝑙𝑜𝑤2
. Since CIA assumes that traffic flows are 

proportional to the division of lanes and when the weaving ratios are known, the volume ratio can 

be calculated by: 𝑉𝑅 =
𝑊𝑒𝑎𝑣𝑖𝑛𝑔𝐹𝑙𝑜𝑤1+𝑊𝑒𝑎𝑣𝑖𝑛𝑔𝐹𝑙𝑜𝑤2

𝐹𝑙𝑜𝑤1+𝐹𝑙𝑜𝑤2
=

(𝑊𝑅1∗𝐿𝑎𝑛𝑒𝑠𝐻1)+(𝑊𝑅2∗𝐿𝑎𝑛𝑒𝑠𝐻2)

𝐿𝑎𝑛𝑒𝑠𝐻1+𝐿𝑎𝑛𝑒𝑠𝐻2
. 

In the CIA dataset it can be seen that capacity decrease 

consequently when the volume ratio increases. 

Moreover, according to Awad, 2004 the volume ratio 

has a relatively large influence on capacity values of 

weaving sections. In his research a correlation matrix 

for the capacity of weaving sections, as shown in 

Figure 3.8, and the six most influencing variables 

showed that the volume ratio has, together with the 

number of lanes, the strongest correlation with the 

capacity of a weaving section (Awad, 2004). Moreover, 

in the linear regression model of Awad the volume 

ratio has the highest beta and relative increase. This 

relation is also seen in the highway capacity manual.  

Figure 3.8: Correlation matrix for the road capacity data af 
weaving sections in HCM. Where Ci is the capacity (pc/h), NW,max 
and Nw,min represent a variable for the minimum and maximum 
required lane changes, S is the free flow speed (km/h), L is the 
length of the weaving segment (m) and N represents the number 
of lanes and VR is the volume ratio (Awad, 2004). 

WR2 

Figure 3.7: Schematic overview of a weaving section with O1 (Origin 1), O2 (Origin 2), WR1 (Weaving Ratio 1) and WR2 
(Weaving Ratio 2). 
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3.2.3.5 Allowed Speed 

The allowed speed on a road section also influences road 

capacity. It is found that a lower speed limits homogenizes 

traffic and reduce (desired) lane changing activity (Soriguera et 

al., 2017). Therefore, less turbulence and higher capacity values 

are expected. Moreover, Cremer, 1979 did also found that 

capacity increase occurred as a result of traffic homogenization, 

which also is supported by a created flow-occupancy diagram, 

shown in Figure 3.9. It is shown that the maximum flow, which is 

equal to the capacity, increases when the speed limit (expressed 

as b) decreases.  

Anyhow, the relationship above holds for a continuous freeway 

sections without disturbances (i.e. merges or weaving sections). CIA has investigated the influence of 

the speed limit on capacity values for weaving sections. In Figure 3.10, capacity values with varying 

speed limits are shown. In this figure it can be seen that, for these configurations, the optimal 

capacity lies at a speed limit of 100 km/h. Moreover, from this figure it can be seen that the 

influence of the speed limit differs according to the varying weaving section lengths and ratios of 

heavy traffic.  

 

Figure 3.10: Capacity values from the "Handboek Capaciteitswaarden Infrastructuur" for a 2+2 symmetric weaving 
section with varying speed limits. Left: Capacity values in a table form with varying ratios of heavy traffic (%HT) and 
weaving length. Right: Capacity values in a graph form. Data Source: Rijkswaterstaat, 2015. 

Figure 3.9: Flow - Occupancy diagram, where b 
stands for the ratio between the speed limit 
and free flow speed (Soriguera et al., 2017) 



28 
 

3.2.3.6 Speed differences 

As already introduced in Paragraph 3.2.3.1, speed differences between the weaving and non-weaving 

traffic do negatively influence road capacity. This is also supported by previous research conducted by 

Hidas, 2005 which concluded that the merging process becomes increasingly difficult as the speed 

difference between the merging and non-merging vehicles increases. This is due to the fact that speed 

differences between vehicles lead to an increased gap acceptance. Marczak et al., 2013 confirm in 

their research that the difference in speed between the putative follower and the merging vehicle do 

significantly influence the gap acceptance of the merging vehicle. In their logistic regression model it 

is found that the probability of gap acceptance decreases when the speed difference between the 

merging vehicle and putative follower increases. 

At weaving sections a speed difference between the weaving and continious traffic can also arise due 

to sharp turns on the single weaving/merging lane. Hereby, the merging vehicles enter the weaving 

sections, as depicted in Figure 3.11, with a lower speed. 

 

 

 

 

 

 

 

 

Furthermore, in Paragraph 3.2.3.1 it is shortly discussed that the weaving configuration influences 

speed differences between weaving and non-weaving vehicles. Since faster vehicles do have to 

overtake slower traffic on the left lane, mean speeds on the left lane will be higher than on the 

rightest lane. On a single lane, faster traffic is required to follow the slower traffic, which results in a 

relatively low mean speed on the single lane. This phenomenon is shown schematically in Figure 

3.12.  

Here, it is shown that an 1+2 configuration 

forces the slower weaving traffic to change 

lanes with fast continuous traffic. Due to 

higher speed differences, capacity values 

for a 1+2 configuration will be lower than 

for 2+1 configurations. This can be 

explained by a lower acceptance of gaps 

when speed differences increase. 

Consequently, more space for 

merging/weaving is required which 

negatively influences capacity. 

 

 

Figure 3.11: Overview of the merge process for merging/weaving vehicles. Here, the merging vehicle do accept or 
reject a gap based on the gap, speed, speed differences and accelerations (Marczak et al., 2013). 

Figure 3.12: Overview of the symmetric weaving configurations 
2+1 (up) and 1+2 (down). Moreover, an indication of the weaving 
lanes (lanes where the required lane changes need to be 
executed) and slow or fast traffic is made. 
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3.2.4 Restrictions on using variables 
As already described, some restrictions on using the variables influencing capacity in the meta model 

do hold. Since values for the explanatory variables should both be present within or can be derived 

from the traffic assignment model and microscopic traffic simulation model, the restrictions can be 

derived from FOSIM and macroscopic traffic simulation models, in this case OmniTRANS. 

Furthermore, the respective variable should be implemented in FOSIM on an accurate way within 

behavioural models. In this paragraph a short indication/description of these variables will be made. 

However, in Chapter 4 the final set of variables which can be considered within the meta model will 

be described.  

First of all, from the FOSIM user manual, which will be described in Paragraph 3.4, it follows that all 

the weaving section specific variables (as described in Chapter 3.2.3) can directly be implemented in 

FOSIM.  For the general variables (as described in Chapter 3.2.1) it holds that a large part can directly 

be implemented in FOSIM. The effect of other variables on capacity values as slope, alignments, 

pavement type, tunnel, rain, mist and light conditions can indirectly be approached by adapting 

driver characteristics or speed reductions. However, implementing this method of changing driver 

characteristics could lead to suspicious outcomes (Dijker & Knoppers, 2006). The familiarity of 

drivers could theoretically be approached by an adaption of the lane change areas. However, the 

familiarity of drivers is not easily to determine. Moreover, insufficient knowledge is present 

regarding the relationship between driving behaviour and familiarity (Intini et al., 2016). 

On the other site, the macroscopic traffic simulation model does also restrict the explanatory 

variables that can be used. First of all, all weaving section specific variables, which include weaving 

configuration, weaving section length, traffic composition, weaving ratio and allowed speed, can 

directly be derived and implemented from/within OmniTRANS. However, infrastructural factors as 

lane width or slope, are not structurally implemented in OmniTRANS.  

The environmental factors (i.e. rain, mist) are not implemented in OmniTRANS and can therefore not 

be used. Moreover, the purpose of most strategic transport models is to model traffic for average 

working days. Therefore, these variables are not relevant, since they do not include/occur during an 

average working day. Furthermore, infrastructural factors are not regularly implemented in 

OmniTRANS. Theoretically, these variables can be added to road links separately. However, it can be 

questioned if implementing these factors is worth the effort regarding the, relatively small influence 

of these factors on the road capacity (Rijkswaterstaat, 2015). For the reasons above, these variables 

are not taken into account in the final meta model. This results that only the traffic composition 

from all variables in Figure 3.3 is taken into account. 

Regarding these ‘two-sided’ restrictions, all the weaving section specific variables can directly be 

implemented within the meta model. These variables include: weaving configuration, weaving 

length, traffic composition, ratio of weaving traffic and speed limits. Furthermore, other variables as 

overtaking prohibitions and road configurations (i.e. peak lanes or slopes) can only be implemented 

after adding values for these variables within the OmniTRANS model first. However, it can be 

questioned if these variables will significantly influence road capacity and/or it is worth 

implementing these variables in OmniTRANS.  

The final set of considered variables will be determined after a data-analysis on significant variables 

is executed and an inventory of the available data(sets) is made. These two processes are part of the 

pre-training phase, as shown in Figure 2.3, of the model development and will be discussed Chapter 

4. 
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3.3 Available Dataset  
Since the solution approach is focussed on a data analytic (or meta) model, data is necessary to train 

the model. The Highway Capacity Manual of Rijkswaterstaat, CIA, provides capacity values for 

weaving sections which are, mostly, derived from simulations in FOSIM (Rijkswaterstaat, 2015). As 

stated before, the advantage of microscopic traffic simulation in FOSIM is that FOSIM is validated for 

Dutch freeways (FOSIM, 2018). Moreover, the usage of FOSIM provides the opportunity to vary with 

values of explanatory variables, which is not possible when using loop detector data. In this section 

the available data derived from CIA for weaving sections is described. All these capacity values lie in 

line with the already chosen capacity definition in Paragraph 3.1.2. Furthermore, some statements 

about potential data supplements will be discussed in this chapter. 

First of all, CIA distinguishes symmetric and asymmetric weaving sections. The configuration of a 

symmetric weaving section does not vary for the complete length of the weaving section. This does 

not hold for asymmetric weaving sections. For asymmetric weaving sections the configuration can 

vary along the length of the weaving section. For example, an asymmetric weaving section could 

have two lanes origin from the north and one from the south and end with one lane heading for the 

north and two heading for the south (configuration 2+1>1+2). In a more mathematical expression 

this will be expressed as: 

𝒊𝒇 (𝐿𝑎𝑛𝑒𝑠𝑂1 = 𝐿𝑎𝑛𝑒𝑠𝐷1 & 𝐿𝑎𝑛𝑒𝑠𝑂2 = 𝐿𝑎𝑛𝑒𝑠𝐷2 ) 𝒕𝒉𝒆𝒏 "Symmetric" 𝒆𝒍𝒔𝒆 "𝐴𝑠𝑠𝑦𝑚𝑒𝑡𝑟𝑖𝑐" 

For both type of weaving sections, capacity values are provided by CIA. These capacity values are 

provided with several combinations of values for explanatory variables. A sample of capacity values 

is shown in Table 3.1. In this table it can be seen that capacity values do differ for combinations of 

explanatory variables. The explanatory variables considered by CIA are the weaving configuration, 

ratio of heavy traffic, weaving 

length and ratios of weaving 

traffic. For example, it is shown 

that capacity decreases from 8690 

to 6840 vehicles per hour when 

the heavy traffic ratio increases 

from 5 to 25%. Other such tables 

are presented for 10 symmetric 

weaving section configurations 

and for 24 asymmetric 

configurations. This results in 727 

datapoints. A single datapoint 

represents a capacity value for a weaving configuration with a combination of weaving traffic ratio, 

length and ratio of heavy traffic. 

Since a data-analytic model is not able to extrapolate and the validity of large interpolations is 

doubtful, these 727 datapoints represent, on first sight, a too small range of values for explanatory 

variables. Therefore, it will most probably be required to simulate capacity values for more data 

points. For example, CIA has capacity values for symmetric weaving sections 3+1 for a length of 600, 

700 and 800 meters, while a length of 1680 meter is observed at real-case weaving sections (within 

the NRM-West network). Furthermore, weaving sections 3+1 with weaving ratio 25/25 are observed 

in a real case, while the current dataset of CIA only provides values for 50/17, 75/25 and 100/33. 

Moreover, truck ratios higher than 25% are observed at real-case configurations, with a maximum of 

55%. 

Table 3.1: Capacity values, according to the free capacity definition of CIA, for a 
symmetric weaving section configuration 2+2 (Rijkswaterstaat, 2015). 
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Despite the extensive dataset for weaving sections, 

more data points will be gathered by means of 

simulation, since the meta model should predict 

capacity values for real-case configurations, which will 

be represented by the weaving sections from the NRM-

West model. Moreover, it is stated that data analytic 

models perform relatively worse in case of extrapolation 

(Hagan et al., 2014). Furthermore, previous research 

also showed that ‘extreme values’ (e.g. very low 

weaving ratio’s or very low truck ratio’s) are lacking in 

the dataset (Vermijs R. , 1998). This is also shown in 

Figure 3.13 where no unambiguous capacity values can 

be derived for (extremely) low and high weaving flow 

rates.  

Concluding, the dataset for weaving sections consist of 

727 datapoints with varying values for the explanatory 

variables. However, supplementary data should be created with a broader range of values of 

explanatory variables.  

3.4 FOSIM Simulations  
The available dataset of CIA will be supplemented by means of the microscopic traffic simulation 

software of FOSIM, as indicated in previous paragraph. In the previous chapters the arguments in 

favour of using FOSIM are already elaborated. In this paragraph the process of gathering data with 

FOSIM is elaborated by means of the manual guide of FOSIM.  

As already stated, FOSIM is a microscopic traffic simulation model which is calibrated and validated 

for Dutch freeway traffic. Therefore, the parameters concerning driving behaviour can be used 

without any adjustment (FOSIM, 2018). FOSIM simulates the driving behaviour of individual drivers. 

The behaviour of all drivers together results in a certain traffic flow. Therefore, traffic flow 

characteristics as road capacity is an output of the model, which is desired as an input for the traffic 

assignment model in this case. Essential for executing a simulation is the translation of the real road 

and traffic conditions to input where FOSIM can deal with. Since FOSIM can deal with all commonly 

road configurations as symmetric and asymmetric weaving sections, taper merges and taper 

diverges, all the configurations concerning this research can be implemented in FOSIM.  

For executing a simulation and generating a capacity value for a certain road section, the first step to 

be taken is the implementation of the weaving configuration. When the road contours of a certain 

configuration are implemented, characteristics as speed limits can be added to separate road 

sections. In Figure 3.14 an example of a weaving configuration implemented in FOSIM is shown.  

 

Figure 3.14: Overview of a road configuration of a merging lane with overtaking prohibitions for heavy traffic 
implemented in FOSIM. 

Figure 3.13: Graphical overview of capacity values for 
symmetric weaving sections with varying weaving 
flow rates (Vermijs R. , 1998). 
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The local characteristics that are the most relevant for this research are: speed reduction factors (for 

the purpose of curves and speed differences between traffic flows) and speed limits. After 

implementing the road configuration and local characteristics, lane change behaviour and so-called 

lane change areas should be added. Lane change areas are created in case vehicles are required to 

change lane. These lane change areas consist of two parts, namely: a desired lane change part and a 

required lane change part. FOSIM decides, by means of the road geometry, on which location lane 

change areas are required. Depending on the weaving configuration, the length, location and 

division of lane change areas should be defined. 

Furthermore, detectors should be added to the road geometry. These detectors gather measured 

variables of all passing vehicles. For the purpose of measuring capacity values for certain road 

configurations, at least two detectors should be added. One detector is placed upstream of the 

expected bottleneck to register if congestion has occurred. The detector downstream then measures 

the capacity which is defined as the highest measured intensity. A schematization of the location of 

the detectors is shown in Figure 3.15. 

 

Figure 3.15: Location of the detectors for the purpose of measuring capacity values (Dijker & Knoppers, 2006). 

Now, one can define the traffic composition and traffic intensities. For the traffic composition, the 

ratio heavy traffic can be set for each origin. The traffic intensities will be increasing over time, with 

time steps of five minutes (which is a commonly used aggregation level). Since the traffic intensities 

are increasing, at some point the intensity will reach the capacity. Then congestion occurs which will 

be registered by the upstream detector. At that moment the downstream detector will write-in the 

highest measured traffic intensity.  

