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Abstract

This study proposes a static traffic assignment model in which travelers are boundedly

rational in route choice: users only switch routes when a new path significantly improves

travel time. We introduce a bilevel optimization problem which finds the best-performing

boundedly rational user equilibrium flow with respect to travel time. We use a parametric

optimization approach to study continuity of the feasible set, optimal value function and

optimal link flow solution with respect to perturbations in the indifference band. We

propose two algorithms that approach the best-performing flow distribution and compare

our results with approaches in literature.
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Summary

Ex-ante evaluation of measures in transportation systems requires accurate prediction

of the choice behavior of travelers. Traffic assignment models often presume perfect ratio-

nality in route choice decision making: travelers are assumed to be selfish, fully informed

and can perfectly assess the consequence of choosing an alternative. In fact, any change

in the system leads to a new user equilibrium in which no traveler can unilaterally change

routes and improve his travel time. However, empirical studies suggest that this equilib-

rium does not arise in practice. Consequently, real-world application of measures founded

under perfect rationality conditions may show undesirable results.

We develop an assignment model which adopts a more realistic behavioral perspective

on decision making. We adopt the notion of bounded rationality from Mahmassani and

Chang (1987) in which users switch routes when the new path significantly improves travel

time. Under bounded rationality, the response to an intervention of an authority is subject

to uncertainty. In contrast to the user equilibrium, a range of possible responses exists

and it is unknown which boundedly rational user equilibrium (BRUE) is most likely to be

realized in practice.

In the Network Design Problem we need to make assumptions on the response of

travelers but this may lead to adverse effects. For instance, a pricing scheme, based on the

assumption that the best-performing BRUE with respect to travel time will be realized,

may lead to inferior performance in the worst-performing BRUE. We therefore consider

the extremes of possible network performances under bounded rationality: an indication

what a policy could achieve under uncertainty.

The mathematical problem to find the best-performing BRUE flow is a program with

complementarity constraints. Current approaches in literature require complex and com-

putationally expensive algorithms to find solutions and guarantee neither local nor global

optimality. So, these approaches are due to their complexity less appropriate for ap-

plication on large networks. Our approach assesses performance in large networks and

maintains limited computation times.

The best-performing BRUE assignment reduces to the user equilibrium and system-

optimal assignment under appropriate choices of the parameter. We apply a parametric

optimization approach since both the user equilibrium and system-optimal problem are
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easy to solve. In other words, we study the behavior of the optimization problem under

perturbations in the indifference band.

Whereas the best-performing BRUE problem is a difficult program, we offer a new

approach that replaces the difficult constraints by easier ones. We develop an equivalent

bilevel optimization problem in which the leader of the problem chooses its decision vari-

ables so that the BRUE in the lower-level problem has minimum travel time (Best-case

BRUE). Although the lower-level program is a convex optimization problem, the bilevel

problem itself is difficult since it does not satisfy a regularity condition.

The parametric analysis shows that the feasible set and optimal value function of the

lower-level problem behave continuously with respect to perturbations in the indifference

band. However, the upper-level problem does not have these favorable properties and a

small perturbation in the indifference band may lead to a substantial difference in flow

on an arbitrary link. Intuitively, the indifference band should be a perfectly-calibrated

parameter.

We offer a regularized approach, since the unfavorable properties of the Best-case

BRUE lead to difficulties in calculating the flow. This approach perturbs the objective

function of the lower-level problem. The corresponding problem approximates the Best-

case BRUE flow distribution and the feasible set and optimal value function of this problem

are continuous with respect to perturbations in the indifference band. Moreover, this refor-

mulation allows us to construct a descent method to approximate a Best-case BRUE flow

distribution. This approach solely uses convex and linear programs and any optimization

tool can thus be used. Furthermore, we offer a relaxation approach that solves a sequence

of nonlinear programs to find a Best-case BRUE flow distribution.

A test network assesses performance of both algorithms. The relaxation approach

outperforms the descent method and the current approach in literature since we find a

BRUE flow which performs better (i.e. less total travel time). Moreover, our approach only

requires a few seconds to find a solution. The numerical experiments show that steering

the network towards the Best-case BRUE distribution is beneficial. The Best-case BRUE

is a traffic state in which all travelers take an acceptable route while it minimizes the total

travel time in the system.
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Samenvatting

Ex-ante evaluatie van maatregelen in verkeerssystemen vraagt om accurate voorspellingen

van het keuzegedrag van reizigers. Huidige verkeersdistributie-modellen nemen aan dat

gebruikers perfect rationeel zijn: reizigers zijn zelfzuchtig, volledig gëınformeerd en in staat

de consequenties van elk alternatief perfect in te schatten. Onder deze aannames leidt elke

verandering in een network tot een gebruikersevenwicht waarin geen reziger zijn reistijd

kan verbeteren door unilateraal van route te veranderen. Empirische studies laten echter

zien dat een gebruikersenwicht in niet in de praktijk voorkomt. Als gevolg hiervan zijn

maatregelen, ontworpen onder de aannames van perfecte rationaliteit, minder effectief in

de praktijk.

Wij ontwikkelen een verkeersdistributie-model met een realistisch perspectief op rou-

tekeuze gedrag van reizigers. We gebruiken de notie van beperkte rationaliteit van Mah-

massani and Chang (1987) waarbij wordt aangenomen dat gebruikers alleen van route

veranderen indien er een route beschikbaar is met significant minder reistijd. Onder de

aannames van dit gedrag wordt de reactie op een interventie onzeker. In tegenstelling tot

het gebruikersevenwicht, zorgt elke interventie voor een verzameling van mogelijke reacties

en het is onduidelijk welke boundedly rational user equilibrium (BRUE) verkeersstroom in

werkelijkheid wordt gerealiseerd.

In het Netwerk-Ontwerp-Probleem moeten we echter aannames doen over de lower-

level reactie. De aanname kan in de praktijk leiden tot negatieve effecten. Een tolschema,

optimaal onder de aannames van perfecte rationaliteit, kan bijvoorbeeld tot een hogere

totale reistijd leiden. We stellen dan ook voor om naar de uitersten van alle mogelijke

BRUE verkeersdistributies te kijken. Dit geeft, ondanks de onzekerheid, een indicatie wat

een interventie kan bereiken.

Het mathematisch probleem dat de best-presterende BRUE stroom vindt, is een ma-

thematisch programma met complementariteitscondities. Huidige benaderingen in litera-

tuur gebruiken complexe en rekenkundig intensieve algoritmen om een oplossing te vinden.

Deze algoritmen kunnen niet garanderen dat een lokaal dan wel globaal minimium wordt

gevonden. De complexiteit van de methodes zorgt ervoor dat ze minder geschikt zijn voor

toepassing op grotere netwerken. Onze benadering verschilt omdat we de prestatie in grote

netwerken bekijken terwijl we de rekentijd gelimiteerd houden.
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De scriptie laat zien dat het vaak beschouwde gebruikersevenwicht en systeem optimum

speciale gevallen van de BRUE verkeersdistributie zijn. Aangezien de mathematische

programma’s van het gebruikersevenwicht en het systeem optimum gemakkelijk op te

lossen zijn, gebruiken we de technieken van parametrische optimalisatie in het analyseren

van de best-presterende BRUE verkeersstroom.

Omdat het vinden van de best-presterende BRUE distributie correspondeert met een

moeilijk optimalisatieprobleem, vervangen we de moeilijke condities door een makkelij-

ker te bestuderen probleem. In het resulterende bilevel probleem kiest de leider in het

upper-level zijn variabelen zodanig dat in het lower-level het BRUE wordt gerealiseerd

die voor de minste totale reistijd zorgt. Ondanks dat het lower-level programma een con-

vex optimalisatieprobleem is, is het bilevel probleem een programma dat niet aan een

regulariteitsconditie voldoet.

De parametrische analyse toont dat het toegelaten gebied en de optimale waarde functie

van het lower-level probleem zich continu gedragen onder verstoringen in de parameter.

Echter, het upper-level probleem kent deze eigenschappen niet. Een kleine verstoring in

de onverschilligheidsband kan leiden tot een substantieel verschil in de vervoersstroom

op een wegvak. Intüıtief houdt dit in dat de onverschilligheidsband parameter perfect

gecalibreerd moet worden.

De genoemde eigenschappen leiden tot problemen in het berekenen van BRUE ver-

voersstromen. Wij introduceren daarom een geregulariseerd problem. Dit probleem kent

een kleine verstoring toe aan de doelfunctioe van het lower-level probleem. Daarmee

benaderen wat het mathematische optimalisatieprobleem van de best-presterende BRUE

distributie. Het toegelaten gebied, optimale waarde function en oplossingsset van het

gëıntroduceerde programma gedragen zich wel continu onder verstoringen in de parame-

ter. Deze aanpak geeft de mogelijkheid om een descent methode toe te passen. De methode

gebruikt louter convexe en lineaire optimalisatieproblemen om de best-presterende BRUE

vervoersstroom te benaderen. Willekeurige optimalisatiesoftware kan dus worden gebruikt

om de vervoersstrom te benaderen. Daarnaast introduceren we ook nog een relaxatie me-

thode die het best-presterende BRUE benadert door een reeks niet-lineaire programma’s

op te lossen.

We testen de methodes op een numeriek netwerk. Uit deze experimenten blijkt dat de

relaxatie methode beter presteert dan de descent methode en de methode uit de litera-

tuur. Ons algortime komt tot een BRUE verkeersdistributie met minder totale reistijd. De

numerieke experimenten laten ook zien dat de best-presterende BRUE distributie een ge-

ambieerde verkeersstroom is: een vervoersstroom die zowel voor iedere reiziger acceptabel

is als goed presteert qua totale reistijd.
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Chapter 1

Introduction

Transport authorities and traffic engineers encounter challenges to limit delays in trans-

portation networks since these delays lead to economic wealth losses and may affect the

quality of life. A wide variety of policy measures have been taken to limit congestion.

Expanding infrastructure, by adding lanes or road construction, seems to be the most

straightforward and popular measure. Nevertheless, road capacity expansion might lead

to inferior performance of the system as a whole as illustrated by Braess et al. (2005). This

Braess’ paradox holds in practice (e.g. in Manhattan, as was shown by Kolata (1990)) and

perfectly illustrates the need for policy instrument appraisal: authorities need to assess

whether transport measures achieve the desired outcomes (van Wee et al., 2013).