Since capacity values do have a stochastic character, more simulation runs will be executed for 

certain road configurations. More detailed: the results of a simulation depend on a draw by lot 

during the simulation. This draw by lot determines the departure time and driving behaviour of 

individual drivers within the simulation. Therefore, the results of only one simulation cannot give an 

unambiguous judgement about the capacity values. A sufficient number of simulations should be 

executed with different values for the random generator. The required number of simulations per 

combination of variables can be approached by a statistical formula, namely: 𝑛 >
𝑧²

𝑑²
𝜎². Here, the 

number of simulations is represented by n, the level of confidence by z, the standard deviation of 

the measures by σ and the desired accuracy of the capacity value by d. A distribution graph is the 

output of a series of simulations, an example is shown in Figure 3.16. Within the distribution graph 

the mean and median capacity values are shown, where the median capacity value is the final 

capacity value for the certain road configuration (Dijker & Knoppers, 2006). 
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Figure 3.16: Capacity value distribution for a merging section (length: 650m; %trucks: 15%; merging ratio: 10%; max. 
speed: 120 kpu). For this configuration, which is shown in Figure 3.14, the final capacity (median value) is equal to 4494 
veh/hour. 

3.5 Data-analytic Models 
In this paragraph the available and used data analytic models in the literature and previous research 

are elaborated. First of all, an overview of used data analytic models in the literature will be 

provided. Then, advantages and limitations of the available models will be discussed. The choice of 

the data-analytic model will be assessed regarding the predictive power, pattern recognition and 

model simplicity. Furthermore, in the next two paragraphs more literature on model structure and 

model training will be discussed. 

3.5.1 Available Data-analytic Models 
First of all, a well-known category of data analytic models are regression models. For this research 

multiple linear regression (MLR) and multiple nonlinear regression (MNLR) models could 

theoretically be used. These types of models are often used to model linear or nonlinear 

relationships between dependent variables and independent variables (Kadari et al., 2015). The 

assumption of these models is that the relationship between the dependent variable and the vector 

of regressors is linear (MLR) or nonlinear (MNLR). For predicting or forecasting the dependent 

variable (in this case road capacity) the regression equation will fit a model to the observed dataset 

of independent and dependent variables (Adamowski et al., 2012). Examples of the use of regression 

models in the field of traffic engineering are given by Miauo, 1994; Kadari et al., 2015; Yap et al., 

2015 and Semeida, 2013. Miauo, 1994 researched the relationship between truck accidents and 

geometric design of road sections with several regression models. Kadari et al., 2015 developed a 

model for pedestrian gap acceptance behaviour at unprotected mid-block crosswalks under mix 

traffic conditions by means of multiple linear regression. Furthermore, Yap et al., 2015 developed a 

model for predicting roundabout lane capacity by means of a set of explanatory variables. Here, a 

multiple nonlinear regression model is used. Finally, the most related research to this topic is the 

research of Semeida, 2013 In his research capacity for road sections is assessed by means of multiple 

nonlinear regression (Semeida, 2013). In the developed model, road section capacity is predicted on 

the basis of a set of explanatory variables, including, amongst others, number of lanes, lane width 

and the ratio heavy traffic.  
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Another method closely related to regression analysis is kriging, which is also called spatial 

correlation modelling.  Kriging is used to predict a value or function for a given set of values by 

computing a weighted average of the known values in the neighbourhood of the point (Kleijnen, 

2007). This method is, however, not used often in the field of transportation research. Moreover, 

this method is relatively similar to the nearest neighbour method, which is currently used for 

capacity estimation. It is therefore questionable if the implementation of the kriging method will 

lead to a significant improvement of capacity estimations.  

Next to the regression-based models, artificial neural networks are well-known data analytical 

models to predict dependent variables by means of a set of independent variables. It is found that 

various transportation studies have used artificial neural networks (ANN), which are an important 

alternative to statistical regression models (both linear and nonlinear) for data analysis and pattern 

recognition in large datasets (Yap et al., 2015). Artificial neural network techniques are 

computational tools with different possible structures (Awad, 2004). In other words, several network 

paradigms do exist (Smith & Demetsky, 1997).The fundamental structure of neural networks consists 

of a series of nodes and weight factors that link the various nodes together in hierarchical manner. 

This hierarchical manner is represented by three types of layers, namely: an input layer, hidden 

layers and an output layer (Lord & Mannering, 2010). In the input layer, the independent or 

explanatory variables are situated. The output layer consists of the output variables of what is being 

modelled, in this case the weaving section capacity. The nodes in the hidden layers between the 

input and output layers are connected by links each carrying a weight that quantitatively describes 

the importance of those connections, thus denoting the strength of one node to affect the other 

node (Semeida, 2013). Examples of the use of neural networks in the field of traffic engineering are 

given by Dharia and Adeli, 2003; Jiang and Adeli, 2004 and Awad, 2004. Dharia and Adeli, 2003 

developed a neural network model for rapid forecasting of freeway link travel time. Despite the fact 

that they stated that backpropagation is the most widely used neural network model, Dharia and 

Adeli, 2003 used a counterpropagation network, which are both network paradigms. This choice is 

made because backpropagation networks have, among others, a very slow rate of convergence. 

Jiang and Adeli, 2004 used a clustering-neural network model for freeway work zone capacity 

estimation. In these clustering networks, work zone patterns are first grouped into similar clusters 

using a data clustering approach. The clustering of similar work zone patterns could also be used for 

similar weaving section configurations. The most related research to this topic is the research of 

Awad. Awad, 2004 used neural network techniques for estimating traffic capacity for weaving 

sections. In the developed neural network, the capacity value of weaving sections is estimated by 

means of six explanatory variables. In this case, the explanatory variables are the maximum and 

minimum number of lane changes by weaving movements, the number of lanes, the length, the free 

flow speed and the volume ratio.  

Barton and Meckesheimer, 2006 inventoried other meta modeling methods for optimizing 

simulation models. However, these models are not used, for the best of the authors knowledge, in 

the field of transport engineering. Only two of their described models, neural networks and 

regression analysis are used in the field of transport engineering, which are already elaborated in 

this section. 

3.5.2 Model Selection 
Now the two most-used data analytic models are presented, the advantages and limitations of the 

models will be discussed. A number of the above described researches both used regression models 

and neural network models for predicting and/or estimation. It was found that neural network 

models have a better prediction and estimation capability than regression models (Adamowski et al., 
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2012; Awad, 2004; Kadari et al., 2015; Semeida, 2013; Yap, Gibson, & Waterson, 2015). This 

conclusion is also derived by those researchers who focussed on capacity estimation using both 

neural network and regression techniques. Furthermore, it is stated that neural networks are more 

capable of recognise paterns in complex and nonlinear problems and large datasets than regression 

models (Smith & Demetsky, 1997). Moreover, it is stated by Yap et al. that neural networks are able 

to approximate much more complex relationships between dependent and explanatory variables, 

including nonlinearity and interaction between explanatory variables (Yap et al., 2015). This brings 

us to a limitation of regression models. It is namely stated that regression models are not able to 

handle multicollinearity among independent variables (Semeida, 2013). This problem is also 

described by Kadali et al. who noted that the main drawback of regression models is the 

multicollinearity problem due to which several explanatory variables are eliminated from the model 

due to insignificance of statistics. Moreover, it is stated that this problem can be rectified with 

artificial neural network techniques due to its massive structure of input over the output connected 

architecture (Kadari et al., 2015). Besides, neural network learning algorithms adapt connection 

weights to improve performance based on current results. Traditional statistical techniques are not 

adapte but typically process all training data simultaniuosly (Duliba, 1991). Finally, it is stated that 

the use of regression techniques requires prior knowledge of patterns in the dataset.  

Based on the above stated arguments in favor of neural networks, one could state that the use of 

neural network techniques is preferred for this research. However, the use of neural networks 

attended with several drawbacks and limitations. First of all, neural networks are seen as a black-box 

procedure and may not have interprentable parameters (Lord & Mannering, 2010). This in contrast 

to regression models, where relations between input and output variables are clearly shown (Kadari 

et al., 2015). Furthermore, four main problems in the use of neural networks in data modelling are 

discussed by Livingstone et al., they found that overfitting, change effects, overtraining and 

interpretation (as stated above) are the four main problems in the use of neural networks 

(Livingstone et al., 1997). The problem of overtraining can be reduced by a proper combination of 

training and testing the model. Here, it is important that also testing data is used which is not 

present in the training dataset. Furthermore, the problem of the lack of overview of the most 

influencing variables can be tackled by a sensitivy analysis, which is elaborated in the research of 

Kadari et al. (Kadari et al., 2015). 

Since the use of neural network techniques is, on first sight, preferred based on the above stated 

arguments, the fundamental architecture of neural networks will be described in the next 

paragraph. Furthermore, the network development and training will be discussed in paragraph 3.5.2. 

Since, more network paradigms (e.g. backpropagation, clustering networks) are available, the model 

type depends on the model development and training results which is an iterative process (see 

Figure 2.2). 

3.6 Introduction to Neural Networks 
Since the use of neural network models is preferred on first sight, due to its predictive performance, 

a literature study on neural networks will be executed. First of all, an introduction on neural network 

structures will be given in Paragraph 3.6.1. In accordance with regression-based models, neural 

networks should be trained, and the performance should be tested. Since several training methods 

and training settings are available next to several output-analysis methods, an inventory of these 

components will be made in Paragraph 3.6.2.  
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3.6.1 Neural Network Structures 
The structure of a neural network model will contain several components. The three main 

components of a neural network are the input layer, the hidden layer(s) and the output layer. 

Furthermore, for every layer several choices regarding components or specifications of the layer 

should be made. These choices and specifications do depend on the external problem specification 

In short, a neural network is not an unambiguous model. In other words, several choices need to be 

made within a neural network structure. The book of Hagan et al. does provide a good overview of 

the current neural networks and its structures (Hagan et al., 2014). 

In Figure 3.17 a neural network is schematically displayed. It 
can be seen that a neural network contains an input layer 
and a layer of S neurons. Moreover, for complex problems it 
is stated that more neurons in the hidden layer and/or the 
number of hidden layers will increase model performance. 
The input layer is a vector or static values from a vector 
denoted as respectively p or pr. In the case of this research, 
the input vector would contain values of the significant 
variables. For example: p = [Weaving section length, Ratio 
Heavy Traffic, Ratio merging traffic]. 

The neuron layer, also known as hidden layer, consist of a 
summer and transfer function. The input of the summer ( ) 
is equal to the scalar input p multiplied by weight w, which is 
thus transferred to a scalar with a value equal to w*p. 
Further, the summer adds a bias b, hereby the output of the 
summer will be equal to: Wp+b (see Figure 3.17 for an 
overview). The output of the summer, n, will become the 
input of the transfer function ( ). The transfer function is a 
particular linear or nonlinear function of n. Since, many 
different transfer functions exist, a function is chosen to 
satisfy some specification of the problem that the neuron is 
attempting to solve (Hagan et al., 2014). 

According to Hagan et el., the suitable architecture of a neural network depends on the external 

problem specifications. In this case, the external problem specifications are related to the capacity 

assessment problem for weaving sections and merging lanes. First of all, the number of input and 

output values in the input and output layer are defined by the external problem specification. For 

example, if it is found that the capacity is influenced by four parameters and only a single (scalar) 

capacity value is desired as output, the input layer exists of input vector p with four columns and the 

output layer must provide one scalar value a.  

Three other design variables are the number of hidden layers 

and number of neurons in the hidden layers, the use of 

biases and the desired transfer function. Since it is most 

probably that more than two layers will be used (Awad, 

2004; Jiang & Adeli, 2004; Semeida, 2013), external problem 

specifications do not directly tell the number of required 

neurons and layers. Furthermore, neurons without biases 

could be used. However, the biases give the network an 

extra variable and makes the network more powerful (Hagan 

et al., 2014). 

Figure 3.18: Abbreviated notation of a 
neuron model as shown in Figure 3.17 
(to: Hagan et al., 2014). 

Figure 3.17: Structure of a neuron model with an 
input layer and a layer of S neurons (to: Hagan et 
al., 2014). 
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Since neural network structures may become very complex, the structure is often displayed in an 
abbreviated notation. This notation is shown in Figure 3.18. Here the input layer is represented as a 
bar with input vector p with R columns. Further, the weight matrix, W, with s columns and r rows is 
displayed in one box, just like the bias. In the next paragraph the model development and model 
training will be discussed. 

3.6.2 Model Development and Training 
As stated before, the model training and development is an iterative process, which is also shown in 
Figure 2.3. Since the model architecture relies on the training results, no unambiguous model 
structure can be presented at this moment. Therefore, the model development and training process 
are described in this paragraph. Furthermore, the possible choices within this process will be 
elaborated. This will be done by means of the book Neural Network Design from Hagan et al., 2014. 

Obviously, the neural network development process is an iterative process. This process begins by 
the collection of data and pre-processing it to make training more efficient. The data and its 
eventual supplements concerning this research are already presented in previous chapter. After the 
data is selected, an appropriate network type and architecture should be chosen. Then a training 
algorithm for the network should be selected. The training algorithm should be appropriate for the 
network and the problem which is tried to be solved. After, or even during, the training process 
problems with the data, network architecture or training algorithm may be discovered. The above 
described process will be iterated until the network performance is satisfactory for its purpose. 
Hence, the model development process as shown in Figure 2.3 can be subdivided in three main 
aspects, namely: pre-training steps, network training and post-training analysis (Hagan et al., 2014). 

3.6.2.1 Pre-training Phase 

The pre-training steps do concern the selection of data, the data pre-processing and the choice of 
the network type and architecture. The available data and potential supplements are already 
described in previous chapter. However, during post-training analysis, it can be indicated if the 
training data was insufficient. After collecting the data, the dataset should be separated into a 
training, validation and testing datasets. The most common method for dividing the data is to 
randomly select a training, validation and test set out of the total dataset. Overall, this produces 
good results, however it is recommended to check the division for major differences between the 
sets. Major differences between the three sets could cause worse training results or overfitting. 

Furthermore, the data should be pre-processed for an efficient training process. It is common to 
normalize the input data before applying them to the network. Three standard methods for data 
normalization are studied. The first method normalizes the data in a manner that the values for the 
variables fall into a standard range, mostly a range of -1 to 1 is chosen. The second normalization 
procedure is created to adjust the data so that it has a specified mean and variance. In a rare case, 
non-linear transformations are performed as a part of pre-processing stage.  
The last step of the pre-training process is the selection of the basis network architecture and the 
selection of network architecture specifications.  

First of all, the choice of a basic network architecture depends on the type of problem which is 
desired to solve. Four types of problems are identified, namely: fitting, pattern recognition, 
clustering and prediction. Since the problem of this research concerns fitting, the standard network 
architecture is the multilayer perceptron network. The fundament of this type of network is shown 
in Figure 3.17 and Figure 3.18. Moreover, these fitting network structure represents a feedforward 
neural network, which is used for this research. In most cases, tansig functions are used as transfer 
functions in the hidden layer for these types of neural networks. The tansig transfer function 
provides normalized output value between -1 and 1, which is preferred over logsig functions with an 
output range between 0 and 1. In the output layers, linear transfer functions are used.  
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When the basic network architecture is developed, the specifications of the architecture should be 
defined. The specifications of the architecture concern, among others, the number of neurons and 
the number of layers. The number of layers is not determined by the problem for fitting or pattern 
recognition purposes. It is stated that the standard procedure is to begin with a network with one 
hidden layer. It is also needed to select the number of neurons in each layer. The number of neurons 
in the output layer is equal to the size of the target vector. In case of this research, the size of the 
target vector is equal to one, namely: road capacity. The number of neurons in the hidden layer is 
not known prior to the training of the network. In this case, the standard procedure is to begin with 
more neurons than necessary and to use early stopping to prevent overfitting, which will be 
described in the next paragraph (Hagan et al., 2014). 

3.6.2.2 Training Phase 

The second phase of the model development and training procedure is the network training. This 
process includes initializing the weights, a selection of the training algorithm, the performance index 
and the criterion for stopping the training of the network. Since it is most probably that a multilayer 
network will be used, the initialization of the weights and biases will be done by setting the weights 
and biases to small random values. These are not set on zero to prevent that the network training 
will start at a saddle point on the performance surface (Hagan et al., 2014). 

Then a training algorithm should be selected. For multilayer networks, gradient- or Jacobian-based 
algorithms are generally used. These algorithms can be implemented in both a sequential or batch 
mode. In sequential form the weight will be updated after each input is presented to the network. In 
batch form all inputs are presented to the network, and the total gradient is computed by summing 
the gradients for each input, before the weights and biases are updated. It is stated that the 
Levenberg-Marquardt algorithm is usually the fastest training method for multilayer networks. For 
example, this algorithm is also used in the research of Adamowski et al. (Adamowskiet al., 2012). 
Along with the training algorithm, the stopping criteria should be defined. This is required because 
the training error never converges to zero. For this reason, other criteria for stopping the training of 
the network are required. Stopping criterions are also used to prevent overfitting of the network. 
Several stopping criteria are suggested by Hagan et al., 2014. The first stopping criteria is also the 
simplest one, namely stopping the training after a fixed number of iterations. Another stopping 
criterion is the norm of the gradient of the performance index. When this norm reaches a sufficiently 
small threshold, the training could be stopped. However, it is found that multilayer networks can 
have many flat regions in the training results, where the norm of the gradient will be small and 
therefore training results become inaccurate. The last discussed stop criterion is the point where 
reduction in the performance index per iteration becomes small. Performance indexes could be 
represented by the mean square error or the mean absolute error. For this stopping criterion it is 
also found that training could stop too early. Well elaborated examples of the usage of stopping are 
given by the research of Yap et al. and Kadari et al. (Kadariet al., 2015; Yap et al. , 2015). 