The Network Design Problem (NDP) determines network settings so that the trans-

portation system behaves optimally. It evaluates a set of measures with respect to global

performance and takes into account the expected behavioral response of individuals to

interventions (Brands, 2015). The NDP is frequently modeled as a bilevel optimization

problem (Farahani et al., 2013). The upper level represents the behavior of a government

or road authority, while the lower level represents the behavior of travelers. The authority

has a certain objective to achieve (e.g. minimizing total delay) and has for this purpose

the opportunity to impose measures on the network. Implementation of a policy induces

a response of travelers which is expressed in a network state (distribution of traffic flow

over the network) and from that the system objective is derived (Brands and van Berkum,

2014).

To assess impact in the NDP, the prediction of travelers’ choice behavior should be

accurate. Assuming route choice as users’ only degree of freedom, traffic assignment models

often adopt Wardrop’s first principle (Wardrop, 1952) to predict the network state. This

economic view on decision making assumes users to be perfectly rational: agents are selfish

(i.e. choose the alternative which maximizes their individual utility), fully informed (the

route choice set is known beforehand) and can perfectly assess the consequence of choosing

a particular alternative (Simon, 1997; Vreeswijk et al., 2013a). Hence, “agents act as if they
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perform exhaustive searches over all possible decisions and then pick the best” (Conlisk,

1996, p. 675). Under these assumptions, any change in network settings leads to a new

Wardrop or user equilibrium: a network state in which no traveler (marginally) benefits

by unilaterally switching routes.

Wardrop’s first principle has major computational benefits in the static traffic assign-

ment. The corresponding optimization problem, defined by Beckmann et al. (1956), is

convex and under mild assumptions the existence and uniqueness of the equilibrium link

flow in the traffic network is guaranteed. Any upper-level measure leads to a unique be-

havioral response and uniquely determines the performance of the system. The bilevel

problem implicitly assumes that the realized flows in practice are well approximated by

the Wardrop equilibrium flows of the traffic assignment since we choose those network

settings which turn out to be optimal in the NDP (Ban et al., 2009).

However, empirical studies show that the economic assumptions of Wardrop are debat-

able. Consequently, a user equilibrium does not necessarily arise in practice. For instance,

only 34% (Zhu and Levinson, 2010) to 75% (Thomas and Tutert, 2008) of all travelers

follow the shortest time path. In addition, network changes turn out to be irreversible:

while initial network settings are re-obtained by revoking a change, the initial traffic state

is not (Guo and Liu, 2011). These findings illustrate that the evaluation of network set-

tings under Wardrop’s condition is naive. Real-world application of policy interventions

designed under Wardrop’s condition are not necessarily effective and may show undesir-

able results. Hence, we need a more realistic and thus behavioral perspective on route

choice decision making in traffic assignment models.

Bounded Rationality

We incorporate a realistic view on decision making in the static traffic assignment and

adopt the notion of bounded rationality. Bounded rationality presumes decision mak-

ers to be limited in knowledge and computational capacity since a decision situation is

complex (Simon, 1955, 1997). In the context of route choice decision making, boundedly

rational travelers make suboptimal choices due to limited awareness or the existence of

thresholds (Chorus and Timmermans, 2009). In other words, travelers choose a fast - but

not necessarily the fastest - route. This notion of bounded rationality in route choice was

introduced by Mahmassani and Chang (1987) and explained 90% of the trips in the study

of Zhu and Levinson (2010).

A more realistic behavioral view in assignment models increases complexity com-

pared to the economic user equilibrium. Mahmassani and Chang (1987) pointed out that

bounded rationality in the static traffic assignment may lead to a non-unique link flow pat-

tern. Consequently, any measure in the upper level of the NDP leads to a set of lower-level

solutions and each lower-level solution refers to a different behavioral response of travelers
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(Ban et al., 2009). The non-unique response to an intervention induces uncertainty among

upper-level performances and adds a new dimension to the bilevel optimization problem

(Figure 1.0.1). Whereas it is not known which lower-level flow is most likely to be realized

in practice (cf. Ban et al. (2009)), it is unclear which upper-level measure optimizes the

system objective.

Lower-LevelLower-Level

Upper Level
Road Authority: Min. System Objective

Lower Level
Travelers: Boundedly rational in choice

MeasurePerformance

Non-
uniqueness

Figure 1.0.1: Network Design Problem as a bilevel problem. Adapted from Brands
(2015).

Since authorities generally evaluate a (large) set of alternative measures and scenarios

on large network instances, we need an efficient approach to find traffic flows as result of

boundedly rational route choice behavior, as also stressed by Sun et al. (2015). Therefore

we have to cope with the uncertainty in the lower-level response. In literature, it is

suggested to apply the policy measure which shows (1) best worst-case performance with

respect to the global objective, (2) optimal best-case performance, or (3) best performance

assuming a probability distribution over all possible solutions (Ban et al., 2009; Di and

Liu, 2016). Similar as in Lou et al. (2010), we consider the extremes of possible network

performances under bounded rationality: an indication what a policy could achieve under

uncertainty.

The currently available analyses are solely useful for assignment problems which are

small in terms of network size and number of routes. Moreover, the mathematical proper-

ties of boundedly rational user equilibrium (BRUE) flows - traffic flows as result of bounded

rationality in route choice decision making - are rather unexplored. Lou et al. (2010)

showed that a BRUE assignment problem leads to a mathematical program with com-

plementarity constraints. They formulated the more restrictive link-based BRUE so that

an earlier developed algorithm (see Lawphongpanich and Yin (2010)) could be applied in

finding best- and worst-case link-based BRUE flows with respect to the total travel time.

Di et al. (2013) (and successive studies in Di et al. (2014a, 2016)) used complementarity

conditions in deriving all possible boundedly rational path flows using a two-stage ap-

proach; first they identified a set of possible used paths and, second, they used this route

choice set in distributing traffic. For each stage, a complementarity constraint program is

formulated which is difficult to solve numerically and different local minimizers may co-
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exist. The attached complex and computationally expensive algorithms to approach local

minima suggest that the mentioned attempts are less appropriate for larger networks.

Based on our analysis, we make the following observations:

• The NDP requires accurate predictions of travel behavior to determine the opti-

mal network settings. The conventional model presumes perfect rationality in route

choice decision making and lacks empirical validity. Consequently, real-world appli-

cation of measures founded under perfect rationality conditions may show undesir-

able results. Empirical studies suggest that integration of bounded rationality in the

traffic assignment problem increases validity of the NDP;

• Adoption of bounded rationality in the lower level of the NDP adds a new dimension

to the design problem. We evaluate the extremes of the possible network perfor-

mances under bounded rationality to assess performance of a measure. However,

the corresponding optimization program is a complementarity constraint problem

which is non-convex and there are limited approaches available to handle this diffi-

cult program;

• Current approaches in literature require complex and computationally expensive al-

gorithms to find the BRUE flow distributions. So, these methods are less appropriate

to apply in the NDP. Moreover, since authorities evaluate a set of possible scenarios,

we require an algorithm that approaches BRUE flows in limited computation time.

Research Objective

The behavioral response of travelers mainly determines the effect of a policy measure on

network performance. However, current traffic assignment models make naive economic

assumptions on users’ decision making processes. Assignment models should adopt a

realistic view on decision making to better predict the expected outcomes of measures in

the NDP. The notion of bounded rationality in route choice has the potential to predict

the behavioral response of users.

This leads to the following research objective:

Development and analysis of a static traffic assignment model that incorporates

bounded rationality: travelers only switch routes when a path significantly im-

proves travel time.

We adopt the notion of bounded rationality from Mahmassani and Chang (1987):

users solely switch routes when an alternative path improves travel time by more than a

certain threshold (indifference band). Although this notion was earlier integrated in the

static traffic assignment by Di et al. (2013) and Lou et al. (2010), the problem is, from a

mathematical point of view, still underexplored.
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Our research contributes to literature since we offer an in-depth mathematical analysis

of the structure (topology) of the best and worst-performing BRUE flow with respect to

travel time (Best-/Worst-case BRUE). To support our study, we add an intuitive analysis

of this problem under affine linear latencies. We identify the main difficulties of the adop-

tion of bounded rational choice behavior in the NDP by numerous examples. In addition,

we overcome the current complex algorithms. Indeed, we propose two algorithms that

both approach the Best-case BRUE flow distribution in limited time. These algorithms

allow incorporation of boundedly rational choice behavior in the NDP. We theoretically

and numerically compare the proposed assignment model to the approaches of Di et al.

(2013) and Lou et al. (2010).

Our theoretical analysis is necessary if we want to integrate boundedly rational be-

havior in the static traffic assignment for large network instances. Moreover, the analysis

supports future development of algorithms that efficiently find bounded rational link flow

solutions.

Approach

This research takes a sensitivity or continuity analysis point of view. This type of analysis

evaluates whether for instance the optimal value function and link flows change smoothly

as the parameter changes. We provide a sufficient condition for the continuity of the fea-

sible set and optimal value function of the best-case boundedly rational traffic assignment

problem. We reformulate the problem as a bilevel optimization problem. In particular, we

study continuity of the feasible set, optimal value function and optimal link flow solution

set with respect to perturbations in the indifference band parameter for the Best-case

BRUE. We approach the indifference band as a parameter since the problem of finding

BRUE flows reduces for certain values of the indifference band to an easy to solve problem.

This study relates to the recent paper of Di et al. (2016). Di et al. (2016) studied

the continuity of the feasible set and optimal value function of the second-best toll pricing

problem in a linear latency context. However, Di et al. (2013, 2016) assumed that the used

route choice set is known by sequentially solving a complementarity constraint program

beforehand. This assumption has serious consequences for large network instances and,

therefore, we refrain from making such an assumption in our study. Han et al. (2015)

investigated mathematical properties of the bounded rational dynamic assignment. Al-

though the results presented can be particularly applied to the static assignment, the study

mainly focused on boundedly rational flow distributions in the selection of departure times

and routes. Our study, however, aims to find the BRUE flow which minimizes the total

travel time in a static context.

We assume that users possess full information and, consequently, any significant im-

provement in transit time induces a path switch. Although we emphasize that a bounded
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rational route choice results from a dynamic, day-to-day, process (e.g. a repetitive choice

which becomes habitual), we neither investigate these processes (see e.g. Guo and Liu

(2011)) nor make any assumptions on the cognitive processes which led to a possibly

suboptimal choice (see e.g. Vreeswijk et al. (2013b)). In other words, we focus on the

outcomes of boundedly rational route choice behavior rather than the decision making

process itself.

Outline

The thesis is organized as follows. We discuss and illustrate different approaches to model

bounded rationality in non-cooperative games in Chapter 2. Chapter 3 treats the formal

problem description of the static traffic assignment including Wardrop’s principles. Chap-

ter 4 formally introduces the boundedly rational user equilibrium and includes examples

to illustrate the main difficulties for the NDP. Chapter 5 treats the problem of finding the

Best-case BRUE flow distribution with respect to total travel time. We discuss convexity

and regularity conditions of this problem and introduce branches of convex problems to

reduce the Best-case BRUE to an easier to study problem assuming affine linear latencies.

Chapter 6 discusses continuity of the feasible set, optimal value function and optimal so-

lution set of these branches. We generalize these results to the Best-case BRUE problem

for linear latencies and more general latency functions in Chapter 7 and Chapter 8, re-

spectively. In Chapter 9 we propose a regularized approach in order to approximate the

Best-case BRUE problem and we give a descent approach to this flow distribution. We

perform numerical experiments to show performance of the descent approach and to dis-

cuss implications for policy evaluation (Chapter 10). Lastly, Chapter 11 draws the main

conclusions and discusses topics for further research.
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Chapter 2

Modeling Bounded Rationality

The economic assumptions of Wardrop state that users are able to maximize their utility

function (i.e. minimize their own travel time). Users sequentially consider all possible

routes and the consequences of choosing the alternative. Mathematically, we model this

behavior as follows. Let Ω be the set of route alternatives for an individual and let s be

the disutility function corresponding to the paths, s : Ω→ R. Abstractly, the problem for

each user to find alternative which maximizes utility is then:

min
x∈Ω

s(x). (2.0.1)

In other words, find point x? ∈ Ω so that s(x) has its minimum at s(x?):

x? = arg min
x∈Ω

s(x).

The assumption of bounded rationality in decision making relaxes the economic principles

of Wardrop. Basically, there exist two perspectives to model bounded rationality in route

choice. The first conceptualization assumes users to have limited awareness, while the

second conceptualization says that the existence of indifference bands or thresholds makes

that users consciously violate Wardrop’s first principle (Chorus and Timmermans, 2009).

As mentioned, the first perspective assumes users to subconsciously violate Wardrop’s

principle due to limited awareness: travelers do not choose the shortest path since they

either do not know it is fastest or do not perceive it as such (Chorus and Timmermans,

2009; Di et al., 2013). In modeling, this perspective maintains the utility maximization

behavior of users but either (i) imposes additional constraints on the set of alternatives

or (ii) perturbs the characteristics of the alternatives (Hato and Asakura, 2000; Mallard,

2012).

The latter approach introduces noise to account for the perception error (Sheffi, 1985;

Zhao and Huang, 2016). This approach introduces a new disutility function s̃ : Ω → R

7



but the set of alternatives Ω remains. The optimization problem (2.0.1) becomes

min
x∈Ω

s̃(x).

Hato and Asakura (2000) imposed additional constraints on the choice set and endowed

every street in a transportation network with a probability that it is observed. A chosen

route only consists of links which are perceived by the user (the mental map). Zhang and

Yang (2015) assigned a probability to the paths in the network since users tend to choose

familiar routes. The latter studies define Ω̃ ⊂ Ω as the observed set of alternatives and

every agent seeks for point x̃ ∈ Ω̃ so that

x̃ = arg min
x∈Ω̃

s(x).

The second conceptualization assumes agents to consciously violate Wardrop’s first

principle because of the existence of indifference bands or thresholds. Users are then

satisficers (Simon, 1997), solely inclined to change their itinerary when a significant travel

time improvement can be achieved (Mahmassani and Chang, 1987). Travelers may possess

full information on (all) the alternatives but are not necessarily utility maximizers. In this

approach, users try to find point x̄ ∈ Ω so that

min
x∈Ω

s(x) + ε ≥ s(x̄) (2.0.2)

holds. Here, ε > 0 represents the indifference band or threshold. This conceptualization

was introduced by Mahmassani and Chang (1987) and later formalized by Di et al. (2013)

and Lou et al. (2010). In these static traffic assignment studies, travelers are assumed to

make a suboptimal choice, i.e. the chosen route is said to be acceptable as long as the

corresponding disutility is at most ε worse than the alternative having minimum disutility

(Lou et al., 2010). Zhao and Huang (2016) assumed the aspiration level minx∈Ω s(x) + ε

to be fixed: users consider any alternative which meets this level. In a day-to-day setting,

condition (2.0.2) assumes users to repeat their route choice as long as an alternative cannot

improve travel time more than ε (Wu et al., 2013).

2.1 Bounded Rationality in a 2× 2-game

We introduced three approaches on modeling bounded rationality. This section illustrates

the consequences of the integration of these approaches in a simple (finite player) non-

cooperative game. The game we use was described in Peters (2008). In this two-player

game, Player 1 has the opportunity to play strategies T and B, while Player 2 can choose

from either L or R. Each strategy combination has a corresponding payoff:
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Player 2

L R 

P
la

ye
r

1

T 2, 2 0, 1

B 1, 1 3, 3

Here, strategy (T,R) leads to payoff-vector (0, 1): a payoff of 0 for Player 1 and a

payoff of 1 for Player 2. Each player chooses to play a pure strategy or picks each strategy

with a certain probability. Central in this game and in non-cooperative games in general

is the notion of best reply. A selfish player chooses the strategy which maximizes utility,

given the knowledge about his available strategies and the strategies chosen by the others

(Peters, 2008). We restrict ourselves for the sake of clarity to this easy problem and

use a graphical solution method to find all equilibria under different notions of bounded

rationality. In this context, an equilibrium refers to a state in which no player has the

incentive to unilaterally change strategies, i.e. there is no force that tries to get the game

in another state.

This section limits itself to some basic examples and relies on the recent elaborate

literature study from Di and Liu (2016).
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(a) Perfectly Rational Equlibrium.
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(b) Limited awareness equilibrium.

Figure 2.1.1: Equilibria in 2× 2-game.

Perfectly Rational Equilibrium

A perfect rationality setting assumes players to be cognitively unhindered in making a

decision. For this game, this means that each player observes what the other player

chooses and picks a corresponding strategy to maximize his own payoff. Suppose Player 2

plays strategy L, then Player 1 picks T since this leads to a utility of 2. Choosing B, on
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the other hand, leads to a payoff of 1. We have two pure equilibria in this game: (T, L)

and (B,R).

More generally, assume Player 2 plays (q, 1 − q), i.e. he chooses L with probability q

and R with probability 1− q. The best reply β1(q, 1− q) of Player 1 is to play strategy T

as long as

2q > q + 3(1− q), or q >
3

4
,

holds. In other words, Player 1 will use strategy T if q > 3
4 . In case q < 3

4 Player 1 uses

B as best reply. The player is indifferent among strategies T and B if q = 3
4 . Henceforth,

any strategy combination (p, 1− p), where 0 ≤ p ≤ 1, of T and B is the best reply. That

is (Peters, 2008):

β1(q, 1− q) =


{(1, 0)} if 3

4 < q ≤ 1;

{(p, 1− p) | 0 ≤ p ≤ 1} if q = 3
4 ;

{(0, 1)} if 0 ≤ q < 3
4 .

Analogously, we find β2(p, 1− p) as the best reply of Player 2 against (p, 1− p):

β2(p, 1− p) =


{(1, 0)} if 2

3 < p ≤ 1;

{(q, 1− q) | 0 ≤ q ≤ 1} if p = 2
3 ;

{(0, 1)} if 0 ≤ p < 2
3 .

Figure 2.1.1a draws both curves: the solid line is the best reply curve of Player 1 and

the dotted line is the best reply curve of Player 2. We find points of intersection.

These three points are all Perfectly Rational Equilibria: ((0, 1), (0, 1)), ((2
3 ,

1
3), (3

4 ,
1
4)) and

((1, 0), (1, 0)). At such an equilibrium no player can unilaterally change strategies and im-

prove utility. As we will see later, this definition is similar to the definition of a Wardrop

equilibrium or user equilibrium in the static traffic assignment.

Limited Awareness

The conceptualization of limited awareness assumes players to subconsciously violate the

perfect rationality condition since travelers either do not know all strategies or the utility

function is perturbed. We start with the latter approach and introduce noise to account

for the perception error of a player. Let us assume that Player 2 uses strategy (q, 1 − q)
and that Player 1 has a certain probability PT of playing strategy T . The probability PT

equals the probability that the utility UT of strategy T is greater than or equal to utility

UB corresponding to playing B:

PT = Pr(UT ≥ UB).
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Following Ben-Akiva and Lerman (1985), the utility is divided into a deterministic and

random part:

PT = Pr(2q + ηT ≥ q + 3(1− q) + ηB).

We assume that the random variables ηT , ηB are independently and identically distributed

and are Gumbel-distributed with scale parameter µ. The probability that Player 1 will

play T in response to strategy (q, 1− q) is then (we omit the calculus, see Ben-Akiva and

Lerman (1985)):

PT =
eµ(2q)

eµ(2q) + eµ(q+3(1−q)) .

This results in the best reply sets for both players:

β1(q, 1− q) = {(p, 1− p) | p = eµ(2q)

eµ(2q)+eµ(q+3(1−q)) } for 0 ≤ q ≤ 1,

β2(p, 1− p) = {(q, 1− q) | q = eµ(2p+1−p)

eµ(2p+1−p)+eµ(p+3(1−p)) } for 0 ≤ p ≤ 1.

Again, Figure 2.1.1b plots the curves and we find the point of intersection (assuming µ = 1)

numerically. We find a single equilibrium, known as the quantal response equilibrium (Di

and Liu, 2016) or, in a traffic assignment setting, as the stochastic user equilibrium (Sheffi,

1985). Here, no traveler thinks that a switch in routes improves the travel time. Intuitively,

µ is the rationality parameter: if µ = 0 users are perfectly rational while µ→∞ assumes

users to be completely indifferent (i.e. the probability PT is independent of utilities UT

and UB).