However, even after the training algorithm has converged, post-training analysis could lead to the 
conclusion that the model needs to be modified and retrained. Moreover, it could happen that a 
single training run may not produce optimal performances. This could be caused by the possibility of 
reaching a local minimum of the performance surface. Therefore, it is recommended to restart the 
training several times with different initial conditions and select the best performing network (Hagan 
et al., 2014). Since training a neural network is involved with two stochastic elements, every training 
run the model will perform different. These stochastic elements are the initialisation of weights and 
the division of training, testing and validation set (Beale et al., 2018). Every training run, different 
initial weights will be generated next to varying compositions of the training, test and validation sets. 
Nonteheless, these initial weights and composition of training, testing and validation sets can be set 
captive in case of sufficient performance.  
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3.6.2.3 Post-training Phase 

The final phase of the model development and training process is the post-training analysis. This 
analysis is recommended to determine if the training was indeed successful. Many techniques are 
available for post-training analysis. Hagan et al. only discussed the most common ones.  
First of all, an useful tool for analysing neural networks, which are concerning fitting problems, is by 
means of a regression analysis. First the trained output and corresponding target value will be 
plotted in a graph. From this graph it could be seen how well the training results represent the 
corresponding target values. Then data points that fall far from the regression line could be 
investigated. It could then be discovered if these so-called outliers did arise due to problems with 
the data. For example, these data points could be located far from the training data points. When 
this is the case, gathering more data in that specific region will improve model performance. 
Therefore, separate datasets with only a certain range of values can be tested. For example, the 
model can be tested supplementary with datasets containing the weaving configuration types 
separately. In this manner, it can be discovered if the model is performing worse for a certain 
configuration type. 

The regression analysis should be performed on each subset (training, validation and testing dataset) 
individually, as well as the full data set. If differences between model performance on the subsets 
arise, overfitting or extrapolation could be the case. As stated above, the full dataset is separated in 
a training set (70%), validation set (15%) and testing set (15%). The training set will be used to 
calculate gradients and determine weight and bias matrices. The validation set is used to stop 
training before overfitting occurs. Finally, the test set is used to predict the future performance of 
the trained network. Since the post-training analysis should be executed for all sets separately, 
differences between network performance on subsets can arise. Moreover, one or more 
supplementary datasets can be created to evaluate model performance on datapoints which are not 
present in one of the three above described sets. In other words: the model can be tested on 
configurations which are not (logically) present in the main dataset which is created with FOSIM. 

Four possible causes for malperformance or differences in model performance on subsets are 
presented by Hagan et al. First of all, one of the problems cannot be identified by means of the 
differences between the datasets, namely the problem that the network could have reached a local 
minimum. This problem can be solved by retraining the network with other sets of random initial 
weights. The other three problems can be identified by means of the earlier described differences. 
First of all, overfitting most probably occurred when the validation error is much larger than the 
training error. This can be solved by selecting another (often slower) training algorithm to retrain the 
network. Secondly, if the errors for all three sets are similar in size, but too large, it can be concluded 
that the network is not powerful enough to fit the data. This can be solved by increasing the number 
of neurons in the hidden layer. When this measure is also ineffective, the number of hidden layers 
should be increased. The last identified problem could occur if test errors are large in comparison to 
the training and validation errors. In this case extrapolation could have occurred. If the inputs of the 
testing set are outside the range of the training data, extrapolation will occur. This could be solved 
by supplementing the dataset with a broader range of values for independent variables.  

Finally, it is stated that it is often useful to assess the importance of each element in the input 
vector. In other words, if an element of the input vector is not important for the output vector, it can 
be eliminated to improve the computation speed and preventing overfitting. Hagan et al. explained 
that a sensitivity analysis computes the derivatives of the network response with respect to each 
element in the input vector. For this research this could be weaving section length, weaving ratio et 
cetera. If the derivative with respect to a certain input element is small, the input can be removed 
from the input vector. However, in this research the most influencing variables for road capacity will 
be elaborated prior to the model development. Therefore, it is expected that input removal will not 
occur that quickly for this research.  



40 
 

The paragraphs above illustrated that the model development and training process is iterative. 
Therefore, it is ineffective to present all the possibilities and potential methods within the choices 
that are required to make. Nevertheless, the steps for model development and training are 
elaborated to present the fundamentals of neural networks and its development. Moreover, some 
of the potential structures, training algorithms and other choices that should be made are identified 
and elaborated. In Chapter 4 to 6 the model development, training process and post-training 
analysis will be elaborated upon. 

3.7 Conclusions within Theoretic Framework 
In the theoretic framework current available literature related to the five pillars, as shown in Figure 

3.19, of this research is elaborated. Moreover, the theoretic based research questions are answered 

in this chapter. In Figure 3.19, a summary of the literature study is present and a reference to the 

answered research questions is given.  

 

In the next chapter the pre-training process of the model estimation is discussed. Since the capacity 

definition is already selected in this chapter, this component of the pre-training process is not 

discussed in the next chapter. Then, the pre-training process comprise, in this case, the collection 

and pre-processing of the dataset which is used to train the meta model. To do so, the significant 

variables influencing capacity will be analysed quantitatively. Then a comparison is made between 

the currently available dataset (CIA) and the real-case weaving section (NRM-West), which indicates 

if and how supplementary data is needed to be gathered.  

Answer to RQ 1a on 
most suitable capacity 

definition 

Answer to RQ 1b on 
capacity influencing 

variables 

Answer to RQ 2c on the 

available dataset(s) 

Answer to RQ 2a & b 
on available data-

analytic models and 
the most suitable data 

analytic model  

Answer to RQ 3a & b on 
model training and 

post-training analysis 

Capacity

•Free capacity defenition of CIA most suitable capacity defenition 
because of its analogy with macroscopic traffic models.

Variables

•Weaving Sections are stated to be high-turbulence areas, where 
the degree of turbulence negatively influences road capacity;

•Turbulence is effected by the weaving configuration, length, 
weaving traffic and the ratio of heavy traffic, speed limits and 
speed differences.

Dataset

•Within the CIA 727 capacity values for weaving sections are given 
with varying combinations of variable values. However, 
supplementary data can be gathered with the microscopic 
simulation software of FOSIM. 

Meta
Models

•Neural Networks are preffered above regression-based models 
because of their stronger predictive power and complex and non-
linear pattern recognition;

•Neural Networks consist of an input, hidden and output layer and 
predict target values by means of the given set of independent 
variables as input.

Model
Validation

•Model development, training and validation is found to be an 
iterative process;

•Several post-training options as regression plots, error histograms 
and error 3D-plots are inventoried.

Figure 3.19: Summary of the theoretic framework for the five pillars of this research and a reference to the 
answered research questions (RQ). 
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4 Pre-training Phase 
In the pre-training phase of the model 

development, the collection and pre-

processing of the data used to train and 

validate the neural network will be 

presented. Figure 4.1 shows that the pre-

training phase comprise a quantitative 

research to the optimal capacity definition 

and significant variables. Moreover, the 

available datasets - one for training the 

network and one containing real-case 

configurations to validate the network - are 

inventoried and the process of gathering 

supplementary data is discussed.  

Since the optimal capacity definition for use 

in the meta model is already defined, the 

next paragraph discusses the significant 

variables. After this chapter on the pre-

training phase, the final dataset consisting of 

dependent (capacity values) and independent 

(inventoried significant variable) variables, 

which are used in the training and post-

training phase is known. 

4.1 Significance of Independent Variables  
In the theoretical framework (Chapter 3), the phenomena turbulence, traffic-breakdowns and 

independent variables which influences capacity (dependent variable) are discussed. This inventory 

was made using the method of literature review. In this paragraph, a more quantitatively research 

on the capacity influencing variables is made using the currently available dataset and FOSIM 

simulations. First, the weaving specific variables will be discussed. Finally, the final set of 

independent variables which could be considered within the meta model will be elaborated.  

4.1.1 Weaving Section Configuration 
The weaving section configuration includes the geometry and lane division of the weaving section. A 

more delimited definition was given in the Highway Capacity Manual: ‘The organization and 

continuity of lanes in a weaving segment, which determines lane-changing characteristics.’ 

(Transportation Research Board, 2000).  

First of all, the number of total lanes of the weaving section has a positive relation with the capacity. 

This makes sense, as the more lanes a weaving section has, the more space is available for vehicles 

to pass the weaving section per hour. In Figure 4.2 the relation between the number of total lanes 

and capacity is shown. In this figure the capacity is depicted on the y-axis, where the number of 

lanes of origin 1 is shown on the x-axis. Here it can be seen that the capacity indeed increases as the 

number of lanes increases.  

Figure 4.1: (Iterative) Model development process as already shown 
in Figure 2.3, with the components included in the pre-training phase 
enlarged. 
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Furthermore, the configuration type 

was stated to have an influence on 

road capacity. The configuration type 

categorized weaving sections based 

on the number of required lane 

changes that are needed to change 

direction (see Figure 3.6). In Figure 

4.8, where the influence of the 

volume ratio on road capacity is 

shown, it can be seen that the 

capacity decreases less under an 

increasing volume ratio for a type B 

configuration than for a type A or C 

configuration. This figure endorses 

the statement in the HCM that 

capacity is more sensitive to changes 

in the volume ratio for configuration 

types A and C than for configuration 

type B (Transportation Research Board, 2000). The 

reason for this is that less lane changes are required to 

change direction for vehicles. Therefore, it can be 

concluded that the configuration type does influence 

capacity.  

Finally, the weaving configuration and the division of 

lanes do influence the speed difference between the 

weaving and non-weaving vehicles on the weaving 

lanes. In Figure 3.12 a visual overview of this 

theoretical influence was already shown. With the 

available data and FOSIM simulations this effect is 

made quantitative. The speed differences on the 

weaving lanes determined using OFSIM simulations are 

displayed in Figure 4.3. The speed differences on the 

weaving lanes for the 1+2 configuration are 

approximately equal to 8 kilometers per hour (blue and 

orange line), while the speed differences on the 

weaving lanes for the 2+1 configurations are negligible 

(yellow and grey line). 

These speed differences implicate that the capacity 

values for 1+2 configurations are lower than for 2+1 

configurations, since it was found that speed 

differences hinder the lane-changing process (Hidas, 

2005). From the FOSIM simulations these statements 

are confirmed since the capacity values for the 1+2 

configuration structurally lie lower than capacity values 

for 2+1 configurations, which is shown in Table 4.1. 

Furthermore, it can be noticed that the effect of the 

speed differences decreases when the ratio of heavy 

Figure 4.2: Capacity values for weaving sections with a varying number of total lanes. 
The orange datapoints represent x+2 weaving sections (2+2, 3+2 and 4+2 
configurations) and blue datapoints represent x+1 weaving sections (2+1, 3+1 and 
4+1), with the number of lanes of origin 1 (x) on the x-axis.  

Figure 4.3: Comparison of mean speeds on weaving lanes 
derived from FOSIM simulations. The configurations are shown 
in Figure 3.12.  

2+1 > 2+1 1+2 > 1+2

0.33 5 6594 6138

0.33 15 5712 5424

0.33 25 4974 4932

0.67 5 5802 5364

0.67 15 4998 4830

0.67 25 4590 4386

VR %HT Capacity

Table 4.1: Capacity values for the above described 
2+1 and 1+2 configurations with several values for 
the Volume Ratio (VR) and ratio of heavy traffic 
(%HT). 
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traffic increases. This can be explained by the fact that trucks do slow down the traffic, which 

homogenize traffic flow. 

To sum up, the weaving configuration do significantly influence weaving section capacity in three 

different manners, namely: the total number of lanes, the configuration type (which is determined 

by the lanes from the origins and destinations) and the division of lanes.  

4.1.2 Weaving Section Length 
In Paragraph 3.2.3.2 the influence of the weaving section length on capacity is already elaborated 

theoretically. In the literature, it was found that an increasing length has a positive influence on 

weaving section capacity. However, with an increasing length the impact on capacity itself will 

decrease. First, the theoretical statements that drivers tend to change lanes as quickly after the gore 

as possible will be verified. This will imply that increasing the length for an already long weaving 

section, will not have that large influence anymore.  

Within FOSIM a merging configuration is 

constructed with a length of at least 1000 meter 

whereby a detector is placed every 50 meters. It 

should be noted that lane change areas are 

implemented directly after the gore. 

Furthermore, the traffic flow on the merging 

lane is 15% of the total traffic flow on the 

freeway mainline. In Figure 4.4, the above described configuration is shown.  

Every time period within the simulation the detectors give the traffic flow per lane as output. In this 

manner, traffic intensities on the merging lane can be analysed per 50-meters segment. After several 

simulation runs the results of the detectors are extracted.  

In Figure 4.5 the results of the simulation 

are shown. In this figure, the percentage 

of merged traffic over the distance from 

the gore is shown. It can be seen that 

approximately 60% of the traffic does 

perform the required lane change to the 

freeway mainline at the first 50 meters of 

the merging lane. After 550 meters all the 

traffic has merged. Moreover, at lower 

traffic intensities (t=300), the traffic on 

the merging lane do perform their lane 

changes earlier. On the other hand, at 

higher traffic intensities (t=1140), traffic 

on the merging lane uses more (length) of 

the merging lane before performing a lane 

change.  

 

The results of the simulation support the two main statements from the literature, namely: an 

increased configuration length has less impact on the capacity. Since all traffic on the merging lane 

of 1000 meter has merged before 550 meter, a longer merging lane than 550m will not improve 

capacity that much. Moreover, from Figure 4.5 it can be concluded that a longer merging lane has an 

higher impact on capacity when traffic intensities are high. This can be declared by the fact that 

Figure 4.5: Overview of the percentage merged traffic versus the 
distance from the gore. Where the orange line (simulation time = 300) 
represents low traffic intensities, the grey line (simulation time = 1140) 
represents high traffic intensities just before congestion occur and the 
blue line represents the mean (all time periods within the simulation).  

Figure 4.4: Overview of the FOSIM configuration of a 1000-meter 
merge with detectors every 50 meters. 
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traffic is denser and less sufficient gaps are initially available for a lane change. Once more, it should 

be noted that the simulation outputs depend on the implemented lane change behaviour in the 

simulation software. Nevertheless, the simulation study shows that the driving behaviour coincides 

with assumptions in literature.  

Next to the simulation study in FOSIM, the relation between capacity and configuration length is 

analysed by means of the available and gathered data. In Figure 4.6 the relation between capacity 

and configuration length is shown for three different configurations, which were all derived from 

FOSIM simulations. This figure shows that capacity, in fact, increases when the weaving length 

increases. Moreover, it is shown that the capacity increases less quickly when the configuration 

length increases. For that reason, adding a logarithmic trend line to the data points results in a 

higher R²-value than adding a linear trend line.   

 

Figure 4.6: Overview of the relationship between capacity and weaving length for three different (symmetric) 
configurations with varying volume ratios. Namely configuration 2+1 (VR = 25), configuration 2+2 (VR = 28 and 50). On the 
left axis the capacity values are shown. On the right axis (stacked graphs) the index of capacity values is shown per 
configuration, where the lowest capacity at length = 300m has index 1. Hence, when the index of a configuration is 1.03 
at a length of 2000m, the capacity increased with 3% compared to the configuration with length of 300m.  

From this figure it can also be seen that the length has more positive impact on capacity values for 

more complex configurations than for less complex configurations. The blue data point of the 2+1 

configuration and its corresponding (logarithmic) trend line is less steep than the two trendlines for 

the 2+2 configurations. From the percental capacity increase (indices) on the right axis, it can also be 

seen that the capacity increase for the 2+1 configuration is less high than for the 2+2 configuration 

with the approximately the same volume ratio. Namely, the capacity increase for 2+2 configurations 

is approximately seven to nine percent while the capacity increase for 2+1 configuration is 3 percent. 