Another approach to model limited awareness in a game is by imposing additional

constraints. For instance, using the approach of Hato and Asakura (2000), we assign a

probability for observing strategy T . Player 1 is solely aware that strategy T can be played

in, say, 1
4 of the cases. In the other cases, he can only play B. In 1

4 of the cases a perfectly

rational equilibrium arises since we assume that players maintain utility maximization in

decision making. With probability 1
4 , the best reply function β1(q, 1− q) becomes:

β1(q, 1− q) = {(0, 1) | if 0 ≤ q ≤ 1}.

Let us assume that the set of best replies for Player 2 remains. Figure 2.1.2a plots both

curves and we find the equilibrium at ((0, 1), (0, 1)). Observe that with probability 3
4 the

best reply function is as in Figure 2.1.1a.

ε-Equilibrium

The ε-equilibrium assumes players to play a satisfactory rather than optimal strategy.

Still, individuals are assumed to have perfect knowledge but have an ε > 0 that denotes

the indifference band: one will only change strategies if another strategy improves utility
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Figure 2.1.2: Equilibria in 2× 2-game assuming bounded rationality.

by at least ε. Recall the earlier example. Assume Player 2 uses strategy (q, 1− q). Player

1 solely plays strategy T if strategy T gives at least ε higher utility than B:

2q > q + 3(1− q) + ε, or q >
3 + ε

4
.

Player 1 plays (1, 0) as reply if q > 3+ε
4 . Similarly, the player solely uses B if q < 3−ε

4 and

is indifferent between T and B (any strategy will do) if 3−ε
4 ≤ q ≤

3+ε
4 . We use the set of

sufficing replies to find all ε-Equilibria:

β1(q, 1− q) =


{(1, 0)} if 3+ε

4 < q ≤ 1;

{(p, 1− p) | 0 ≤ p ≤ 1} if 3−ε
4 ≤ q ≤

3+ε
4 ;

{(0, 1)} if 0 ≤ q < 3−ε
4 .

In a similar way, we find β2(p, 1− p) as the reply of Player 2 against (p, 1− p):

β2(p, 1− p) =


{(1, 0)} if 2+ε

3 < p ≤ 1;

{(q, 1− q) | 0 ≤ q ≤ 1} if 2−ε
3 ≤ p ≤

2+ε
3 ;

{(0, 1)} if 0 ≤ p < 2−ε
3 .

This notion is similar to the notion of the BRUE used by Mahmassani and Chang (1987) in

the static traffic assignment. In the traffic assignment, individuals try to find a satisfactory

route rather than the optimal one. In this setting we find a set of possible solutions

assuming ε = 1
2 (Figure 2.1.2b): ((0, 1), (0, 1)), ((1, 0), (1, 0)) and ((p, 1− p), (q, 1− q) | 3−

ε ≤ 4q ≤ 3 + ε, 3− ε ≤ 6p ≤ 3 + ε). Observe that the perfectly rational equilibrium is also

an ε-equilibrium.
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2.2 Bounded Rationality in Route Choice

Common practice is to model route choice behavior by a perfectly rational equilibrium. As

mentioned, this equilibrium lacks empirical validity but is easy to calculate. We compare

the outcome of this equilibrium with the limited awareness equilibrium in Figure 2.1.1a

and Figure 2.1.1b. We see that the analysis of a single scenario under different behavioral

assumptions may lead to completely different outcomes in terms of link flows and travel

time. Consequently, the severity of congestion on certain links (i.e. bottlenecks) is possibly

different and we may derive other optimal settings from the NDP.

In the remainder of this study we adopt the notion of the ε-equilibrium, also called

BRUE in our context. Major benefit of this notion is that we study policy implications

under realistic behavioral assumptions and do not need to make any assumptions on the

cognitive processes of traffic users. By this we mean that we model the outcome of users’

decision making by deriving the indifference band ε from observed choice behavior without

the necessity to study the perceptions of travelers. The other discussed approaches all

require a set of rules to derive the choice strategy.

A large body of empirical studies confirms that chosen routes deviate from the fastest

one. Zhu and Levinson (2010) found that only 35% of the trips were made via the shortest

time path, while 90% of all trips could be explained by an indifference band of 5 minutes.

A small GPS study from Jan et al. (2000) revealed an average indifference band of 0.6

minutes with respect to shortest travel time path. The fastest route was only traveled by

31 of the 124 trips. The analysis of Ciscal-Terry et al. (2016), recording 89 drivers over

a period of 17 months, indicated that the observed average travel time was on average

4 minutes more than the shortest time path, including a bias due to setup and finishing

operations of the driver. Although the width of the indifference band is not of interest

here, the mentioned studies empirically support the incorporation of the BRUE in the

traffic assignment.

From a mathematical perspective, Figure 2.1.2b illustrates that the boundedly rational

user equilibrium comes with more complexity: for ε > 0, there exist an infinite number of

equilibria.

2.3 Synthesis

In this chapter, we showed that different assumptions on behavior in decision making may

have serious implications for the system as a whole. In other words, the strategy of the

players, representing route choice in our setting, varies under different behavioral assump-

tions. In the next chapter we formally introduce the boundedly rational user equilibrium,

which comes, compared to the perfectly rational equilibrium, with more complexity. For

instance, there exist an infinite number of equilibra for a single scenario.
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Chapter 3

Formal Problem Description

3.1 Notation & Traffic Assignment Formulation

We study the static traffic assignment. Given is a directed traffic network G = (V,E),

with V being the set of nodes and E is the set of directed edges (road, links, or arcs)

e = (i, j), where i, j ∈ V . The network includes a set of origin-destination pairs (OD

pairs) K ⊆ V × V , with static demand dk > 0, k ∈ K. We refer to each OD pair k ∈ K as

commodity k and each OD pair is connected by a set of simple directed paths, denoted by

Pk. The set P of all paths in the network is the union of the path sets per commodity:

P = ∪k∈KPk.
A feasible traffic flow or flow for given demand d ∈ R|K|+ (we denote by |.| the cardinality

of a set) is a pair of vectors (f, x) ∈ R|P | × R|E| = (fp, p ∈ P;xe, e ∈ E) so that

x = Γf, Λf = d, and f ≥ 0. (3.1.1)

Here, the matrix Γ ∈ R|E|×|P| denotes the link-path incidence matrix in which Γep = 1 if

edge e is in route p and Γep = 0 otherwise. Λ ∈ R|K|×|P| is the OD-path incidence matrix ;

Λkp = 1 if p ∈ Pk and Λkp = 0 otherwise. The conditions in (3.1.1) say that (i) the flow on

a link equals the sum of all path flows that pass through this link (i.e. (f, x) is consistent),

(ii) the sum of flows on all paths for a commodity meet the demand, and (iii) path flows

(and thus link flows) are non-negative.

Each link e ∈ E in the network has a flow dependent travel time or cost le(x). The

travel time c(f)
(
c : R|P|+ → R|P|+

)
along a route is additive. In other words, the cost of a

route cp(f), p ∈ P, is the sum of travel costs on all edges in that path:

cp(f) =
∑
e∈p

le(x) or c(f) = ΓT l(x) = ΓT l(Γf)

in vector-form.
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We assume that the travel time of a trip is the only determinant in route choice.

Furthermore, in choosing routes, travelers are assumed to value travel time homoge-

neously. Literature refers to these settings as the fixed demand static traffic assignment

or nonatomic routing game.

Assumption 1. Let us assume throughout the study that the travel time function l(x) is

separable (i.e. le(x) = le(xe)), continuous, convex and strictly monotone: le(xe) < le(x̄e)

provided xe < x̄e.

We emphasize that Assumption 1 is not necessarily a very strong one and applies to

general travel cost functions, including the well-known BPR-function (Bureau of Public

Roads) or a - more general - polynomial with positive coefficients.

3.2 Wardrop’s Principles

Wardrop (1952) formulated two alternative criteria to determine the distribution of flow

over a traffic network. The first principle was formulated as: “the journey times on all the

routes actually used are equal and less than those which would be experienced by a single

vehicle on any unused route” (Wardrop, 1952, p. 345). Wardrop’s first principle assumes

travelers to be perfectly rational in making route choice decisions: users maximize own

utility by considering and evaluating all possible alternatives. The resulting traffic flow

pattern (fn, xn) (the superscript n refers to John F. Nash, who introduced the perfectly

rational equilibrium in non-cooperative games) under the assumptions of this behavior in

a static environment is a traffic state in which no traveler can unilaterally change routes

to decrease its own travel time.

Definition 3.2.1 (PRUE). Consider a traffic flow (fn, xn) as in (3.1.1) with correspond-

ing cost vector c(fn). Flow (fn, xn) is said to be a Perfectly Rational User Equilibrium

(PRUE) if for all k ∈ K the following condition holds for all p, q ∈ Pk:

fnp > 0⇒

cp(fn) = cq(f
n) if fnq > 0;

cp(f
n) ≤ cq(fn) if fnq = 0.

(3.2.1)

In particular, at PRUE as in (3.2.1) all flow-carrying paths (i.e. p ∈ P : fnp > 0) for a

commodity k ∈ K experience equal (in fact, minimum) cost minq∈Pk cq(f
n).

Beckmann et al. (1956) formulated an optimization problem to a PRUE flow distribu-

tion:

min
(f,x)

z(x) s.t. (f, x) as in (3.1.1), (Qn)

where

z(x) :=
∑
e∈E

∫ xe

0
le(τ)dτ.
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(fn, xn) solves (Qn) under Assumption 1 if and only if this flow satisfies the Karush-Kuhn-

Tucker (KKT) conditions corresponding to (Qn) (note that the feasible set is defined by

linear (in)equalities and the objective function z(x) is strictly convex). The system of

KKT conditions with corresponding multipliers (µ, φ, λ) for this problem reads, assuming

l(x) to be continuously differentiable, as follows:

∇xs(x)− µ = 0

ΓTµ− ΛTλ+ φ = 0

fTφ = 0

(Γf − x)Tµ = 0

(d− Λf)Tλ = 0

φ ≥ 0

f ≥ 0

d = Λf

Γf = x

(3.2.2)

Since ∇xs(x) = l(x), the system (3.2.2) corresponding to (Qn) reveals that flow-carrying

paths share (minimum) travel cost as in (3.2.1). Indeed, simple analysis shows that λk

represents the minimum cost to travel for commodity k ∈ K. We obtain, where the travel

time on the minimum cost path for commodity k ∈ K is denoted by λnk , that traffic flow

(fn, xn) as in (3.1.1) is a PRUE flow if and only if

fnp (cp(x
n)− λnk) = 0, and cp(x

n) ≥ λnk (3.2.3)

is satisfied for all p ∈ Pk, k ∈ K. The system defined by (3.1.1) and (3.2.3) is the nonlinear

complementarity problem (NCP) for finding the PRUE flow distribution.

Note that since the objective function z(x) in problem (Qn) is strictly convex on the

feasible set defined by the (in)equalities in (3.1.1), a PRUE (fn, xn) exists and is unique

with respect to xn (and λn).

Remark 3.2.1 (Non-unique route flows). As widely discussed in literature, there may

exist a set of route flows f corresponding to a single link flow distribution x (see Lu and

Nie (2010)). Let us regard the set H(x) of route flows for known link flow x of pair (f, x)

(and fixed d) as:

H(x) = {f ∈ R|P| | Λf = d,Γf = x, f ≥ 0}.

Solely under the condition that the matrix

[
Λ

Γ

]
has full column rank there is only a sin-

gle route flow solution f corresponding to link flow x. With exception from parallel-link

networks, we cannot expect that this condition is satisfied in general.

The second principle of Wardrop is known as the system-optimal traffic assignment.

Qualitatively, a traffic flow distribution is a system optimum if “the average journey time

is a minimum” (Wardrop, 1952, p. 345). The system optimum is a desired traffic state

for an authority, but will not occur in practice: this state requires full cooperation among

travelers or coordination by an authority in all route choice (Yang and Huang, 2005).
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Formally, a flow (fs, xs), superscript s referring to system optimum, as in (3.1.1) is

said to be a system-optimal traffic flow if the flow minimizes total travel time. In other

words, (f s, xs) solves the following optimization problem:

min
(f,x)

s(x) s.t. (f, x) as in (3.1.1), (Qs)

where

s(x) =
∑
e∈E

xele(xe). (3.2.4)

Under Assumption 1, the objective function s(x) - representing total travel time - is

(strictly) convex. Then, (fs, xs) solves (Qs) if and only if (fs, xs) satisfies the KKT

conditions of (Qs) with corresponding Lagrange multiplier vectors. These conditions are

similar to (3.2.2) with the only difference that ∇xs(x) = l(x) + xT∇xl(x). This reveals

that the resulting traffic flow is a PRUE flow using marginal cost ∂
∂xe

(xele(xe)) as latency

function for each link e ∈ E. Equivalent to the PRUE condition in (3.2.1), a traffic flow

(fs, xs) as in (3.1.1) is a system optimum if and only if

fsp > 0⇒

 c̃p(x
s) = c̃q(x

s) if fsq > 0;

c̃p(x
s) ≤ c̃q(xs) if fsq = 0,

(3.2.5)

is satisfied for all p ∈ Pk, k ∈ K, where

c̃p(x) :=
∑
e∈p

(
le(xe) + xel

′
e(xe)

)
,

and l′e(xe) = ∂le(x)
∂xe

.

Again, the objective function s(x) of (Qs) is strictly convex on the feasible set defined

by the (in)equalities in (3.1.1) and the system-optimal traffic flow distribution (fs, xs)

exists and is unique with respect to xs.

3.3 Synthesis

We introduced the PRUE and system-optimal traffic assignment. Both flow distributions

are unique with respect to the link flow x under Assumption 1. However, both assignments

are unrealistic because the first assumes users to be perfectly rational and the latter

requires full cooperation or coordination. In the next chapter we introduce the assignment

under the assumptions of boundedly rational individuals.
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Chapter 4

Boundedly Rational User

Equilibrium

4.1 Formal Definition

The assumptions of perfect rationality in route choice decision making are, from a behav-

ioral perspective, naive. The boundedly rational equilibrium condition in (4.1.1) states

that travelers are satisficers so that unilaterally switching routes cannot lead to a travel

time improvement of more than an individually-tailored and situation-specific tolerance

threshold: the indifference band (Mahmassani and Chang, 1987; Vreeswijk et al., 2013a).

Although this behavior might be in practice the result of limited awareness, our modeling

perspective assumes travelers to be fully informed.

Definition 4.1.1 (BRUE). Given the indifference band ε ∈ R|K|+ , a traffic flow (f, x) as

in (3.1.1) with corresponding path costs c(f) is called a Boundedly Rational User Equilib-

rium (BRUE) if for all k ∈ K the following condition is satisfied for all p ∈ Pk:

fp > 0⇒ cp(f) ≤ min
q∈Pk

cq(f) + εk. (4.1.1)

BRUE condition (4.1.1) was first articulated by Mahmassani and Chang (1987), and

was, among others, formalized by Di et al. (2013) and Lou et al. (2010). Condition (4.1.1)

formulates a range of allowable travel times for a user by introducing indifference band or

tolerance vector ε ∈ R|K|+ . This is clearly in contrast to PRUE condition (3.2.1) that only

contains a single value of allowed travel times for each OD pair: minq∈Pk cq(f), k ∈ K.

Consequently, the BRUE flow distribution (i.e. satisfies (4.1.1) is a traffic state in which

the travel time of any flow-carrying path is within the formulated range. A BRUE flow

may possess the property that all minimum cost paths carry no flow (assuming ε > 0). In

the remainder, we call a path p ∈ Pk, k ∈ K, acceptable if cp(f) ≤ minq∈Pk cq(f) + εk is

satisfied for this path.
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We assume that the indifference band εk, k ∈ K, in (4.1.1) is exogenous, i.e. the range

of acceptable travel times is independent of traffic state (f, x). Moreover, we assume

that εk does not differ among users of the same commodity k ∈ K. These assumptions

might not reflect real-world situations. For example, some travelers might be oblivious

in their route choice with respect to congestion (they choose their route with respect to

shortest distance) while others, more frequent users, choose routes based on previous ex-

perienced delays. This behavior can easily be incorporated by introducing heterogeneous

users (adding a superscript on user type dependent variables and parameters) or by ap-

proaching the indifference band as a random variable. An endogenous tolerance vector

ε(f), i.e. ε is a function of f , as in Han et al. (2015), might be more appropriate in a

dynamic setting.

Remark 4.1.1 (Multiplicative indifference band). It remains an open question whether

it is preferable to incorporate an additive (as in condition (4.1.1)) or multiplicative in-

difference band with respect to the minimum cost path (see Christodoulou et al. (2011),

Roughgarden and Tardos (2002)):

fp > 0⇒ cp(f) ≤ min
q∈Pk

cq(f)(1 + εk). (4.1.2)

Empirical studies do not (yet) answer this question. From a mathematical analysis point of

view the condition in (4.1.1) has major advantages. We will highlight results (see Remark

6.3.1 and Remark 6.4.1) in the remainder of this study in which the analysis does not hold

under assumptions of a multiplicative indifference band as in (4.1.2).

4.2 Illustrative Examples

In previous sections, we discussed the differences in modeling route choice decision mak-

ing based on perfectly rational and boundedly rational choice behavior. In this section,

illustrative examples show the implications using BRUE rather than PRUE in the NDP.

Given a network instance, the PRUE link flow distribution xn is uniquely determined.

So the corresponding system’s objective value s(xn) is uniquely determined as well. Let

us show that under BRUE condition (4.1.1) uncertainty among performances with respect

to s(x) and x arises.

Example 4.2.1 (Uncertainty among performances). Consider the two-link network

in Figure 4.2.1a. Both paths (1, 2) connect commodity (A,B) and are endowed with a

strictly monotone linear latency function. We send demand d = 1 from node A to B.

The PRUE link flow distribution xn (see condition (3.2.1)) is uniquely determined:

xn =

(
2

3
,
1

3

)
.
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(a) Example Network.
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(b) Uncertainty among performances.

Figure 4.2.1: Network and performance results for Example 4.2.1. (BC = Best-case,
WC = Worst-case.)

Given ε ≥ 0 we have a set of link flows satisfying (4.1.1). This set of feasible flows is

denoted by F(ε) and given by

F(ε) =
{

(x1, (1− x1)) 2−ε
3 ≤ x1 ≤ 2+ε

3 , 0 ≤ x1 ≤ 1
}
.

As discussed, non-uniqueness of BRUE flow distributions may lead to difficulties in deter-

mining performance of a certain measure. Let us consider the best and worst-performing

BRUE with respect to total travel time for a given ε ≥ 0. Hence, for any ε ≥ 0 we find the

flows that satisfy (4.1.1) and minimizes and maximizes s(x) respectively.

Figure 4.2.1b plots the total travel time v(ε) in both cases for each ε ∈ [0, 1] in . We

show that performance may differ significantly. Further, we make the observation that the

Best- and Worst-case BRUE provide a lower and upper bound respectively for the total

travel time under Wardrop’s first principle (i.e. s(xn)). Note that for ε = 0 both the Best-

and Worst-case BRUE reduces to the PRUE flow xn.

We interpret Example 4.2.1 as follows. Compared to the PRUE, the BRUE flow

distribution is not necessarily unique. In the NDP, any upper-level policy instrument

leads to a set of BRUE flows among which performance may differ substantially. If the

lower level of the NDP adapts the PRUE condition (3.2.1), a naive measure - optimal

under this condition - might be implemented. Indeed, in the next example we show that

policy interventions designed under Wardrop’s first principle might lead to an inferior

performing Worst-case BRUE. Basically, Example 4.2.2 illustrates that if we use bounded

rationality in the static traffic assignment, then we should base or tolling scheme on the

BRUE assignment as well.

Example 4.2.2 (Optimal toll setting). A typical application of the NDP is the deriva-

tion of optimal toll prices for (certain) links in the network (see Yang and Huang (2005)
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Figure 4.2.2: Network in Example 4.2.2.

for an overview). Assume we have the possibility to set (time-independent) tolls τ on all

edges in the network.
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(a) Best- and Worst-case performance with no
tolls.
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(b) Performance with tolls.

Figure 4.2.3: Performance results for Example 4.2.2. (BC = Best-case, WC = Worst-
case.)

We look at the simple parallel-link network (three paths connect commodity (A,B))

(Figure 4.2.2). Based on Beckmann’s minimization problem (Qn) and the system optimum

(Qs) we arrive at the PRUE and system-optimal flow distribution xn, xs, respectively:

xn = (1, 0, 0) , xs =

(
3

4
,
1

4
, 0

)
.