Moreover, it is found that an increase of length has more positive impact for configurations with a 

higher volume ratio (grey data points) than for configurations with a lower volume ratio (orange 

data points).    
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This corresponds with the statements that traffic occupies more space to perform lane changes at 

higher traffic intensities (higher volume ratio implies more traffic on the weaving lanes). Since more 

lane changes (desired) are needed to execute, an increased length gives the drivers more time for 

gap searching an adjusting speed. 

The quantitative analysis verifies the three main statements from the literature, namely: the 

configuration length has a positive impact on road capacity, an increasing length decreases the 

impact of configuration length on capacity and at higher traffic intensities the length has more 

influence on capacity than at low traffic intensities.  

In short, the configuration length significantly influences road capacity. Moreover, from Figure 4.6 it 

can be concluded that no identical relation for length and capacity do hold for all configurations 

together. For that reason, it will be ineffective to develop a mathematical expression between 

capacity and configuration length.  

4.1.3 Traffic Composition 
In Paragraph 3.2.3.3 it is found that the ratio of heavy traffic, the only variable concerning traffic 

composition that can be reasonably taken into account, negatively influences capacity. Figure 4.7 

shows that the ratio of heavy traffic is indeed a significant variable which influences capacity. In this 

figure capacity values for several configurations with a varying ratio of heavy traffic are shown. The 

figure shows that, as expected, road capacity decreases when the ratio of heavy traffic increases. As 

assumed in the theoretic framework, a perfect linear relation between the ratio of heavy traffic and 

capacity does not hold. Moreover, the trend lines are not linear which is implicitly assumed when 

using the reduction factor methods from CIA (and HCM). However, it should be noted that, when 

excluding the data points with the ratio heavy traffic of zero and thirty-five, the trend line seems 

quite linear.  

 

Figure 4.7: Overview of capacity values for several weaving configurations (3232 and 3122) with varying ratios of heavy 
traffic. On the left axis the capacity values are expressed as an index (percent) where the capacity values with index 1 
representing configurations with the 0% heavy traffic. 
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Since the ratio of heavy traffic influences road capacity significantly and no general equation or 

reduction factor holds for all configurations jointly, the ratio of heavy traffic is included in the meta 

model.  

4.1.4 Ratio of Weaving Traffic 
In Paragraph 3.2.3.4 it was concluded that weaving traffic increases turbulence which negatively 

influence road capacity. In this section simulation studies and data analysis will be executed to 

quantify the effect of the weaving traffic on the road capacity.   

The simulated CIA-dataset reveals 

that capacity decreases when the 

volume ratio increases (Figure 

4.8). In literature, this is 

explained as follows: a higher 

volume ratio implies more 

weaving traffic and thus more 

turbulence which results in a 

decrease of capacity. In the HCM 

it is stated that the capacity is 

more sensitive to changes in the 

volume ratio for configuration 

types A and C than for 

configuration type B 

(Transportation Research Board, 

2000). This can also be seen in 

this figure, since the (yellow) 

trendline through the yellow 

datapoints (type B configuration) 

decreases less than the other trendlines (A&C configurations). The yellow, orange and blue data 

points and trend lines are based on the weaving ratios (and thus volume ratios) included in CIA, 

which assumes that the weaving ratios are proportional to the ratio of the number of lanes. For the 

black data points, the weaving ratios are not proportional to the ratio of the number of lanes. Here, 

the volume ratio is increased due to another combination of weave ratios (as shown in Figure 4.9). 

However, one remarkable data point is shown in Figure 4.8 which do not coincide with the general 

assumption that the capacity decreases when the volume ratio increases. The capacity of this black 

data point with a volume ratio of 0,2 is lower than the capacity of the yellow data point with volume 

ratio 0,3.  

To further investigate this phenomenon, in Figure 4.9, all combinations of weaving ratios for 

configuration [5S: 3+2 -> 3+2] and their corresponding capacity values are shown. The two arrows in 

this figure represent the increase of volume ratio as shown in Figure 4.8. 

Capacity is lower for this combination of weaving ratios (0 < WR1 < 0.2; 0.4 < WR2 < 0.5) because the 

demand for destination 1 is too high: 50% percent of the traffic from origin 2 weaves to destination 

1 whereas all the traffic from origin 1 has destination 1 as their destination. Figure 4.9 reveals that 

this phenomenon primarily occurs in situations with high weaving rations for one direction in 

combination with low weaving ratios for the other direction, which implicates that the demand for a 

destination is, in these cases, more determinant for the capacity than the turbulence caused by the 

lane changes. 

Figure 4.8: Overview of the influence of the volume ratio on road capacity for weaving 
sections. Only variations in the volume ratio are made (i.e. length and ratio heavy traffic 
are constant). 
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Figure 4.9: 3D plot of the capacity values, on the z axis, for the symmetrical 3+2 configuration with on the weaving ratios 
for origin 1 and 2 respectively on the x and y axis.  

4.1.5 Allowed Speed 
Since quantitative research is already present in CIA, it is known that the capacity reaches an 

optimum at speed limits of 100 kilometres per hour. This paragraph investigates the impact of 

different configurations and weaving ratios on this optimum. In Figure 4.10 the impact of the speed 

limit on capacity is shown for six different configurations. Since capacity values for 2222 

configurations and all other configurations differ substantially, the capacity values are divided on 

two axes. This figure shows that there is actually an optimal speed which realises the highest 

capacity for a certain configuration.  
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Figure 4.10: Relation between the allowed speed and capacity according FOSIM simulations. On the left vertical axis the 
capacity values for [2222] configurations are shown (blue, orange and grey) and on the right vertical axis, capacity values 
for all other configurations are shown.  

Moreover, the impact of the speed limit on capacity is related with other capacity influencing 

variables. For the configurations with a taper, which are the dark blue and green datapoints, the 

capacity is the highest at a maximum speed of 80 kilometres per hour instead of 100 kilometres per 

hour. This is explained by the fact that vehicles do have less time for cooperation and anticipation 

due to the taper merge. Here, a lower speed will homogenize traffic flow resulting in improved 

opportunities for lane-changing.  

Furthermore, the speed limit has a limited effect on long configuration compared to short 

configurations. This could also be caused by the fact that on longer weaving sections, vehicles have 

more time for cooperation and anticipation, while on short weaving sections a reduced allowed 

speed will homogenize traffic.  

4.1.6 Speed Differences 
In the theoretical framework it was found that speed differences between weaving and non-weaving 

vehicles do negatively influence capacity (Hidas, 2005; Marczak et al., 2013). Furthermore, a 

quantitative analysis of the effect of the weaving configuration on speed differences and thus 

capacity is elaborated in Paragraph 4.1.1.  

Speed differences between weaving and non-weaving traffic can also arise due to sharp turns on 

(single) weaving lanes. For example a 2+ 1 weaving section with a sharp turn on the single lane or 

cloverleaf weaving sections.  

As shown in Figure 4.3, the mean speed of the continuous traffic on the most right lane is 

approximately equal to 98 km per hour. This causes the speed differences between the weaving and 

continuous traffic to be the lowest when the speed reduction factor (to simulate slower traffic on 

specific lanes (i.e. sharp turns) in FOSIM) on the single weaving lane is between 0.8 and 0.9. A too 

low or too high speed reduction factor will cause too slow or too fast weaving traffic. In other words: 

the merging process is most efficient when the speed differences between vehicles are low, which 

can be realized by an optimal speed reduction factor. 
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Figure 4.11: Graph with the speed reduction factors (and actual speeds in the bottom right) and capacity values. On the 
right axis the capacity values for the 2+1 configurations are shown and on the left axis the capacity values for the 3+1 
configurations. The abbreviations in the legend represent respectively the ratio heavy traffic (%HT) and the ratio of 
merging/weaving traffic (WR). 

In this figure, Figure 4.11, the capacity values for two different types of merge configurations are 

shown. On the left axis the capacity values for 2+1 configurations (blue data points) are shown 

where the right axis shows for capacity values for 3+1 configurations (orange data points).  

Polynomic trend lines provide the best fit to the data points. Since the mean speed of the 

continuous traffic on the most right lane is approximately equal to 98 kilometers per hour, the 

capacity will theoretically be the highest at a speed reduction factor between 0.8 and 0.9 (≡ 96 – 108 

km/h).  

According to Figure 4.11, the highest capacity per configuration lies indeed around a speed 

reduction factor equal to 0.9 on the weaving lane. Furthermore, at lower ratios of heavy traffic, the 

capacity with a speed reduction factor of 0.9 is higher compared to configurations with a higher ratio 

of heavy traffic. This is because a higher share of trucks on the most right lane decreases the mean 

speed of the traffic on this lane.  

4.1.7 Division of Traffic Flows 
This variable is not inventoried in the theoretical framework in Chapter 3, however during the 

research it is found that this variable does influence road capacity. CIA assumes that the traffic flows 

over the origins are equally divided. In the case of the weaving section shown in Figure 4.12, 

according to CIA, the proportion of the traffic flows will be equal to 2:1. Since this is the ratio of the 

number of lanes from origin 1 to the number of lanes from origin 2.  

This is logical since the number of lanes from origin 1 is equal to two and the number of lanes from 

origin 2 is equal to one. Hence CIA assumes: 𝑃𝑟𝑜𝑝𝐼𝑛𝑡 = 𝐿𝑎𝑛𝑒𝑠𝑂1/𝐿𝑎𝑛𝑒𝑠𝑂2, where 𝑃𝑟𝑜𝑝𝐼𝑛𝑡 

represent the proportion of traffic flows, 𝐿𝑎𝑛𝑒𝑠𝑂1 the number of lanes from origin 1 and 𝐿𝑎𝑛𝑒𝑠𝑂2 

the number of lanes from origin 2. However, in practice this statement of proportionality does not 

hold, which will be shown in Section 4.3.2. The reason is that asymmetric traffic intensities affect the 

amount of weaving traffic and thus the volume ratio.   
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According to the assumptions of CIA, the volume ratio of this configuration will be calculated 

by: 𝑉𝑅 =  
𝑊𝑅1∗𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,𝑂1 +  𝑊𝑅2∗𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,𝑂2

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑓𝑓𝑖𝑐
=

𝑊𝑅1∗𝐿𝑂1+𝑊𝑅2∗𝐿𝑂2

𝐿𝑂1+𝐿𝑂2
=  

0,5∗2+1∗1

2+1
= 0,66.   

However, when the proportion of traffic flows is not equal to the proportion of lanes (2:1), the 

volume ratio will change while the two weaving ratios (WR1 and WR2) are still constant. Assume 

that less traffic is present from origin two, for this example the traffic flow from origin 2 will be six 

times lower. Then the proportion of traffic intensities will become 2:
1

5
 ≡ 2:0.2 ≡ 10:1.  

This will change the volume ratio to:  𝑉𝑅 =  
𝑊𝑅1∗𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,𝑂1 +  𝑊𝑅2∗𝑇𝑟𝑎𝑓𝑓𝑖𝑐𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦,𝑂2

𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑓𝑓𝑖𝑐
=

 
0,5∗10+1∗1

10+1
= 0,55.  Consequently, when the 

proportion of traffic flow decrease, the volume 

ratio will increase for this configuration. In Table 

4.2 an overview of different configurations with 

deviating proportions of traffic intensities are 

shown. Here, it can indeed be seen that the 

volume ratio changes at deviating proportions of 

traffic flows. However, when the weaving ratios 

1 and 2 are approximately equal, the volume 

ratio will not change despite deviating 

proportion of traffic flows. 

Since FOSIM restricts the use of this variable in a certain manner, this phenomenon will be discussed 

more extensive in the paragraph on data gathering (Section 4.4) for reasons of readability.  

4.2 Final set of Independent Variables 
In this chapter a quantitative research was elaborated on the capacity influencing variables which 

were not excluded in Paragraph 3.2.4. All the above described independent variables do significantly 

influence capacity on weaving sections. Moreover, all variables can be implemented in FOSIM. In 

other words, supplementary data could eventually by gathered in case CIA did not include these 

variables (i.e. maximum speed, speed differences and the division of traffic flows).  

However, the variables of maximum speed and speed differences are not present or structurally 

implemented in the macroscopic traffic model of OmniTRANS. First of all, the maximum speed is 

always set on 120 km/h on weaving sections (see Section 4.3.2). Although, speed limits in real-case 

are not always equal to 120 km/h (Rijkswaterstaat , 2018). Therefore, it is recommended to 

implement corresponding speed limits, because capacity values can vary approximately 5% as shown 

in Figure 4.10.  

Next to the maximum speed, speed differences are also not implemented in the macroscopic traffic 

model. Speed differences mainly arise due to sharp turns located before the gore of the weaving 

section. Therefore, it is recommended to incorporate these speed reductions in the macroscopic 

Figure 4.12: Graphical representation of a symmetric 2+1 weaving section. Where it is illustrated that 
approximately 100% of the traffic from origin 2 change direction to destination 1. 

 

Lanes WR1 WR2 Proportion 
Traffic Intensity 

VR 

2121 50 100 2:1 0.66 

2121 50 100 10:1 0.55 

2121 50 100 1.5:1 ≡ 3:2 0.7 

2121 50 10 2:1 0.37 

2121 50 10 10:1 0.46 

2121 50 10 1.5:1 ≡ 3:2 0.34 

2222 50 50 2:2 0.5 

2222 50 50 6:2 0.5 

Table 4.2: Overview of the effect of a deviating proportion 
of traffic intensities on the VR. 
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transport model. This can be done, for example, by coupling a sharp turn to a weaving section, 

whereby a speed difference between the two origins can be assumed. For now, these two variables 

are not considered in the neural network. However, it is recommended to implement these variables 

in macroscopic traffic models in the future, whereby they can be considered within the neural 

network.  

A schematic overview of the final used variables was presented in Figure 4.13. With the set of 

significant variables defined combined with the currently available parameters in the macroscopic 

traffic models, an unambiguous answer for the first research question is given. It was namely found 

that the configuration length, ratio of heavy traffic, weaving configuration (which do hold the 

number of lanes for every origin and destination) and ratio of weaving traffic (which is composed by 

the two weaving ratios and the asymmetric traffic intensity) do significantly influence the value of 

road capacity for weaving sections and can be implemented in the meta model. 

 

 

Figure 4.13: Overview of the final set of variables and the manner in which they influence capacity values (green arrow: 
positive influence; orange arrow: optimum can be found; red arrow: negative influence). 
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4.3 Available Datasets and Similarity 
In this paragraph the currently available datasets will be presented. First of all, a short summary on 

the CIA dataset will be given. This dataset is used to train the neural network during the training 

phase. Furthermore, another dataset is used to validate the neural network on real-case 

configurations. In this research, it is assumed that the weaving configurations present within the 

NRM-West network, which is introduced in Chapter 2, are representative for all real-case 

configurations in The Netherlands.  

Finally, this paragraph analyses the similarity between the two above described datasets. Based on 

the results of this analyse it was decided to gather supplementary data, since meta models are 

stated to be non-capable of extrapolating (Hagan et al., 2014). 

4.3.1 CIA Dataset 
In Paragraph 3.3 the available dataset of CIA is discussed. It was found that the dependent variables 

of this dataset are capacity values. These dependent variables are determined by four independent 

variables, namely: the weaving configuration, the ratio of heavy traffic, the weaving section length 

and the two weaving ratios (WR1 and WR2).  

It should be noted that two of the significant variables, determined in Paragraph 4.1, are not 

included in this dataset. These two variables are the allowed speed and the division of traffic flows. 

The datapoints available in this dataset do all hold for configurations with a speed limit of 120 km/h. 

Since the allowed speed is not taken into account in the meta model (see Paragraph 4.2), no 

supplementary data with other values for the allowed speed are necessary to simulate. However,  

In short, the currently available CIA dataset consist of capacity values of 27 different weaving 

configurations with varying values for the ratio of heavy traffic (5, 15 and 25%), length and weaving 

ratios.  

4.3.2 Set of Real-case Configurations 
In the post-training phase, the neural network, which is trained with the (supplemented) CIA 

dataset, is validated on real-case configurations. These real-case configurations are derived from the 

NRM-West network. It should be noted that the NRM dataset only contain values for the 

independent variables. Because of the validation purposes of these configurations, capacity values 

for these configurations are simulated with FOSIM, which will be discussed in Paragraph 4.4. 

The NRM dataset consist of 363 weaving sections present in the study area the NRM-West model. In 

Table 4.3 the first seven weaving sections and their relevant variables from the dataset are shown 

for illustrative purposes. In this table it can be seen that variables as volume ratio, configuration 

codes and the presence of a taper are not present. However, these variables can be calculated 

and/or derived by means of other variables available in the transport model.  

First of all, it can be noticed that the proportion of traffic flows over the origins is not equal to the 

proportion of lanes, which is assumed by CIA (Paragraph 4.1.7). The ratio between the traffic flows 

can simply be calculated by dividing the sum of all traffic from origin two by all traffic from origin 

one: 𝐼𝑛𝑡𝑃𝑟𝑜𝑝 =
∑ 𝐼𝑛𝑡 𝑂2

∑ 𝐼𝑛𝑡 01
=

𝐼𝑛𝑡 𝑂2𝐷1+𝐼𝑛𝑡 𝑂2𝐷2

𝐼𝑛𝑡 𝑂1𝐷1+𝐼𝑛𝑡𝑂1𝐷2
, where Int OxDy represents the traffic from origin x to 

destination y. 
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Since FOSIM restricts the maximum traffic flows per origin/lane, a factor should be calculated which 

expresses the traffic flow of the less dominant traffic flow compared to the actual maximum flow per 

lane in FOSIM. Exceeding this maximum traffic flow per lane will result in a simulation crash which 

makes batch simulation runs ineffective. This factor is called Assymbel and is calculated by dividing 

the proportion of traffic intensities by the proportion of lanes. 𝐴𝑠𝑠𝑦𝑚𝑏𝑒𝑙 =  
𝐼𝑛𝑡𝑃𝑟𝑜𝑝

𝐿𝑎𝑛𝑒𝑠𝑃𝑟𝑜𝑝
=

𝐼𝑛𝑡𝑃𝑟𝑜𝑝

(
𝐿𝑎𝑛𝑒𝑠𝑂2
𝐿𝑎𝑛𝑒𝑠𝑂1

)
. 

Where IntProp is the proportion of traffic flows, LanesO2 the number of lanes from origin 2 and LanesO1 

the number of lanes from origin 1. 

With this Assymbel factor the less dominant traffic flow can be expressed compared to the more 

dominant traffic flow. For example, regarding the configuration discussed in Figure 4.12 with 200 

veh./h from origin 2 and 1000 veh./h from origin 1, the Assymbel factor will be: 
200/1000

(
1

2
)

= 0.4.  

Using this factor, the traffic intensity in FOSIM for the less dominant origin is always set without 

exceeding the maximum traffic intensity FOSIM can handle. In this case, the traffic flow from origin 2 

will be set 0.4 times the (maximum) traffic flow from origin 1.  

The volume ratio can, for NRM configuration where traffic intensities are known, be calculated by 

dividing the sum of the weaving traffic by the total traffic.  

𝑉𝑅 =  
∑ 𝑊𝑒𝑎𝑣𝑖𝑛𝑔 𝑇𝑟𝑎𝑓𝑓𝑖𝑐

∑ 𝑇𝑜𝑡𝑎𝑙 𝑇𝑟𝑎𝑓𝑓𝑖𝑐
=  

𝐼𝑛𝑡𝑂1,𝐷2 + 𝐼𝑛𝑡𝑂2,𝐷1

𝐼𝑛𝑡𝑂1,𝐷1 + 𝐼𝑛𝑡𝑂1,𝐷2 + 𝐼𝑛𝑡𝑂2,𝐷1 + 𝐼𝑛𝑡𝑂2,𝐷2
 

For configurations where the traffic intensities are not known, all non-NRM configurations, the 

volume ratio can be calculated with the formula given in Paragraph 3.2.3.4. However, with the extra 

variable of Assymbel, the volume ratio cannot be calculated by means of the ratio of lanes.  

𝑉𝑅 =  

𝐿𝑎𝑛𝑒𝑠𝑂1 ∗ (𝑊𝑅1 +
𝑊𝑅2 ∗ 𝐴𝑠𝑠𝑦𝑚𝑏𝑒𝑙

𝐿𝑎𝑛𝑒𝑠𝑃𝑟𝑜𝑝
 )

𝐿𝑎𝑛𝑒𝑠𝑂1 ∗ (1 + 𝐴𝑠𝑠𝑦𝑚𝑏𝑒𝑙 ∗ 𝐿𝑎𝑛𝑒𝑠𝑃𝑟𝑜𝑝)
 

By means of the available information on the number of lanes per origin and destination and the 

number of total lanes, the presence of a taper and the minimum required lane changes can be 

calculated. To illustrate: for the second configuration in Table 4.3 the number of incoming lanes is 

equal to 5 (3+2) while the number of total lanes in the weaving section are equal to 4.  
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Table 4.3: Overview of the first seven weaving configurations in the NRM dataset. Where 'int' stands for the traffic flows 
(int O1 D1 = traffic flow from origin 1 to destination 1). Furthermore, the number of lanes for all origins, destinations 
and the total lanes are shown. Finally, the percentage heavy traffic (%HT), length and both weaving ratios can be seen 
(% O2-D1 ≡ WR2; % O1-D2 ≡ WR1). 
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This implies that a taper is present upstream of the weaving section. Based on these required lane 

changes also the configuration types as defined in the HCM can be derived and applied in case the 

model performance will be increased by adding this parameter.  

Finally, the configuration code is an assembly of all relevant independent variables to create a 

unique identification parameter for every configuration.  

 

Table 4.4: Overview of the first seven configurations in the NRM dataset. Here only the relevant variables per 
configurations are maintained. Where WR stands for the weaving ratios and VR for the volume ratio. 

4.3.3 Similarity CIA and Real-cases  
In this paragraph the representativity between the configurations in the CIA and NRM will be 

elaborated. The purpose of this analysis is to discover underrepresented ranges of values in CIA 

which are needed to be simulated.  

First of all, Figure 4.14 shows differences and similarities between the CIA and NRM dataset for the 

number of lanes and configuration length. The histogram reveals that the dataset of CIA is more 

extensive for configurations with relatively a high number of lanes. For the configurations in CIA it 

holds that more than 50% of the data points do represent configurations with 5 or more lanes. For 

the NRM configurations only 15% of the total number of configurations consist of 5 or more lanes. In 

the NRM dataset, namely more than 70% of the total number of configurations do consist of three 

or four lanes (i.e. 2+1, 2+2, 3+1 configurations). Furthermore, the dataset of CIA does not match 

with the NRM configurations regarding configuration length. Firstly, CIA do not provide data points 

with a higher length than 1100 meters. However, roughly fifteen percent of the NRM configurations 

have a length larger than 1100 meters. One can expect that a good performing meta model should 

correctly predict capacity values for these configurations since at large lengths capacity does not 

increase that much anymore, which is already shown in Figure 4.6. Nevertheless, the only 

configurations with short lengths in CIA are 2-lanes configurations (1+1 configurations). For 

configurations with more lanes, the NRM dataset contains shorter configurations than the 

configurations in CIA, indicated by the much higher share of lower lengths (yellow-pigmented) 

compared to the higher lengths (green-pigmented). This holds for roughly 25% of all NRM 

configurations. Especially for these short lengths, it will be hard for a meta model to predict capacity 

values, because in these situations, capacity is highly influenced by the configuration length (Figure 

4.6). For this reason, supplementary data for shorter (and eventually longer) configurations lengths 

should be added to the dataset.  
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As already described in the section on the CIA 

dataset, CIA provides capacity values for weaving 

sections of five, fifteen and twenty-five percent heavy 

traffic. In Figure 4.15 all ratios heavy traffic of the 

NRM configurations are shown in combination with 

the three different ratios heavy traffic of CIA. This 

figure shows that the ratios heavy traffic as in NRM 

mostly lie within the range of the ratios present in 

CIA. As concluded from Figure 4.7 capacity values 

between five and twenty-five percent are reasonably 

to be interpolated. Only for relatively low and high 

ratios of heavy traffic the relationship between 

capacity and ratio heavy traffic is not linear. 

Therefore, only data representing higher ratios of 

heavy traffic should be added to the dataset, as lower 

ratios of heavy traffic are not present in the NRM 

configurations, as shown in Figure 4.15. 

In Figure 4.16 a comparison for the weaving ratios and volume ratios is given. In the upper left 

scatterplot, the combination of weaving ratios for all configurations is jointly shown. This scatterplot 

shows that the NRM configuration are represented well by the CIA weaving ratios. However, a 

relative dense (many NRM-data points) area with a high weave ratio for O2D1/WR2 (0.75>1) 

combined with a low weave ratio O1D2/WR1 (0>0.2) is not covered well by the CIA data. It is, 

however, not known if the desired meta model can sufficiently predict capacity values for weaving 

ratios which transcend configurations. In other words: will the meta model be able to predict 

capacity values for configuration x with certain weaving ratios y, which combination is only present 

for another configuration z. This will be identified during the post-training analysis. 

 

Figure 4.15: Scatterplot of all ratios heavy traffic in both CIA 
(blue) and NRM (orange). 

Figure 4.14: Overview of the CIA and NRM dataset related to the number of lanes and configuration length. In the two 
histograms the relative share of configurations in the CIA and NRM-dataset and their length is shown. In the scatterplot 
the individual data points for CIA (blue) and NRM (orange) are shown for the number of lanes of the configuration. 
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Figure 4.16: Scatterplots for the weaving ratios and volume ratios in the CIA and NRM dataset.    

For that reason, the combination of weaving ratios for three of the four configurations with the most 

appearances in the NRM dataset, as shown in Figure 4.16, are shown in the lower three scatter 

plots. These scatter plots show that the combinations of weaving ratios match poorly for the 

configurations separately. Moreover, the 

distance between some NRM configurations and 

the closest CIA data point is quite large.  

Finally, in the scatter plot upper right, the 

volume ratios for the number of lanes in a 

configuration are both shown for CIA and NRM 

data points. Here, the range of the volume ratios 

in CIA largely cover the range of volume ratios 

for NRM configurations. However, for 

configurations with two or three lanes, a large 

share of data points do have a lower volume 

ratio than the volume ratios in CIA. Furthermore, 

as shown Figure 4.18, a volume ratio can 

correspond with several combinations of 

weaving ratios. For these reasons it is 

recommended to generate supplementary data 

where the weaving ratios and volume ratios better 

match with the configurations in NRM.  

Figure 4.17: Overview of the share configurations present in the NRM 
dataset. In the top of the figure the configuration/lane codes for the 
configurations are shown. Furthermore, the Taper value of the 
configuration made visible, where: -1 represents a taper upstream, 0 no 
taper and 1 a taper downstream.   
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As stated above a value for a volume ratio can correspond with several combinations of weaving 

ratios and the Assymbel-factor. In Figure 4.18 scatterplots related to the volume ratios compared to 

the weave ratios and Assymbel factors are shown. This figure shows that the majority of NRM data 

points have an Assymbel factor lower than one. This implies that the traffic flows originating from 

origin two are over-estimated by CIA, where all Assymbel factors are equal to one, since the ratio of 

flows is equal to the proportion of lanes. Therefore, a large part of the volume ratios is also 

overestimated by CIA, as weaving ratios for origin two are mostly higher for the majority of data 

points (which can be seen in the upper scatterplots).  

These scatterplots show that the assumption in CIA that the ratio of traffic flows is equal to the 

proportion of lanes, does not hold for the NRM case. Therefore, NRM configurations with similar 

weaving ratios in CIA do have a distinctive volume ratio and thus capacity values will not be 

corresponding. Furthermore, it is illustrated that the volume ratio depends on the combination of 

values for weaving ratio one, weaving ratio two and the Assymbel factor. Since research found that 

the volume ratio is one of the most capacity-influencing variable, supplementary data points are 

recommended to simulate with different volume ratios including deviating asymmetrical flow 

distributions. 

In summary, supplementary datapoints are simulated to provide a better match between the CIA 

and real-case configurations, especially for the following cases:  

Figure 4.18: Scatterplots providing an overview of the weaving ratios, volume ratios and Assymbel-factors. 
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o More three- and four lane configurations (Figure 4.14);   

o Relatively short and long configuration lengths (Figure 4.14); 

o Higher (> 25%) ratios of heavy traffic and a denser distribution of ratios of heavy traffic 

(Figure 4.15); 

o Configurations with other ratios of weaving traffic resulting in a denser grid of weave ratios 

(Figure 4.16Figure 4.15 ); 

o Configurations with Assymbel factors not equal to one hundred (Figure 4.18). 

By simulating these configurations more similarities between the training dataset (Section 4.3.1) and 

the real-cases will be realised (Section 4.3.2). In the next paragraph, the simulation process will be 

described. 

4.4 Supplementary Data Simulation  
In the theoretical framework (Chapter 3) FOSIM was already introduced, along with the arguments 

to use FOSIM to generate capacity values. In this chapter the settings (and legitimacy) of gathering 

data with FOSIM is described using the manual of FOSIM and several validation reports. Initially, the 

available dataset of CIA would have been supplemented by means of the microscopic traffic 

simulation software of FOSIM. However, no apparent, unambiguous, settings for the FOSIM 

simulations are known whereby simulation outputs do not consequently coincide with the capacity 

values in CIA. For this reason, the complete dataset of CIA is re-simulated, resulting in an identical 

data grid (configurations and values for independent variables) compared to CIA. However, for this 

re-simulated set the capacity values are changed. Therefore, the most representative settings for the 

FOSIM simulations are indicated and researched in this section. With these settings the dataset of 

CIA is re-simulated. Moreover, these settings have been used to extend the data grid of CIA based on 

analysis on the configurations in NRM. Hereby, the NRM configurations have not been added simply 

but gaps between the CIA data grid and NRM set have been identified and filled with supplementary 

data (see the enumeration above). Furthermore, capacity values for the NRM dataset have been 

simulated identically to be used for post-validation of the neural network. 

4.4.1 FOSIM Validation and Implemented Settings 
Since CIA does not provide unambiguous setting of the FOSIM simulations for the FOSIM 

configurations in their manual, several validation reports are used to find optimal settings for 

reproduction of the CIA dataset. The three validation reports which are analyzed were the general 

validation report (executed by Sweco), a report on symmetric weaving sections (CIA 1, Vermijs, 1997) 

and a report on asymmetric weaving sections (CIA-2, Dijker & Minderhoud, 2001). 

In the validation report it was stated that FOSIM is calibrated for the Dutch road situations in the 

past, especially focused on weaving sections. However, FOSIM has changed on several points in the 

last years. For the sake of the importance of FOSIM outcomes and several recent changes, it was 

desired to validate FOSIM once again (Henkens et al., 2017). The validation report concluded that 

there is no apparent reason to doubt the simulated capacity values for weaving sections within 

FOSIM, given the input configurations. However, it is stated that it is hard to represent the reality in 

FOSIM, mainly due to a lack of information (i.e. lane width and slope) (Henkens et al., 2017). This 

lack of information in combination with the restrictions of FOSIM, are the reason that some variables 

have not been taken into account, as stated in Section 4.2. 

As stated in the introduction and in the reports on FOSIM, several degrees of freedom in the settings 

are present which do influence the final outcomes of the simulations runs. These parameters which 

can be adapted in FOSIM can be summed up as:  
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o Lane change areas; 

o Origin-Destination patterns; 

o Ascent of traffic intensities; 

o Local features on single lanes. 

In contradiction with the statements in CIA-1 and CIA-2, changes in the settings of these parameters 

do influence the simulation output. In this case, the simulation output are the capacity values. This 

statement of deviating capacity values is endorsed by the tables in this paragraph describing the 

results of the sample tests with different settings for the simulations. In the next two paragraphs the 

settings for the lane change areas and local features on single lanes will be discussed. For the other 

two parameters the settings are elaborated in Appendix A1, because no (or only small) discrepancies 

between the several validation reports exist for these parameters. 

4.4.1.1 Lane Change Areas 

In CIA-1, the lane change areas for the most inner lanes are roughly composed as required lane 

change areas for 95% of the total length of the weaving length. The remaining part of the weaving 

length is reserved as a desirable lane change area. For the outer lanes the required lane change area 

continuous 300 meter downstream of the gore. Furthermore, 600 meter of desirable lane change 

area is added, which corresponds with the location of signage (Vermijs, 1997). In Figure 4.19, an 

example of the lane change areas according to CIA-1 is shown.  

 

Figure 4.19: Lane change areas for both destinations for a symmetric 2+2 configuration according to CIA-1. 

In CIA-2 the lane change areas are also, roughly, underpinned on the location of signage. However, 

in this case the lane change areas are quite different compared to the lane change areas according 

to the validation report. Moreover, the settings for 

the lane change areas do differ per configuration 

and configuration length. This will result in time-

consuming batch simulation runs of capacity values 

for asymmetric weaving sections. In other words, 

depending on the configuration and configuration 

length, the lane change areas should be changed, 

which would result in inconsistent lane change 

areas and time-consuming simulation set-ups.  