We derive the first-best pricing strategy: a toll pricing strategy that allows all links to be

tolled with any toll. Recall that we have for a system-optimal flow (fs, xs) the equilibrium

KKT condition ∑
e∈p

le(x
s
e) + xsel

′
e(x

s
e) ≥ λsk, for all p ∈ Pk, k ∈ K.

Note that such a flow distribution will not occur under perfect rationality conditions since

individuals then only consider le(xe) and not l′e(xe)xe (i.e. the impact of their choice on

others). The first-best tolling strategy easily follows from previous equation if the disutility

function incorporates l′e(xe)xe. Assume Wardrop’s equilibrium will be realized. An optimal
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toll vector τ ≥ 0 that satisfies the following conditions leads to a system optimum under

perfectly rational decision making (Yang and Huang, 2005):

le(x
s
e) + τe ≥ min

e∈E
(le(x

s
e) + xse),

∑
e∈E

(le(x
s
e) + τe)x

s
e = dmin

e∈E
(le(x

s
e) + xse).

So, a first-best tolling scheme would be to impose τe = xsel
′
e(x

s
e) = xse for all e ∈ E. Figure

4.2.4 depicts the link cost functions including the tolls.

x1 + 1 + 3
4

x2 + 2 + 1
4

x3 + 3

A B

Figure 4.2.4: Latency functions with tolls for Example 4.2.2 .

Suppose in practice a BRUE flow, ε ≥ 0, is realized. We show again the Best- and

Worst-case performing BRUE (with and without the induced toll) and compare global per-

formance in Figure 4.2.3a and Figure 4.2.3b.

The results in Figure 4.2.3b show that the first-best tolling scheme always induces a

system optimum if we assume that the Best-case BRUE is realized. This follows from the

observation in Example 4.2.1: the Best-case BRUE performs at least as good as the PRUE

and since the PRUE reduces to a system optimum, the Best-case BRUE reduces to this

global optimum as well.

However, for certain values of ε ≥ 0, edge 3 becomes acceptable (i.e. travel time on

this edge is within ε from the shortest). This was not taken into account in the first-best

tolling scheme since xs3 = xn3 = 0. In the Worst-case BRUE, path 3 might be utilized and

therefore worsens overall performance of the network.

Example 4.2.2 supports our earlier claim that the toll scheme should be adapted to

its behavioral assumptions. It might be suggested that an authority induces a toll after

observing flows in a transport network: the naive PRUE flow distribution will not arise

in practice. However, a PRUE flow is also a BRUE traffic flow and thus the PRUE

distribution might be observed after all. Example 4.2.2 shows that the Worst-case BRUE

performance with the tolls might be worse compared to the Worst-case BRUE without

tolls. We suggest that a pricing scheme which minimizes Worst-case BRUE performance

is more appropriate in this setting.

Another example of a worse performing BRUE flow after imposing tolls was presented

in Lou et al. (2010). However, there, Assumption 1 was violated and a constant latency

function was used on one of the paths.
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In practice, not only link flow x is of importance, but route flow f as well. For

instance, relieving a bottleneck by giving pre-trip route advice requires that the link flow

is disentangled by commodities. As widely discussed, there may exist several route flows

f that correspond to a single link flow x (Lu and Nie, 2010). An arbitrary route flow f

corresponding to x (e.g. as by-product of a convex combination method in the PRUE) may

lead to several difficulties. First, in a PRUE, it may cause discontinuity in f with respect

to perturbations; a small change in the demand leads, from a behavioral perspective,

to completely different route choice behavior (Lu and Nie, 2010). Second, several route

flow distributions corresponding to the same x are incomparable (Borchers et al., 2015).

Again, let us regard the set H(x) of route flows for known link flow distribution x of BRUE

solution (f, x, λ) (and fixed d) as a point-to-set mapping:

H(x) =
{
f ∈ R|P| | Λf = d,Γf = x, f ≥ 0

}
.

It is desirable to have a signle realistic route flow and therefore we impose additional

conditions on f . Conventional methods in literature use a two-stage approach to derive

PRUE route flow fn out of xn (e.g. by maximizing entropy). That is: first calculate

link flow x and, independently, use x to find f . We indicate that additional difficulties

arise under bounded rationality compared to perfect rationality. If we choose f ∈ H(x)

arbitrarily this may not only lead to discontinuous and incomparable route flows in a PRUE

setting, it may also generate route flows which are infeasible under BRUE condition (4.1.1)

(see Example 4.2.3 below).

3x1 + 3

4x2 + 4

6x3 + 2

6x4 + 3

6x5 + 4

A

B

C D

Figure 4.2.5: Considered network in Example 4.2.3.

Example 4.2.3 (Determining f out of x). Consider the network in Figure 4.2.5.

Assume there are two commodities (A,D) and (B,D), both with demand 1.We have six

path flows: f13, f14, f15, f23, f24, f25. Given link flow x, route flow f is not uniquely

determined since

rank

[
Λ

Γ

]
= 4 < 6.
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Suppose ε(A,D) = 2 and ε(B,D) = 1. A BRUE link flow is:

x = (x1, x2, x3, x4, x5) =

(
1, 1,

2

3
,
2

3
,
2

3

)
,

and the corresponding path cost vector c(x):

c(x) = (c13(x), c14(x), c15(x), c23(x), c24(x), c25(x)) = (12, 13, 14, 14, 15, 16).

Choose two route flows f1, f2 ∈ H(x):

f1 = (f1
13, f

1
14, f

1
15, f

1
23, f

1
24, f

1
25) =

(
1

3
,
1

3
,
1

3
,
1

3
,
1

3
,
1

3

)
,

f2 =

(
0,

1

3
,
2

3
,
2

3
,
1

3
, 0

)
.

In case f1 is the resulting route flow, the flow is infeasible since c25(x) − c23(x) = 2 >

ε(B,D) = 1. However, if we choose f2, f2
25 = 0 and all paths that carry flow are in the

range of acceptable travel times:

f̃25

(
c25(x)− c23(x)− ε(B,D)

)
= 0.

We interpret Example 4.2.3 as follows. The choice of route flows f ∈ H(x) for a BRUE

flow x influences the experienced travel time. Given f1, f2 ∈ H(x) and both correspond to

BRUE link flow distribution x (as in the example). The example shows that the maximum

travel time among all flow-carrying paths differs for f1 and f2. Indeed, for f1 the maximum

travel time for commodity (B,D) is 16 while the maximum travel time under f2 is 15.

All in all, given BRUE flow x, not all f ∈ H(x) are feasible BRUE route flows. More-

over, if we want to give route advice to relieve a bottleneck, the choice of f corresponding

to x influences the travel time for travelers.

From a mathematical perspective, this conclusion is trivial since the problem adds

additional conditions compared to the problem to find the PRUE flow. Later we will

see that the non-uniqueness of route flows plays an essential role in the continuity of the

feasible set and optimal value function of the Best-case BRUE flow distribution.

Remark 4.2.1. We note that the issue of infeasible route flows f ∈ H(x) does not occur

in a PRUE and system-optimal setting. Nonetheless, in a system optimum (and any

other flow not in PRUE), the choice of route flow f corresponding to x influences the

experienced travel time. In a system-optimal traffic assignment, travelers are assumed to

be memoryless: the choice of a bypass at a node is independent of the travel time up to

that node. In other words: agents have an unbounded range of acceptable travel times.
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4.3 BRUE in Other Settings

BRUE flow distributions also appear in other settings. The first analogy concerns system-

optimal route guidance in traffic networks with user constraints, the second setting de-

scribes a more general matrix game.

Route Guidance with User Constraints

Opposed to individual performance, road authorities are in general concerned with the per-

formance of the transport system as a whole. It is well-studied that individual and system

interests in this context may interfere: an individual optimum may lead to a degradation

of the transport system as a whole (Roughgarden, 2005). The system-optimal traffic flow

distribution (fs, xs) is known to require cooperation among travelers or complete coordi-

nation of the authority in all route choice (Yang and Huang, 2005). A possible measure

to achieve this system-optimal traffic assignment is by means of route guidance systems.

Current navigation systems, however, provide descriptive or advisory information and

guide travelers in a self-interest way based on shortest instantaneous travel times. As

mentioned, this may lead to an inferior performance of the system. A traffic routing

strategy that aims for a system optimum diverts some individuals to significantly longer

routes to minimize global performance (Jahn et al., 2005). As a result, these drivers

may not comply with such advices and the optimal state will not be achieved, i.e. in a

system-optimal assignment unfairness or inequity among individuals arises.

For our purpose, let us define unfairness ηk(f) for traffic flow (f, x) as the maximum

difference in travel time between a used route and the cost the fastest alternative for

commodity k ∈ K:

ηk(f) = max
(
cp(f)−minq∈Pk cq(f) fp > 0, p ∈ Pk

)
. (4.3.1)

We show in the next proposition that a system optimum suffers under unfairness issues,

earlier presented for a single commodity in Correa et al. (2007). In particular, if we

consider the BPR-function, in a system-optimal route guidance some travelers end up

traveling 5 times as long as others. Note that ηk(f
n) = 0 for all k ∈ K where (fn, xn)

satisfies (3.2.1)

Proposition 4.3.1. (Correa et al., 2007). Suppose δ ∈ N is the maximum degree of the

polynomial of the link cost function l(x) used in the network. Given that (f s, xs) solves

(Qs) then

ηk(f
s) ≤ (δ + 1) min

q∈Pk

∑
e∈q

le(xe
s)

for all k ∈ K.
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Proof. The proof is similar to the proof in Correa et al. (2007). It is shown by Roughgar-

den (2002) that under Assumption 1, le(xe) +xel
′
e(xe) ≤ (δ+ 1)le(xe) for all e ∈ E and for

all xe ≥ 0. For instance, for monomials (i.e. le(xe) = xe
δ), le(xe) + xel

′
e(xe) = (δ + 1)xe

δ.

Hence, we can upper bound the marginal cost of a path by a constant factor of the la-

tency function. A lower bound on the marginal cost for a link is straightforward under

Assumption 1: le(xe) + xel
′
e(xe) ≥ le(xe).