The re-simulated capacity values, where the settings 

of the validation report are used, for the symmetric 

weaving sections sufficiently corresponded with the 

capacity values from CIA. Moreover, the 

contradictions between the several (validation) 

reports related to FOSIM were minor for the 

symmetric weaving configurations. Unfortunately, 

for the asymmetric weaving sections the 

contradictions between the several reports were 

Table 4.5: Sample test results for lane change areas for 
asymmetric weaving sections. In the first two columns 
the configuration code with lanes, length, WR1, WR2, 
%HT and speed and the capacity according CIA are 
shown. In the other three columns the capacity values 
from FOSIM simulations with different settings for lane 
change areas are shown. 
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larger. CIA-2 roughly uses the location of signage around weaving sections according to the signage 

schemes of Rijkswaterstaat (Rijkswaterstaat, 2017). On contrary, as stated before, the validation 

report has uniform lane change area-settings for all weaving configurations. Since the discrepancies 

between the lane change areas for asymmetric weaving sections cannot be neglected, a sampling 

test for several configurations with varying variables are simulated with different settings of lane 

change areas.  

In Table 4.5, the results of the sample test are shown. In the grey columns the configuration codes 

with the corresponding capacity values from CIA are shown. The configuration code consists of the 

lanes in the weaving sections, the length of the weaving section, the weave ratio for origin 1 and 2, 

the ratio of heavy traffic and the speed limit. In the green-coloured columns the capacity values from 

the simulations are shown. In the first column, the capacity values simulated with the lane-change 

area-setting of the validation report are shown. The second column contains capacity values with 

the setting as in CIA-2 and the last column contains capacity values with a simplified form of settings 

of CIA-1. The settings from CIA-1 are modified, for reasons of consistency, towards a required lane 

change area for the complete weaving section length with an additive desirable lane-change area of 

300 meters. 

In this table it is shown that the settings of the validation report result in the most corresponding 

capacity values with CIA. Moreover, the mean squared error for these capacity values compared 

with the capacity values from CIA are the lowest. 

Next to the fact that the capacity values do correspond relatively good with the CIA values, the 

outcomes of the simulations make sense. In other words, an increasing weaving length results in 

increasing capacity values and increasing weaving ratios lead to a decrease of capacity. For this 

reason, next to the importance of consistency, in this research, the lane change area-settings of the 

Figure 4.20: Overview of the lane change areas for the asymmetric configuration [4+1 -> 3+2]. Above lane change areas 
according to CIA-2 with a require lane-change area for the complete weave length except the first 100 meters and 400-
meter additive desired lane changes. Under lane change areas, which are also applied, according to the validation report 
with required lane change areas for the complete weave length and every additive lane 150 meters supplementary 
length.  
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validation report are used in this case for data generation. As shown in Figure 4.20 these settings 

comprise required lane change areas for the complete configuration length plus supplementary 150-

meter required lane change areas for every additive lane.  

 

4.4.1.2 Local Features on Single Lanes 

Next to the lane change areas, local features on individual 

lanes do influence simulation outcomes. These local features 

comprise a speed reduction on the single weaving lanes (i.e. 

2+1, 3+1 and 4+1 configurations) and speed reductions on 

complete 1+1 weaving sections.  

The CIA-1 and CIA-2 reports also implement a speed 

reduction for single-lane origins and/or destinations. In the 

validation report no speed reduction factors are applied. Due 

to this discrepancy, a sample test is executed for the 

symmetric 3+1 configuration. Table 4.6 reveals that the 

settings without a speed reduction on the single lanes 

correspond better with the CIA capacity values than the 

configurations with a speed reduction on the singe lane. 

Therefore, no speed reduction factors will be used during the 

simulations for data gathering and extension.  

The other uncertainty regarding local features on single lanes 

holds especially for symmetric 1+1 configurations. These 

configurations do represent the clover-leave interchanges. 

Hereby, the configurations are relatively short, whereby 

traffic speeds are lower than for other (continuous) 

configurations. For configurations with a high-speed 

reduction factor (80), capacity values are (too) high and many 

vehicles cannot reach their destination. Since this is not 

realistic and to validate the settings of the validation 

report, a sample test is executed with several level of 

speed reduction factors. The simulation outcomes for all 

1+1 configurations in CIA are shown in Table 4.7. This 

table shows that a speed reduction of 60% correspond 

the best with the capacity values in CIA. For this reason, 

speed reduction factors of 60% will be used for 

symmetric 1+1 configurations.  

As stated in the introduction of this chapter, an overview 

of all the used settings within the FOSIM simulations is 

shown in Appendix A1. Here, also an overview of the 

other two output-changing parameters is elaborated.   

 

 

 

Table 4.7: Sample test for speed reduction factors on 
1+1 weaving configuration. In the coloured columns, 
the capacity for configurations with several speed 
reduction factors. 

Table 4.6: Table with results of sample test 
on 3+1 configurations for speed reduction 
factors. The column ‘Capacity Fosim’ 
represents capacity values without speed 
reduction on the single lanes and the 
column ‘Capacity Fosim SPRD’ represent 
capacity values with speed reduction 
factor 0.8 on the single lane. 
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4.4.2 Conclusions on FOSIM Simulations 
After an introduction on FOSIM in Chapter 3.4, the validation and used settings are described in this 

chapter. First of all, the complete datagrid of CIA is re-simulated because no consistent 

corresponding capacity values were able to be simulated. Hereby, a bias between, on the one hand, 

the CIA and supplementary datapoints and, on the other hand, the (CIA) training dataset and the 

simulated validation set (NRM) is prevented. To find consistent settings for (re-)simulation, three 

available reports on FOSIM are discussed. Two of it were more focussed on the used settings for 

generating capacity values for respectively symmetric and asymmetric weaving sections, the other 

was more focussed on the validation of the simulation software for the Dutch road and traffic 

conditions/situations. Since discrepancies between the used settings did exist, several sample tests 

were executed to match sufficiently with the available dataset in CIA. Regarding the discrepancies 

between the settings in the validation reports, the degrees of freedom for the FOSIM settings are: 

the lane change areas, origin-destination patterns, ascent of traffic intensities and local features on 

single lanes. The final settings for (re-)simulating capacity values are summarized in Appendix A1. In 

Figure 4.21 a summary of the findings in the sections on FOSIM is shown.    

 

 

 

 

 

 

 

 

Introduction

•FOSIM is a microscopic traffic simulation model which is calibrated and validated for 
Dutch freeway traffic and can deliver capacity values for specific road and traffic 
conditions as output;

•In FOSIM all weaving configurations and weaving specific variables can be 
implemented.

Validation

•No unambigious settings for FOSIM simulations are known. Several validation reports 
are studied for settings in behalf of optimal similarity with the currently available 
dataset in CIA;

•The inventoried degree of freedoms in the FOSIM settings are the lange change areas, 
OD-patterns, ascent of traffic intensities and local features on single lanes.

Used
Settings

•After a study on the validation reports and sample tests optimal settings have been 
defined;

•Lane change areas are defined according to the validation report, no speed reduction 
factors are applied on single-lanes and a speed reduction factor of 60% is used for 1+1 
symmetric weaving sections.

Figure 4.21: Summary of the chapters (Chapter 3.4 and Chapter 4.4) on FOSIM.  
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4.5 Final used Training dataset 
For the ranges that were underrepresented within the CIA dataset (Sections 4.3.2/4.3.3) 

supplementary data points have been simulated to enhance the match between the simulated (CIA) 

dataset and the real-case configuration (NRM) dataset. On page 58 the regions of the supplementary 

data simulations have been listed. These supplementary data have been simulated using FOSIM 

(Section 4.4).  

Firstly, data points with a relatively lower and higher length have been simulated, shown in Figure 

4.22. Hereby, only 2% of the NRM data points lie outside the range of simulated lengths and 

regarding the number of lanes per configuration separately only 11% of the NRM configurations lie 

outside the range of simulated lengths.  

 

Secondly, more configurations with a deviating ratio of heavy traffic are simulated. The CIA dataset 

only provided capacity values with ratios of heavy traffic of five, fifteen and twenty-five percent. The 

supplemented dataset contains additional capacity values with ratios of heavy traffic of zero to 

thirty-five, which can be seen in the left scatterplot of Figure 4.22. Hereby, the meta model should 

theoretically predict capacity values with relatively low and high ratios of heavy traffic better.  

Thirdly, more data points are simulated with deviating weaving ratios. Since a complete grid of 

weaving ratios is simulated for configuration 3+2, as shown in Figure 4.9, the grid of weaving ratios 

for all configurations combined as shown in Figure 4.23 is much more dense then the previous grid 

of weaving ratios in Figure 4.16. In the upper-right scatterplot this is also shown by the increased 

range of volume ratios. Currently, only 4% of the NRM data points lie outside the range of volume 

ratios in the simulated dataset.  

Despite all the supplementary simulated data points, it is too time-consuming to simulate a 

complete data grid regarding weave ratios for every configuration. For example, differences still 

exist for the configurations as shown in the lower three scatterplots. Nonetheless, at the time of 

writing the question remains if the meta model will be able to sufficiently predict capacity values for 

configurations with deviating weaving ratios where the combination is only known for other 

Figure 4.22: Scatterplots for comparing the simulated dataset and the NRM dataset. In the left scatterplot the length of the 
weaving section are plotted against the number of lanes of the configuration. In the right scatterplot the ratio heavy traffic is 
plotted against the lanes of the weaving section. 



64 
 

configurations. To illustrate: will the meta model be able to predict capacity values for configuration 

2+1, with weaving ratios [0.9, 1](a combination only present for configuration 3+2)?  

 

Figure 4.23: Scatterplots for the weaving ratios and volume in the simulated (blue) and NRM (orange) dataset for all 
configuration combined (upper scatterplots) and for the three most frequent configurations in the NRM dataset (lower 
scatterplots). 

Fourthly and finally, Figure 4.24 compares volume ratios, weave ratios and Assymbel factors present 

in the simulated CIA and NRM datasets. The histograms show a better match between the simulated 

and NRM dataset regarding the number of lanes per configuration. Furthermore, the upper two 

histograms show that the share of (relatively) low volume ratios is high for the NRM configurations. 

Only for the 2-lanes configuration (1+1), the majority of configurations have a high volume ratio. 

Furthermore, the scatterplots from Figure 4.24 (simulated dataset, left; NRM configurations, right), 

show many similarities. The simulated dataset has several combinations of values for WR1 and 

Assymbel for identical values for the volume ratio. This is shown using different sizes and colors of 

the data points in the scatterplot of Figure 4.24. Due to inclusion of these combinations, the meta 

model should theoretically perform better when predicting capacity values for different ratios of 

weaving traffic, volume ratios and the Assymbel factor.  
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4.6 Conclusions Pre-Training Phase 
In the pre-training phase the significant variables influencing the capacity value were discussed. 

Using the set of significant variables and the ‘two-sided’ restrictions on using them, a final set of 

independent variables is determined. This set was shown in Figure 4.13 and contains the weaving 

configuration, weaving length, weaving traffic, traffic composition and division of traffic flows. The 

independent variables are both included in the training dataset (CIA; re-simulated with FOSIM) and 

the validation dataset (NRM). Since, the capacity values (dependent variables) in the CIA dataset 

were not able to reproduce, the complete dataset is re-simulated. Moreover, to provide better 

similarities between the datagrid of CIA and real-case configurations, supplementary datapoints are 

simulated with FOSIM.  

Despite the fact that for some combinations of values for independent variables are not or 

underrepresented, supplementary data simulation resulted in improved similarities between the 

(final) CIA dataset and real-case configurations, which are represented by the NRM-West dataset. In 

the next phase of the model development process, the training phase, the neural network will be 

trained by means of the supplemented CIA dataset and validated with the real-case configurations 

present in the NRM-West dataset.  

 

Figure 4.24: Overview of the relations between the Volume Ratio, Weave Ratio and Assymbel factor in both the 
simulated FOSIM and NRM dataset.  
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5 Training Phase 
Now the training and external validation 

dataset are known, the network can be 

trained. The network estimates capacity 

values (dependent variables) by means of a 

set of capacity influencing variables 

(independent variables). In Figure 5.1 the 

components of the training phase, as part of 

the iterative model development process, 

are shown. In this chapter the network 

selection, training algorithm and network 

training will be discussed. 

Firstly, the input and output layer will be 

described, which components are discussed 

in the pre-training phase. Then, the network 

architecture and the degrees of freedom 

within the network architecture will be 

elaborated upon. Since several networks have 

been trained, multiple network architectures have been developed. Finally, the training process and 

its stochasticity, due to the weights and bias initialization, will be discussed. 

The neural network output is analysed afterwards in the post-training analysis. Moreover, (selected) 

trained network is used to be validated using real-case configurations represented by the NRM-West 

road network. Finally, the neural network will be compared with the currently used capacity 

estimation methods.  

5.1 Input and Output layer  
In Section 3.6 an introduction to Neural Networks is given. Here, it was elaborated that a neural 

network consists of three components, namely: the input layer, the hidden layer and the output 

layer. Moreover, it was stated in section 3.6 that structure of the input and output layer mainly 

depends on the external problem specification (Hagan et al., 2014). In this case, the external 

problem specification provides a set of independent and dependent variables that can be 

implemented in several manners.  

The output layer of the network consits of only 

one node, namely the capacity value as the 

dependent variable. The network estimates the 

capacity value by means of a set of independent 

variables (see Figure 5.2), namly: [LanesO1, 

LanesO2, LanesD1, LanesD1, TotalLanes, 

%HeavyTraffic (HT), Configuration Length, Weave 

Ratio 1, Weave Ratio 2, Volume Ratio, Speed 

Reduction Factor]. It should be noted that the 

Speed Reduction Factor in the input layer is not 

the speed reduction factor as discussed in 

Section 4.1.6. Here, the speed reduction factor is a variable implemented in FOSIM for 1+1 

configurations and short weaving configurations with a lower speed. Firstly this factor was not 

included in the input layer. However, implementing this factor resulted in a improved training result.  

Figure 5.1: (Iterative) Model development process as already shown 
in Figure 2.3, with the components included in the training phase 
enlarged. 

Figure 5.2: Overview of the independent variables which 
influences capacity. 
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Furthermore, a correlation matrix, shown in Table 5.1, is constructed to identify mutual correlated 

variables. Table 5.1 shows that the variables concerning the weaving configuration (LanesO1, LanesO2, 

LanesD1, LanesD1, TotalLanes) are strongly mutual correlated. Therefore, other input layers have been 

implemented where the weaving configuration is expressed in different manners. 

First of all, a network was trained with an input layer exluding the variables Lanes Destination 1 and 

Lanes Destination 2. Secondly, an input layers with the variables Lanes Origin 1, Lanes Origin 2, Total 

Lanes, Weaving Type (HCM) and Taper Presence (-1,0,1) replacing the original five variables of the 

weaving configuration is implemented. However, these alternative input layers did not result in an 

improved training result of the neural network. This can be explained by the fact that a neural 

network can estimate capacity values better with the complete weaving configuration known. 

Therefore, the (final) input layer consists of twelve variables, namely: [LanesO1, LanesO2, LanesD1, 

LanesD1, TotalLanes, %HeavyTraffic (HT), Configuration Length, Weave Ratio 1, Weave Ratio 2, 

Volume Ratio, Speed Reduction Factor]. This set of indipendent variables is used by the neural 

network to estimate capacity values as the dependent variable. 

5.2 Network Architecture 
Now the input layer and output layer are known, the hidden layer can be discussed. Moreover, the 

final settings within the neural network can be elaborated upon.  

The final neural network consists of one hidden layer with 10 neurons. The hidden layer is connected 

to the input layer with twelve neurons and an output layer which provides the estimated capacity 

value. The data is normalized using the mapminmax function, which normalizes the data so that all 

inputs fall in the range [-1, 1] (Beale et al., 2018). The transfer functions in the hidden layer are 

sigmoid transfer functions and in 

the output layer linear transfer 

functions are applied, which are 

stated to be the most suitable 

transfer functions for fitting 

problems (Hagan et al., 2014). The 

final network architecture is shown 

in Figure 5.3. 

 

Table 5.1: Correlation matrix including the independent and dependent variables. 

Figure 5.3: Layout of the final neural network, including the input, hidden 
and output layer. 
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Since the neural network development is an iterative process, several networks with alternative data 

normalization methods and transfer functions (as inventoried in Section 3.6) have been trained. 

Nevertheless, post-training analysis (see Chapter 6) found that the above described settings resulted 

in the best-performing settings. Moreover, number of neurons in the hidden layer have been varied 

to find the most optimal number of neurons. Too little neurons in the hidden layer resulted in a 

malperformance of the network, where too many neurons in the hidden layer resulted in an over-

trained network (which is illustrated in next section).  