Let λsk denote the minimum marginal cost for commodity k ∈ K for system-optimal

traffic flow (fs, xs). Recall that all flow-carrying paths experience these marginal cost

(3.2.5). Pick p ∈ Pk, k ∈ K so that fp > 0 and take q ∈ Pk as a minimum latency path

for commodity k ∈ K, we arrive at:

λsk =
∑
e∈p

le(x
s
e) + xe

sl′e(xe
s) ≥

∑
e∈p

le(xe
s) ≥

∑
e∈q

le(xe
s),

and

λsk ≤
∑
e∈q

le(x
s
e) + xe

sl′e(xe
s) ≤

∑
e∈q

(δ + 1)le(xe
s).

Hence, it turns out that the travel time is bounded by a constant factor from the travel

time on the shortest path:∑
e∈p

le(xe
s) ≤ (δ + 1) min

q∈Pk

∑
e∈q

le(xe
s).

The claim of the proposition follows directly. �

van Essen et al. (2016) pointed out that users are willing to use alternatives with

higher travel times as long as the difference with respect to the fastest path is found to

be acceptable. Therefore, Jahn et al. (2005) proposed a system-optimal routing strategy

incorporating unfairness among individuals with respect to an apriori determined normal

length. Unfairness with respect to this normal length - independent of flow - was chosen

for computational purposes. We suggest that the distribution of travel time among users

is a more appropriate indicator to measure unfairness.

Let us assume that the travel time differences as defined in (4.3.1) solely determines

the acceptability of a route guidance system. The problem of finding a system-optimal

traffic route guidance system with user constraints (i.e. every traveler uses an acceptable

route) becomes:

min
(f,x)

s(x) s.t.
(f, x) as in (3.1.1);

ηk(f) ≤ εk for all k ∈ K.
(4.3.2)

In this problem, εk ≥ 0 is the upper bound in travel time difference for commodity

k ∈ K. Obviously, problem (4.3.2) is equivalent to the problem that finds the BRUE
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flow distribution as in (4.1.1) which minimizes s(x) (i.e. Best-case BRUE).

ε-Nash Equilibria

Game Theory often uses Nash equilibria to model the behavior of individuals in non-

cooperative games (cf. Section 2.1). Here, the player’s strategy is the best reply given

the other players strategy (Peters, 2008). Then, an equilibrium is a solution of a game

in which no player can unilaterally change strategies and improve his or her utility (note

the equivalence with PRUE condition (3.2.1)). An ε-(approximate) Nash equilibrium is a

strategy profile in which no player can improve payoff by more than ε ≥ 0 (Nisan et al.,

2007). Let us formally define this solution concept using the notation of Nisan et al.

(2007).

Adopting the definition of Nash equilibrium of Nisan et al. (2007), strategy vector

s ∈ S is said to be an ε-Nash equilibrium, ε ≥ 0, if for all players i ∈ {1, . . . , n} and each

alternative strategy s′i ∈ Si, we have that

ui(si, s−i) ≥ ui(s′i, s−i)− ε. (4.3.3)

Here, si denotes the strategy played by i and s−i the strategies played by all other players.

ui(si, s−i) is the utility of player i. Trivially, condition (4.3.3) reduces to the definition of

a conventional Nash equilibrium when ε = 0.

ε-Nash equilibria gained attention in behavioral game theory (incorporating experi-

mental economics into strategic decision making) to efficiently approximate true Nash

equilibria (Nisan et al., 2007) and in (non-)atomic routing games (Christodoulou et al.,

2011). In non-atomic routing games, condition (4.3.3) reduces to (4.1.1). An interesting

open problem in the latter field is upper bounding the Price of Anarchy for flows (f, x)

that satisfy condition (4.1.1).

4.4 Synthesis

We introduced the BRUE in a static traffic assignment. The BRUE is an equilibrium in

which no traveler can substantially improve his or her travel time by changing routes. In

addition, we gave basic examples that showed the main difficulties of boundedly rational

choice behavior in the NDP. We indicated that uncertainty among performances arises,

a naive toll setting in the network may lead to worse performance of the system, and

additional conditions should be imposed on the set of route flows.
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Chapter 5

Best-Case BRUE

Authorities concern themselves with the impact of measures on transportation systems.

Lou et al. (2010) highlighted that a BRUE flow distribution is not necessarily unique and

causes uncertainty among performances (see also Section 4.2). So it is important to assess

performance of flow distributions with best and worst-case performance with respect to

system’s objective (Best/Worst-case BRUE). Following our discussion, the Best/Worst-

case BRUE flow is a solution of the program (5.0.1).

min /max(f,x)s(x) s.t. (f, x) satisfies (4.1.1) (5.0.1)

In our case, the system cost function s(x) in (5.0.1) will be the total travel time (3.2.4).

Nevertheless, any other objective function can be used as long as it is strictly convex with

respect to link flow x. The upcoming sections particularly focus on the Best-case BRUE

problem.

We emphasize that the formulation in (5.0.1) does not necessarily find the BRUE flow

distribution which is most likely to be realized in practice. Some BRUE flow distributions

may be unrealistic in real-world applications. Since we assume that an authority has no

control over which BRUE will be realized for a given tolerance vector, we only consider

the extreme cases (best, respectively worst, system performance).

5.1 Problem Definition

We formulate the boundedly rational user equilibrium model, qualitatively and quantita-

tively defined in previous chapters, as a mathematical optimization problem. We discuss

basic topological properties of the problem. The next sections extend the discussion and

consider continuity of the feasible set, optimal value function and optimal solution set

with respect to perturbations in the indifference band parameter. Before we continue, let

us introduce the topological definitions.
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• We denote the n-dimensional Euclidean space and its non-negative orthant by Rn

and Rn+ respectively;

• The Euclidean norm of a vector x ∈ Rn is defined by ‖x‖ :=
(∑

i=1:n|xi|2
) 1

2 .

• The Frobenius norm of a matrix A = (aij) ∈ Rm×n is defined as ‖A‖ = ‖(aij)‖2;

• A multifunction or point-to-set mapping F of X ⊆ Rn into Y ⊆ Rm assigns to each

x ∈ X a (possibly empty) subset F (x) of Y ;

• The domain of a multifunction F consists of all x ∈ X for which F (x) is nonempty:

dom (F ) := {x ∈ X | F (x) 6= ∅};

• Ur(A) is defined as a neighborhood of radius r ∈ R+ around set A : Ur(A) := {x ∈
X | infy∈A‖x− y‖ < r}.

The optimization problem to find the Best-case BRUE flow distribution(s) (5.0.1) is

equivalently formulated as follows. We minimize total travel time while the constraints

assure that the difference in travel costs between users of the same commodity k ∈ K does

not exceed indifference band εk ≥ 0. More precisely, the Best-case BRUE is a solution of

min
(f,x,λ)

s(x) s.t. (f, x, λ) ∈ F(ε), (Q(ε))

where the feasible set F(ε) is given by

F(ε) =

 (f, x, λ) ∈ R|P| × R|E| × R|K|
(f, x) ∈ F0

(f, x, λ) ∈ Fl
(f, x, λ) ∈ Fu(ε)

 .

Here, F0 assures that the resulting traffic flow (f, x) is feasible (i.e. (f, x) is as in (3.1.1)).

Due to the linear (in)equalities, F0 is a convex set and is formally defined to be

F0 = {(f, x) | x = Γf,Λf = d, f ≥ 0} .

Fl and Fu(ε) arise due to the bounded rationality condition (4.1.1). The set Fl is defined

as

Fl = {(f, x, λ) | − cp(x) + λk ≤ 0 for all p ∈ Pk, k ∈ K} ,

and Fu(ε), ε ≥ 0, is defined to be

Fu(ε) = {(f, x, λ) | fp > 0⇒ cp(x)− λk ≤ εk for all p ∈ Pk, k ∈ K} .

The term λk is (a lower bound on) the minimum travel cost for commodity k ∈ K.

The set Fl assures that the travel time on a path is at least the minimum travel cost
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for that commodity, while Fu(ε) defines the travel time of a flow-carrying path to be

within the range [λk, λk + εk]. Obviously, any flow (f, x) ∈ F(ε) satisfies the BRUE

condition (4.1.1). Conversely, any (f, x) that satisfies (4.1.1) is contained in F(ε) by

taking λk = minp∈Pk cp(x) for all k ∈ K. Hence, we will refer to any point (f, x) ∈ F(ε)

with corresponding λ as a BRUE (flow distribution).

Consider ε ∈ R|K|+ as a parameter vector. Our problem (Q(ε)) is then a parametric

optimization problem. The objective function s : R|E| → R of (Q(ε)) is defined in (3.2.4),

is independent of the parameter ε and is strictly convex with respect to link flows x.

The parametric problem (Q(ε)) assesses performance of BRUE flow distributions with

best-case performance (with respect to the system cost). That is, find BRUE flow distribu-

tion which minimizes travel time among all possible BRUE flows for a given indifference

band ε. Figure 5.1.1 abstractly illustrates to process to find the Best-case BRUE: we

seek for the flow distribution (f̃ , x̃) closest to (the unique with respect to x) (fs, xs) with

respect to s(x).

F(ε)

(fn, xn)

(fs, xs)
(f̃ , x̃)

Figure 5.1.1: Abstract illustration of the feasible BRUE set F(ε). (Q(ε)) finds (f̃ , x̃)
closest to (fs, xs) with respect to s(x).

Unfortunately, although as such illustrated in Figure 5.1.1, we cannot expect (Q(ε))

to be a convex optimization problem for any ε ∈ dom (F). Even worse, the next section

indicates that certain regularity conditions do not hold in general.
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5.2 Properties of F(ε)

Given tolerance vector ε ≥ 0, the set F0 ∩ Fl ∩ Fu(ε) = F(ε) can be defined equivalently

by complementarity:

F(ε) =

 (f, x, λ) ∈ R|P| × R|E| × R|K|
(f, x) ∈ F0

fp(cp(x)− λk − εk) ≤ 0 for all p ∈ Pk, k ∈ K

−cp(x) + λk ≤ 0 for all p ∈ Pk, k ∈ K

 .

(5.2.1)

Equivalence follows directly for a traffic flow (f, x, λ) satisfying (5.2.1) since

fp > 0⇒ cp(x) ≤ λk + εk, and fp ≥ 0⇒ cp(x) ≥ λk

holds for all p ∈ Pk, k ∈ K. F(ε) as in (5.2.1) requires no explicit information on which

paths carry flow (which is required in the system of inequalities defining Fu(ε)).