5.3 Network Training 
After constructing the neural network architecture, the network is trained. The training of the neural 

network is done using the supplemented CIA dataset as described in Section 4.5. This dataset is 

randomly split up in a training-, testing- and validation dataset. The training dataset is used to fit the 

network to the data. The validation dataset is used to estimate the prediction error for the model 

selection. The test dataset is used for assessment of the generalization error of the final chosen 

model (Hagan et al., 2014). Seventy percent of the total supplemented CIA dataset is used as 

trainingset and fiveteen percent is used as testing- and validation set.  

In Section 3.6 the general training process and mechanism is already described. The final network is 

trained using the Levenberg-Marquardt training rule. Several alternative training rules have been 

tried, however, the LM-training rule provided the best network performance.  

The network training process begins with the normalization and the division of the dataset. Then the 

initial weights and biases will be set on small random values. Since every training run provides other 

output results due to stochasticity in initial weights and biases and the division of training, testing 

and validation set, the network architecture is trained 100 times. This ‘multistart’ training enables 

statistical comparison between different settings of the neural network and finds the best settings 

for the specific neural network related to initial weights and training, testing and validations sets. In 

the chapter on the post-training analysis, Chapter 6, the selection criteria for the optimal settings of 

the neural network is elaborated.  

The training of the network is stopped if the mean-squared error decreased to zero, the gradient 

decreased to an (infinite) small number or when early stopping is applied. Since the error never 

decrease to zero during the training process, the magnitude of the gradient and the number of 

validation checks are used to terminate the training. When the training reaches the minimum of the 

performance, the magnitude of the gradient will become very small, which terminates training 

(Beale et al., 2018). However, in most cases the training is terminated by early stopping. Early 

stopping can be set by de parameter Validation Checks (or max_fail), which represents the number 

of successive iterations that the network performance on the validation set fails to decrease. The 

number of validation checks is set on six, increasing the number of validation checks pave the way 

for network overtraining.  

The early stopping mechanism is illustrated in Figure 5.4. The left plot shows that the network 

performance on the training set improves every iteration. However, after iteration 88, the 

performance on the validation set fails to decrease. The network training process is then stopped 

after iteration 94 (≡ 88 + 6 Validation Checks). Furthermore, this figure shows that the network is 

over trained when 50 neurons are used in the neural network, as discussed in previous section. 

Here, the performance on the training set is much better than for the validation- and test set. Here, 

the training process is not terminated after the 16th iteration, when training performance still 

improves where the test- and validation performance only improves very little.  
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5.4 Conclusions Training Phase 
In this section the training process of the neural network is described. Several different network 

architectures and settings have been implemented. The architecture and settings presented in the 

summary of the training phase (see Figure 5.5) are found to provide the best training results, which 

will be discussed in the next chapter on the post-training phase.  

 

Figure 5.5: Summary of the network architecture and settings used in the selected network. 

 

 

 

Network
Architecture

•Input layer consist of twelve independent variables which are used by the 
network to estimate one dependent variable, namely: the capacity value.

•(One) hidden layer consisting of 10 neurons and Sigmoid transfer functions is 
used. Output layer uses linear transfer functions. 

Network 
Initialisation

•Network trained by using supplemented CIA dataset, which is split into 
training, testing and validation set (70,15,15%). 

•Network is trained by means of a 'multistart' because of stochasticity in 
network output due to initialisation of weights, biases and division of dataset.

Network 
Training

•Network is trained using the Levenberg-Marquardt training rule

•Training process is terminated when MSE decreases to zero, the gradient 
becomes (infinte) small or by using early stopping.

Figure 5.4: Performance plot for the train-, validation- and test set for a neural network with 50 (left) and 10 (right) 
neurons in the hidden layer. 
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6 Post-Training Phase 
In this section the results of the trained 

network will be analysed. The post-training 

phase of the model development process 

includes the analysis of the model 

performance and the network applicability, 

see Figure 6.1.  

For this research the post-training phase 

includes three different elements. The first 

analysis discusses the model performance on 

the training-, test- and validation set. The 

second component analyses the model 

performance on real-case configurations. 

These real case configurations are derived 

from the NRM-West network, as discussed in 

Section 4.3.2. Furthermore, the performance 

of the neural network for the NRM-

configurations is compared with the 

performance of the currently used capacity 

estimation models: QBLOK and a nearest 

neighbour-based method. Based on this 

analysis, a verdict can be given if the neural 

network is an improvement of the currently 

used methods. Finally, the network applicability 

will be elaborated. In this paragraph the errors of the neural network will be compared with the 

FOSIM simulations and the network performance on configurations which were not consider is 

elaborated. 

6.1 Network Training Results 
As stated in previous paragraph, 100 multistarts have been executed for training a single network. In 

other words, a certain network architecture has been trained with 100 different initial weights and 

biases, resulting in different network outputs. Therefore, the most well-performing neural network 

was needed to be selected. This has been done by means of the following analyses, which are 

elaborated in the next sections: 

• Highest regression coefficient and narrow regression plots (target vs. output capacity 

values); 

• Lowest errors in error histograms; 

• Lowest Mean Squared Errors (MSE) and/or lowest Mean Absolute Error (MAE). 

Despite applying the early stopping within the training process, the neural network could have been 

overtrained. Therefore, a model will only be selected if and only if (constraints): 

• The relative importance of the independent variables is legitimate; 

• The Network Identification Diagrams (NIDs) show sound connections; 

• The Neural network is well-performing on a sample tests for pattern recognition (i.e. 

patterns corresponding with the patterns found in Section 4.1).  

Figure 6.1: (Iterative) Model development process as already 
shown in Figure 2.3, with the components included in the post-
training phase enlarged. 
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First of all, the network performance on the 

train-, test- and validation set is analysed. 

These three sets were randomly divided 

from the supplemented CIA dataset. The 

network performance on this set is analysed 

by means of three different visualisations, 

namely: regression plots, error histograms 

and 3D error-plots. Moreover, a histogram 

of the relative importance of variables in the 

neural network and a Neural Interpretation 

Diagram can indicate model overtraining or 

generalization. 

The first selection criterium of the neural 

network is the regression coefficient and 

regression plots. Here, the output data is 

plotted against the target data. In this case: 

the predicted capacity values and the 

simulated capacity values of FOSIM. The 

regression plots are made for the training, 

testing and validation set separately and all 

data points within the supplemented CIA dataset jointly. These regression plots are shown in Figure 

6.2. No large differences between the output results for the different sets are present. This 

indicates, as discussed in Chapter 3.6,  that the network is, most probably, not overfitted or this 

means that the training, testing and validation dataset are very similar (Hagan et al., 2014). 

The R-squared values for all three 

sets are almost equal to one, which 

suggests a perfect fit. Only one small 

outlier can be identified in the 

regression plot (at target capacity of 

8000 veh/h). This configuration has 

a relatively low value for the 

Assymbel factor, which are not 

present much in the dataset, due to 

the FOSIM restrictions on maximum 

traffic flow per lane (see Chapter 

4.4). Next to the regression plots an 

error histogram, with bins of 0.5 

percent, has been created. From this 

histogram, shown in Figure 6.3, it 

can be derived that 23% of the 

errors lie in the range of -1 to 1% 

and 80% of the errors lie in the range of -5 to 5%, but it also shows that some errors in the range of -

25 to 30% are present.  

Furthermore, potential structural (relatively large) errors or errors for certain values of variables or a 

combination of values for variables can be identified by means of several 3D-plots. Two examples of 

these plots are shown in Figure 6.4. 

Figure 6.2: Regression plots, as output of the neural network 
training, for all the three sets (training, test and validation) 
separately and a regression plot with all data points jointly. 

Figure 6.3: Error histogram, with bin sizes of 0.5%, for all data points. 
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In the left scatterplot of Figure 6.4 the combination of weaving ratio 1 and weaving ratio 2 have 

been plotted on the x and y axis, where the volume ratio is plotted on the z axis. The green and red 

data points do represent the configurations with the 10% highest errors. From this scatterplot it can 

be concluded that the errors related on the weave ratios and volume ratios are (randomly) divided. 

In other words: the model does not structurally estimate incorrect capacity values for certain 

combinations of weave ratios and volume ratios. In the right scatterplot the number of lanes per 

origin are plotted on the x- and y axis and the configuration length on the z axis. This scatterplot 

shows that several combinations of lanes, the model predicts structurally worse. For example, 

capacity values for the 1+1 configuration are structurally over- and underestimated.  

In brief, the performance of the neural network is sufficient for the supplemented CIA dataset. 

However, on first sight, capacity values for some configurations (i.e. 1+1 configurations) are under- 

or overestimated. For these instances, network validation will be decisive for gathering 

supplementary data.   

Next to the performance criteria 

shown in regression plots, 

histograms and 3D error plots, 

unexpected overtraining of the 

neural network is researched. Several 

methods exist to ‘illuminate the black 

box’ of the Neural Network. These 

methods are discussed by Olden & 

Jackson, 2002 and Ibrahim, 2013. In 

one of these methods a histogram is 

created with the relative importance 

of input variables on the predicted 

output. This relative importance is 

calculated using the magnitude of 

the weights per independent variable 

(Ibrahim, 2013; Olden & Jackson, 

2002). 

Figure 6.4: 3D plots with variables on the x, y and z axis. The green data points are the 5% most underestimated 
configurations and the red data points are the 5% most overestimated configuration. 

Figure 6.5: Histogram with the relative importance (z-axis) of the variables 
(y-axis) for 10 network training runs (x-axis). 
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The histograms of ten different training runs have been displayed in Figure 6.5. Since a broad study 

on the influence of the variables on the capacity value is executed, it can be analysed using these 

histograms if the results of the neural network are plausible. Despite good results for the third 

training run, it can be concluded that the neural network did not reach a global optimum, since it is 

not realist that the speed reduction factor (SpRd) determines the output for almost eighty percent 

(see third row of histograms).  

The histogram with the relative 

importance of the independent 

variables for the selected network is 

shown in Figure 6.6. The relative 

importance of the variables is seen as 

legitimate. The number of lanes and 

the ratio of weaving traffic (VR, WR1 

and WR2) are the most determinant 

variables for estimating capacity, which 

was also found in literature. Moreover, 

no peculiarities as in Figure 6.5 are 

found in this histogram. In other 

words, this histogram indicates that no 

overtraining did happen.  

Next to the histograms of relative 

importance, Olden & Jackson, 

2002 introduces a ‘Neural 

Interpretation Diagram’ (NID). 

Neural Interpretation Diagrams 

provide a visual interpretation of 

the connection weights among 

the neurons and layers in a neural 

network (Olden & Jackson, 2002). 

In Figure 6.7 the Neural 

Interpretation Diagram of the 

selected neural network is show. 

Here, the relative magnitude of 

the connection weights is 

represented by the line thickness 

(i.e. thicker lines represent 

greater weights where thinner 

lines represent smaller weights). 

The line shading represents the 

direction of the weight (i.e. green lines represent positive, excitatory signals and red lines represent 

negative, inhibitor signals). For visibility reasons, only weights of a certain magnitude (i.e. 

connections at least 5% of the maximum weight) are shown in the NIDs.  

 

 

Figure 6.6: Histogram of the relative importance per independent 
variable. 

Figure 6.7: Neural Interpretation Diagram (NID) of the selected neural 
network. 
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For creating an improved view of the effect that each input variables has on the output variable and 

interactions among predicter variables, a neural interpretation diagram with a multiplication of the 

two connection weights (input to hidden layer and hidden to output layer) have been created, which 

is shown in Figure 6.8. However, Olden & Jacksen, 2002 stated that the interpretation of connections 

weights, and more specifically NIDs, is not an easy task because of the complexity of connections 

among the neurons. 

Focusing on Neuron E, it is apparent that road capacity decreases as weaving ratio 2 (WR2) 

increases. However, interactions between several configuration components (LanesO1, LanesD1 and 

Total Lanes) enter the same hidden neuron. This indicates that an interaction between weaving ratio 

and configuration do influence road capacity, which lies in line with the conclusions in Chapter 4. 

Furthermore, in previous chapters (see Section 4.1) it was found that the Asymmetric Flow Division 

could have a positive or negative influence on road capacity depending on the weaving ratios 1 and 

2. The NID shows that both an excitatory and inhibitor signal connects the Asymmetric Flow Division 

to Neuron H and G respectively. In Neurons H and G the Asymmetric Flow Division interacts with the 

Volume Ratio, Weaving Ratio 1 and Weaving Ratio 2, supporting the statements in Section 4.1. 

 

 

 

Figure 6.8: Neural Interpretation Diagram with the weights between the input and hidden layer and output and hidden 
layer multiplied. 
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The final selection criterium was the ability of pattern recognition by the neural network. For this 

criterium, several configurations have been defined with varying values for configuration length, 

ratio of heavy traffic and volume ratio. First, the relation between configuration length and capacity 

is analysed. In the upper graph of Figure 6.9 it is shown that the capacity structurally increases as the 

configuration length increase, when all other variables remain constant. For very short 

configurations, the parameter of the speed reduction factor (SpRd) is modified, in accordance with 

the training dataset. This lies in line with the conclusions in Chapter 4.1 (see Figure 4.6).  

Secondly, the bottom left graph in Figure 6.9 shows that capacity structurally decreases as the ratio 

of heavy traffic increases. This is also in accordance with the conclusions found in Chapter 4.1 (see 

Figure 4.7). Moreover, this pattern is also found for ratios of heavy traffic between 2 and 5% (orange 

line), these ratios of heavy traffic were not present in the training dataset (see Figure 4.22). This 

supports that the model is well able to interpolate for this variable. 

Finally, the bottom right graph in Figure 6.9 shows the relation between the volume ratio and 

estimated capacity values. Here, the capacity also decreases as the volume ratio decreases, which 

lies in line with the conclusions in Chapter 4.1. Based on this figure, it can be stated that the network 

recognise patterns and only gets the wisdom out of the data which is in it. This concept is called 

generalization and cause that the network will perform as well in new situations as it does on the 

data on which it was trained (Hagan et al., 2014). 

Figure 6.9: Overview of the ability of pattern recognition of the neural network. The upper graph shows the relation 
between the estimated capacity and configuration length. The bottom left graph shows the relation between the 
estimated capacity and ratio of heavy traffic, where the bottom right graph shows the relation between the volume 
ratio and estimated capacity.  
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6.2 Network Validation 
Now, the network performance is analysed for the 

training dataset and overtraining, with sufficient 

results, the performance of the neural network on 

real-case configurations is analysed. The real-case 

configurations are represented by the weaving 

sections present in the NRM-West network which are 

simulated within FOSIM. Hereby, the trained neural 

network can be used for estimating capacity values for 

the NRM-configurations. 

In first instance, the capacity estimations for the NRM-

West network appeared to be sufficient. However, as 

shown in Figure 6.10, large errors did arise in the 

target range of [1500, 2500]. These capacity values do 

match with the capacity values for the 1+1 

configurations. Moreover, negative capacity values are 

predicted for these target values. This indicates 

extrapolations, since no negative capacity values could theoretically exist. As stated by Hagan et al., 

2014, supplementary data should be gathered for these region of target values. For the 1+1 

configurations, CIA only provided weaving ratios equal to [50,50; 75,75; 100,100] for short weaving 

sections, while in real-case configurations more variation in weaving ratios and length is present. 

After gathering supplementary data for this region of target data, the model performance on the 

real-case configurations improved.  

Figure 6.11 shows a regression plot and error histogram for the trained network on the real-case 

configurations. It is shown that the regression between the target and output is improved compared 

to the regression plot in in Figure 6.10. This is explained by the fact that supplementary data is 

simulated for 1+1 configurations (see Section 4.4), which improved network performance. The 

network performance, expressed in the regression coefficient, is slightly worse compared to the 

network performance on the train-, test- and validation set (TTV) of the supplemented CIA dataset.  

Figure 6.10: Regression plot with the target values for 
NRM-configurations and the predicted (output) values of 
the neural network. 

Figure 6.11: Regression plot and error histogram of the results of the trained network on the real-case NRM 
configurations. The blue line in these figures are the trendlines for the capacity estimations, where the black 
dotted lines represent the perfect fit (R=1) with supplementary red lines supply ±5% error compared with the 
perfect fit. 
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The histogram of Figure 6.11 shows the relative errors on real-case configurations are relatively 

larger than the errors on configurations in the TTV sets, which are shown in Figure 6.3. It has been 

derived that 28% of the configurations lie between an error range of [-2.5%, 2.5%] and 51% between 

the range [-5%, 5%]. However, an error of 80% is also seen for the real-case configurations. The 

larger errors lie, primarily, in the region of 1+1 configurations, the large errors are represented by 

1+1 configurations with deviating ratios of weaving traffic and long lengths, which were not directly 

present in the training dataset.  

Solely the regression plot and error histogram do not bring in a verdict if the neural network is an 

improvement compared to the currently used capacity estimation methods. Therefore, the 

performance of the neural network compared to the currently used capacity estimation methods is 

discussed. These two methods are QBLOK and a Nearest Neighbour method, which are also 

described in Section 2.3. Capacity values predicted within QBLOK, which is the standard network 

loading model of the Dutch NRM models, are predicted by means of a reduction compared to the 

base capacity, which is a black-box procedure. The nearest neighbour-based method compares the 

NRM configuration with the present configurations in the CIA manual and selects the capacity value 

of the most similar configuration. 

These methods also estimated capacity values for the configurations present in the NRM-West 

network. Since, FOSIM simulation have been executed for these configurations, regression plots and 

error histograms can be made to show the performance of these capacity estimation methods. 

Figure 6.12 shows the regression plots for the QBLOCK method (left) and Nearest Neighbour method 

(right). The blue line in these figures are the trendlines for the capacity estimations, where the black 

dotted lines represent the perfect fit (R=1) with supplementary red lines supply ±5% deviation of the 

perfect fit. The left scatterplot shows that the capacity values which are estimated by QBLOCK are 

structurally overestimated. The capacity estimations made by the Nearest Neighbour method are 

more dispersed around the perfect fit. However, the regression coefficient is lower for the Nearest 

Neighbour method than for the QBLOK method. 

Next to the regression plots, error histograms have been plotted. Figure 6.13 shows error histograms 

for both the QBLOK (left) and Nearest Neighbour method (right). The left scatterplot confirms that 

QBLOK overestimates capacity values. Roughly 85% of the capacity values estimated by QBLOK are 

overestimated compared to the FOSIM capacity values, which is stated to be the ‘ground-truth’. 

Moreover, for roughly 15% of the configurations, the relative error is more than 100%. The maximum 

error of the neural network is approximately 80%, which is seen only one time in the set of real-case 

configurations.  

Figure 6.12: Regression plots for the alternative capacity estimation methods and the neural network (left: QBLOK, 
middle: Nearest-Neighbour, right: Neural Network). 
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Structurally overestimated capacity values, which is the case for QBLOK estimated values, results in 

less congestion on the road network. Hereby, bottlenecks which are present in real-case are not 

indicated by the macroscopic traffic model. This effect has consequences for the complete road 

network, because (amongst others) weaving sections function as node in the road network. The 

malperformance of these methods were the reason for this research of developing a data-analytic 

model for estimating capacity values.  

The right scatterplot shows that the errors of the Nearest Neighbour method are more dispersed 

around zero. However, the share of overestimated configurations is also larger than the share of 

underestimated capacity values. For the Nearest Neighbour method 21% of the estimated capacity 

values lie in the error range of [-5%, 5%] and 43% in the range of [-10%, 10%]. For the QBLOK 

method this is worse, namely: only 16% of the estimated capacity values lie in the range of [-5%, 5%] 

and 31% in the range of [-10%, 10%]. Whereas, 51% of the estimated capacity values by the Neural 

Network lie in the error range of [-5, 5%]. 

In brief, when comparing the performance of the different capacity estimation methods, it can be 

concluded that the capacity estimation method of the neural network outscores the currently used 

capacity estimation methods.  

6.3 Network Applicability  
Next to the model validation on real-case configurations, this paragraph goes in on the model 

performance compared with FOSIM and elaborates on the configurations which are not considered 

within the neural network. 

First of all, the magnitude of the errors of the neural network estimations are compared with the 

standard deviations of the FOSIM simulation per configuration. In other words, assuming that the 

median value of 100 FOSIM simulations is indeed the capacity value, the error per configuration of 

the neural network is compared with the standard deviation of the 100 FOSIM simulations.  

In Figure 6.14 the error of the neural network is visually compared to the standard deviation of 

FOSIM per configuration. In the upper left and figure below, the model error is subtracted of the 

standard deviation of the FOSIM simulations. Negative (green) values do represent configurations 

where the neural network error is lower than the standard deviation of FOSIM. Positive (red) values 

do represent configurations where the neural network error is larger than the standard deviation of 

FOSIM. 

Figure 6.13: Error histograms for the alternative capacity estimation methods (left: QBLOK, right: Nearest-Neighbour) 
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The upper two plots of Figure 6.14 show that primarily for configurations with low capacity values, 

the error of the neural network exceeds the standard deviation of the FOSIM simulation. This can be 

explained by the fact that for these configurations, the standard deviation is also lower than for 

configurations with high capacity values. To illustrate: the mean standard deviation for 1+1 

configurations is equal to 114, for 2+2 configurations 348, for 3+2 configurations 446 and for 5+1 

configurations 588 veh/h. This can be explained by the fact that more traffic is simulated on more 

extensive configurations, which results in more stochasticity in driving behaviour and thus capacity 

values. Therefore, only relatively small errors are permitted for the neural network to lie within the 

range of the standard deviation of FOSIM.  

The figure below shows the spread of the errors compared with the FOSIM standard deviation. It is 

shown that the mean of the errors compared to the FOSIM standard deviation (Neural Network 

Error minus FOSIM standard deviation) lies at -217 veh/h for all configurations within the train-, test- 

and validation set. Hereby, it can be concluded that for the majority of configurations within the 

train-, test- and validation set, the neural network error lie within the range of the FOSIM standard 

deviations.  

Finally, some weaving configurations are not taken into account during training and validating the 

neural network. These configurations are represented by the configurations where FOSIM was not 

able to simulate capacity values for. This was due to the fact that FOSIM is restricted in the 

maximum traffic flow per lane (see Paragraph 4.4).  

Figure 6.14: Analysis of the neural network errors with the standard deviation of FOSIM. Upper left: regression plot of 
the FOSIM capacity (x-axis) and estimated capacity (y-axis). Upper right: histogram with the share of configurations 
where the neural network error is larger or smaller than the standard deviation of FOSIM. Below: spread  
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The neural network should ideally estimate 

high capacity values for these 

configurations. To illustrate: since FOSIM 

was not able to simulate capacity values for 

these configurations, the estimated capacity 

value by the neural network should lie 

around the ‘base capacity’ value. This 

occurs primarily in the case of 

configurations with low ratios of weaving 

traffic, a high or low division of traffic flow, 

long lengths and/or low ratios of heavy 

traffic.  

Figure 6.15 shows a regression plot of the 

base capacities (target values; x-axis) and 

the output of the neural network (output; y-

axis) for the configurations which could not 

be considered by the neural network. This 

figure shows that only a small share of the 

capacity values is estimated above the black 

dotted line. 

When assuming capacity values for these 

configurations (should) lie around the ‘base capacity’ value, the model performance on these 

configurations is substantial lower. Therefore, eventual follow-up studies can be used for improving 

model applicability by solving the capacity values for these configurations.  

 

 

 

  

 

 

 

 

 

 

 

 

Figure 6.15: Regression plots of the estimated capacity values for the 
"∞-configurations", where the target values are represented by the 
base capacity for that certain configuration (i.e. standard capacity for 
number of lanes and ratio of heavy traffic (reduction factors)). 
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6.4 Conclusions Post-Training Phase 
In this section the output of the neural network is analysed. Moreover, the network is validated on 

real-case configurations and currently used capacity estimation methods. Regarding these analyses, 

it can be concluded that the neural network is a convincing improvement to the currently available 

capacity estimation methods.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Network 
Output

•Network output on train-, test- and validation sets analysed by means of regression plots, error 
histograms and 3D plots.

•Histograms plotted to indicate network overtraining 

•Regression practically equal to one and 81% of the errors in range [-5%,5%]

Network 
Validation

•Trained neural network used to estimate real-case configurations present in the NRM-West 
network.

•Regression coeffient sligthly smaller than for TTV-sets and errors are more diversed for the real-
case configurations (51% in range [-5%,5%])

Network 
Use

•Performance of QBLOK and Nearest Neighbour method compared to performance Neural Network

•Neural Netork outscoured the performance of QBLOK and Nearest Neighbour method. Hence: 
Neural Network is an improvement. However, for 'infinite-capacity' configurations, model 
perfomance is structurally lower.

Figure 6.16: Summary of the Post-Training phase which included the network output analysis, validation and use. 



82 
 

7 Conclusions 
The goal of this research was to develop a model which estimates capacity values, suitable for 

implementing within macroscopic capacity constrained traffic assignment models, by means of a set 

of explanatory variables. This research developed a neural network which estimates capacity values 

using the values of twelve independent parameters. Furthermore, the goal of the research was 

made more specific by adding that the model should estimate capacity values relatively fast, deliver 

truthful capacity values and is an improvement compared to the currently used capacity estimation 

methods. The developed neural network succeeded in delivering estimated capacity values fast 

which are an improvement to the currently used capacity estimation methods. As stated, since the 

output of this model is sufficient - high regression coefficients and errors in a respectable range – it 

can be stated that a neural network succeeded in achieving the research goal. Moreover, the neural 

network outscored the performance of the currently used capacity estimation methods. In the next 

paragraphs the answers on the research questions are elaborated separately. 

First of all, a suitable capacity definition for implementing in the meta model was necessary to find. 

It was found that the free capacity definition in CIA was corresponding with the used capacity 

definition within the macroscopic traffic assignment models. Since capacity is determined by a set of 

independent variables, a large set of variables were inventoried. However, not all variables did 

significantly influence capacity, were not relevant for implementing within the model or were not 

available in the macroscopic traffic model or microscopic simulation model. Finally, the weaving 

configuration, configuration length, weaving ratios, ratio of weaving traffic and division of traffic 

flows were stated to be significant and available variables. Despite the fact that the speed limit and 

speed differences were significantly influencing capacity, these variables are not implemented 

because of unavailability in macroscopic traffic models. This problem was found to theoretically 

overcome by implementing speed limits or speed reductions for sharp turns within the macroscopic 

traffic model.  

Secondly, it was found that a simply closed-form (mathematical) solution would not have been 

suitable for the capacity estimation problem. Therefore, several data-analytic models were assessed, 

using predictive performance, pattern recognition and pattern recognition. It was found that neural 

networks were best capable of pattern recognition and predictive performance. To train the neural 

network, data has been gathered. Data to train the network was gathered in CIA, where weaving 

configuration to validate the model were found in the NRM-West network. Supplementary data, and 

capacity values of the weaving sections in the NRM-West network, have been derived from FOSIM 

simulations. However, during simulations it was found that the capacity values in CIA were not 

reproducible. Therefore, the complete datagrid of CIA is re-simulated to prevent a bias within and 

between datasets.  

Afterwards, a trial and error procedure (iterative) have determined the best manner of 

implementing and structuring the variables within the neural network. It was found that the best 

performance was realised when a set of twelve independent variables (LanesO1, LanesO2, LanesD1, 

LanesD1, TotalLanes, %HeavyTraffic (HT), Configuration Length, Weave Ratio 1, Weave Ratio 2, 

Volume Ratio, Speed Reduction Factor) was used to estimate the capacity values as dependent 

variable.   
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Finally, several network architectures and settings have been implemented and trained. Trial and 

error procedures have found that a neural network with 10 neurons in one hidden layer resulted in 

the best performance. Furthermore, tansig and linear transfer functions are found to deliver the 

best performance. The network output was analysed, afterwards, using mean squared errors, 

regression plots, error histograms and 3D plots as performance indices. It was found that the 

regression coefficient of the neural network is equal to 0.997 for the train-, test- and validation set. 

Moreover, the trained neural network was validated on real-case configuration, which are present in 

the NRM-West network. The performance of the neural network on these configurations, expressed 

as the regression coefficient, is equal to 0.98. At last, a comparative study is carried out for the use 

of a neural network as capacity estimation method versus the two currently used capacity 

estimation methods. Here, it was found that performance of the neural network outscored the 

performance of the currently used capacity estimation methods, the QBLOK and a Nearest-

Neighbour method. The regression coefficients of these methods on the real-case configurations 

were, respectively, equal to 0.83 and 0.82. These values were indeed outscored by the neural 

network with a regression coefficient of 0.98. 

Concluding, all research questions of this research have been answered and the research succeeded 

in developing a model for estimating capacity values for macroscopic traffic models using a set of 

explanatory variables. The developed neural network delivers, in accordance with the goal of the 

research, relatively fast capacity values, truthful capacity values and is an improvement of the 

currently used capacity estimation methods.  
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8 Discussion 
As stated in the conclusion, the neural network succeeded in the goal of this research, namely 

developing a model that can estimate capacity values relatively fast, delivers truthful capacity values 

and is an improvement of the currently used capacity estimation methods.  

The predictive performance of the neural network lies in the line of expectations, since previous 

research to the application of neural network in the field of transport engineering found similar 

(well-performing) predictive power of the neural network (Awad, 2004; Kadari et al., 2015; Semeida, 

2012; Semeida, 2013; Yap et al., 2015). The research of Awad, 2004 resembles the most with this 

research, because Awad developed a neural network to estimate capacity values using the capacity 

values from the exhibits of HCM. This research is, however, not a simple repetition of previous 

research since this neural network is especially developed for Dutch road networks and capacity 

values, which do differ with the conditions in HCM. Moreover, the neural network developed in this 

research is external validated by means of a set of real-case configurations. This suppplementary 

validation - next to the validation set split from the supplemented CIA dataset – is executed to 

prevent that the network is trained on a structural datagrid composed by CIA and/or HCM. This can 

possibly also explains the fact that the performance on the internal validation set (split from the CIA 

set) is better than the external validation set, which was not part of the datagrid composed by CIA. 

Finally, estimated capacity values of the neural network are compared with the capacity values 

estimated by the currently used methods. From here it followed that the estimation performance of 

the neural network outscored the performance of the currently used capacity methods.  

However, previous research have compared the performance of the neural networks to the 

performance of other data-analytic models (i.e. multiple (non)linear regression). This study can not 

demonstrate this, since no other data-analytic models have been trained due to the convincing 

foundings in literature on the performance of neural networks. 

It should however be noted that all capacity values in this research are simulated with FOSIM. This 

holds for both the supplemented CIA dataset as the NRM-West configurations. Since these capacity 

values depends on the used settings of FOSIM, an in-depth validation of the settings and FOSIM for 

weaving sections would be recommended. Moreover, FOSIM provides restrictions to the maximum 

traffic flow, resulting in configurations where no capacity value can be simulated for. For this reason, 

configurations, where no capacity value can be simulated for, are excluded from the neural network. 

Idially, measured capacity values are preffered to use to train and validate the neural network. 

However, it was found that these capacity values are hard and costly to derive. Furthermore, it was 

found that capacity is influenced by the maximum speed and speed differences (i.e. due to sharp 

turns). However, these values were not available in the macroscopic traffic model, whereby it was 

not possible to implement these in the neural network. It is therefore reccommendend to 

implement these variables in the macroscopic traffic simulation models.  

Furthermore, a neural network is stated to be a black-box. In other words, the traceability  of the 

capacity estimations is very low. A small analysis has been executed by means of an histogram plot 

of the relative importance of the explanatory variables and neural interpretation diagrams. 

However, this do not give a foolproof insight in the hidden layer of the neural network. Moreover, it 

was found that neural networks are not capable of dealing with extrapolations. Therefore, it is 

recommended that the neural network is also validated on other real-case configuration from other 

Dutch road networks. In this research it is (simply) assumed that the NRM-West configurations is 

representable for the (complete) Dutch road network. This should however be validated in future 

research. Extrapolations could result in exceptional high or low capacity values (i.e. negative capacity 
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values). This is also a disadvantage of a neural network compared to other methods, since other 

methods are more related to a ‘realistic fundament’. In other words, a nearest neighbour method 

will never predict negative capacity values. 

For implementing the neural network within macroscopic traffic simulation models, which is 

desirable to improve model outputs, the developed neural network should be transferred, first, to a 

code or model which can directly be implemented in macroscopic traffic models as OmniTRANS. 

Furthermore, it should be researched in which manner the neural network should be implemented 

in the model: the main two directions of implementing the neural network is by implementing it 

within the dynamic network loading sub-model or by implementing it after every iteration. Besides, 

future research should eventually find an improvement of the neural network for the configurations 

that were not able to be considered. For these configurations, FOSIM was not able to deliver a 

capacity value, while these configurations are present in real-case.  

All in all, it is recommended for future research that capacity values can be measured or simulated 

for all weaving configurations without any restrictions. Moreover, it should be found if the NRM-

West model is a sufficient representation of the Dutch road network, to prevent extrapolations of 

the neural network. Furthermore, to improve capacity estimations, compared to the real situation, 

speed limits and speed reductions are recommended to implement within traffic assignment 

models. Finally, future research should be executed to bring a verdict for the manner of 

implementation of this neural network, as capacity estimation method, within traffic assignment 

models.  
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