Lou et al. (2010) illustrated by a simple example that the feasible set F(ε) for the

problem (Q(ε)) is not necessarily convex. We further extend this observation by means of

an illustration.

For simplicity, we reduce the problem to one dimension in the reals. Consider, for a

fixed ε ≥ 0, the following system of inequalities:

θ(υ − ε) ≤ 0, θ ≥ 0, υ ≥ 0. (5.2.2)

Note the similarity to the system in (5.2.1). Figure 5.2.1 depicts the feasible set that

corresponds to the system of inequalities (5.2.2). Clearly, taking (θ1, υ1) where θ1 = 0,

υ1 > ε and (θ2, υ2) so that θ2(υ2− ε) < 0, we cannot draw a line between these two points

so that all points on this line remain feasible.

υ

θ

θ(υ − ε) ≤ 0

θ = 0, υ ≥ ε

0 ε

Figure 5.2.1: Illustration of the feasible set corresponding to the system of inequalities
(5.2.2) for arbitrary ε > 0.
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Due to the complementarity constraint in (5.2.1), the problem (Q(ε)) turns into a

(parametric) mathematical program with complementarity constraints. These programs are

difficult to solve numerically and different local minimizers may co-exist. The difficulties

arise since these programs lack regularity conditions. In other words, at a minimum point

the KKT condition does not necessarily hold and standard optimization software cannot

be used.

We show that a feasible point (f, x, λ) ∈ F(ε) not necessarily satisfies the Mangasarian-

Fromovitz constraint qualification (MFCQ). As a consequence, we cannot express the gra-

dient of the objective function as a linear combination of the gradients of the constraint

functions.

For notational purposes, we consider the system defined in (5.2.2). We find the fol-

lowing gradients with respect to (θ, υ), i.e. ∇ = ∇(θ,υ), of the constraint functions given

ε ≥ 0:

∇(θ(υ − ε)) =

[
υ − ε
θ

]
, ∇(−θ) =

[
−1

0

]
, ∇(−υ) =

[
0

−1

]
.

In case the constraint θ(υ− ε) ≤ 0 is active (i.e. θ(υ− ε) = 0), it follows that θ = 0 and/or

υ = ε. Assume the former and υ− ε > 0. We cannot find an η ∈ R2 so that for the active

gradients [
υ − ε

0

]T
η < 0, and

[
−1

0

]T
η < 0

holds. MFCQ does not hold: the active inequality constraints are linear dependent under

the mentioned assumptions.

Numerous studies in literature discuss the difficulties as result of the violation of the

MFCQ and tried to overcome these issues by using a disjunctive or piecewise approach (see

Luo et al. (1996)). Our problem does not fulfill the strict definition of complementarity

constraints defined in literature. Nonetheless, our problem (Q(ε)) suffers under the same

difficulties, even for fixed ε ∈ dom (F). Later in this study, we proceed by using some

techniques of the disjunctive approach to analyze the topological structure of (Q(ε)).

5.3 Simple Cases of (Q(ε))

We regard ε as a parameter vector whereas (Q(ε)) reduces in certain cases of ε to an easier

to solve convex optimization problem. In particular, problem (Q(ε)) reduces to the (Qn)

problem in case ε = 0 and to (Qs) when the tolerance vector ε is sufficiently large. So, we

use the characteristics of these optimization problems to analyze (Q(ε)) for an arbitrary

ε ≥ 0.
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Recall the complementarity definition of F(ε) of (5.2.1) and assume ε = 0, we obtain:

F(0) =

 (f, x, λ)

(f, x) ∈ F0

fp(cp(x)− λk) ≤ 0 for all p ∈ Pk, k ∈ K

−cp(x) + λk ≤ 0 for all p ∈ Pk, k ∈ K

 .

Since fp ≥ 0 and −cp(x) + λk ≤ 0 holds for all p ∈ Pk, k ∈ K, the first set of defining

inequalities of F(0) becomes fp(cp(x)− λk) = 0. Then, F(0) is nothing else than comple-

mentarity condition (3.2.3) for the PRUE. In other words, in case ε = 0, BRUE reduces

to a PRUE, which was also noted by Lou et al. (2010). Furthermore, F(0) is a singleton

with respect to link flow x under Assumption 1 (we made this observation in Example

4.2.1).

When the tolerance vector ε becomes large, it turns out that problem (Q(ε)) reduces

to the system-optimal traffic assignment. The traffic flow (fs, xs) ∈ F0 is the (unique with

respect to x) flow which minimizes total travel time, i.e. a solution of (Qs). Straightforward

analysis shows that if (f s, xs) ∈ F0 is a system-optimal traffic flow and if we define

εsok := max
p∈Pk:fp>0

cp(x
s)− λsk, (5.3.1)

with λsk = minq∈Pk cq(f
s), the feasibility constraints

f sp (cp(x
s)− εsok − λsk) ≤ 0, and − cp(xs) + λsk ≤ 0,

of (Q(εso)) are satisfied for all p ∈ Pk, k ∈ K. So, any ε ≥ εso in the Best-case BRUE

problem (Q(ε)) leads to a system-optimal traffic flow (fs, xs), i.e. (fs, xs) satisfies (3.2.5).

We showed in this section that the BRUE problem (Q(ε)) reduces to a convex opti-

mization problem for particular cases of ε. Known methods (e.g. Frank-Wolfe method)

can easily solve these problems. Due to the lack of regularity conditions of (Q(ε)) for

ε ∈ (0, εso) we cannot apply these methods to this problem in these cases. However, we

use the characteristics of (Qn) and (Qs) to analyze BRUE problem (Q(ε)).

5.4 Existence and Uniqueness of the BRUE

For optimization problems, it is essential to know whether a mathematical program has a

solution and, if so, whether it is unique or not. We discussed that under some choices of

ε the complementarity constraint problem (Q(ε)) turns into a convex problem which has

under mild assumptions (i.e. Assumption 1) a unique corresponding link flow distribution

x.

We show that for any ε ≥ 0, the feasible set F(ε) is nonempty. Notice that the next
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relation holds for ε,∈ dom (F) and ε̃ ≥ ε:

(f, x, λ) ∈ F(ε)⇒ (f, x, λ) ∈ F(ε̃).

A path, which transit time is within the acceptable range bounded by indifference band ε,

is certainly within the bounds defined by ε̃ ≥ ε, assuming ε ∈ dom (F). Indeed (Di et al.,

2013),

cp(f) ≤ λk + εk ≤ λk + ε̃k, for all p ∈ Pk, k ∈ K.

F(ε) is nonempty for ε ≥ 0 is then proven if F(0) is nonempty. We discussed that F(0) 6= ∅
as (fn, xn, λn) ∈ F(0) (where (fn, xn, λn) is the solution of (Qn)). Consequently,

dom (F) = {ε | ε ≥ 0}. (5.4.1)

The feasible set F(ε) is in general not a singleton with respect to link flow x for any

0 6= ε ∈ dom (F). We return to the network of Example 4.2.1. We showed that by

increasing indifference band ε > 0, more feasible BRUE link flows become available (see

Figure 5.4.1). Han et al. (2015) investigated conditions under which non-emptiness of

F(ε) can be guaranteed in a dynamic BRUE setting.

ε

x1

0 0.25 0.5 0.75 1

0.25

0.5

0.75

1

F(ε)

Figure 5.4.1: Example of feasible link flow set F(ε) for a parallel two-link network.

Remark 5.4.1 (Cyclic flows). The KKT conditions corresponding to problem (Qs) and

(Qn) reveal that utilized routes in te mentioned problems are acyclic. Indeed, consider the

KKT system (3.2.2) corresponding to (Qn), we obtain for used route p ∈ Pk, k ∈ K:

fnp > 0⇒
∑
e∈p

le(x
n
e ) = λnk .

Suppose now that flow-carrying path p contains cycle c. Then, we can find a route q =

p \ c, which has strict less travel cost. This contradicts the fact that in a PRUE flow
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distribution all routes have at least cost λnk . However, in particular in a Worst-case BRUE,

cyclic routes carrying flow may exist. From a behavioral perspective cyclic route flows are

unrealistic and therefore we assume in our case that these flows do not arise.

5.5 A Branch Approach

We showed that a minimizer of the complementarity constraint problem (Q(ε)) does not

necessarily satisfy the standard KKT conditions as the constraints of the program violate

regularity conditions (e.g. MFCQ). This section proposes to decompose the problem into

branches of optimization problems to overcome the difficulties of (Q(ε)). These branches

are easier to study, and benefit the analysis on the the topological structure of (Q(ε)).

Choose a subset of paths P ⊆ P, then define a branch of (Q(ε)) for ε ≥ 0 by

min
(f,x,λ)

s(x) s.t. (f, x, λ) ∈ FP (ε), (QP (ε))

where the feasible set FP (ε) is a point-to-set mapping from the indifference band ε to a

set of traffic flows (f, x) and minimum travel cost λ, defined by

FP (ε) =

 (f, x, λ) ∈ R|P| × R|E| × R|K|
(f, x) ∈ F0(P )

(f, x, λ) ∈ Fl
(f, x, λ) ∈ Fu(ε, P )

 .

The flow feasibility set F0(P ) forces (i) the flow on an edge to be the sum of flows on

paths P ⊆ P which pass through this link, (ii) the flow on paths P ⊆ P to meet demand

vector d, and (iii) flows to be non-negative. We emphasize that F0(P ) is a convex set:

F0(P ) =

{
(f, x)

fp = 0 for all p /∈ P
Γ.,P f − x = 0,Λ.,P f = d, fP ≥ 0

}
.

(For a given matrix A ∈ Rm×n and L ⊆ {1, . . . , n}, A.,L is the submatrix with columns of

matrix A whose indices are in L).

Recall that Fl defines λk to be (a lower bound on) the minimum travel cost for OD

pair k ∈ K. Note that the constraint cp(f) ≥ λk is imposed on all paths (including those

not in P ). Fu(ε, P ) assures the travel costs for paths in P to be within band ε from the

path with minimum cost, i.e.

Fu(ε, P ) = {(f, x, λ) | cp(x)− λk − εk ≤ 0, p ∈ Pk, k ∈ K}.

Here, Pk := P ∩ Pk, k ∈ K. (QP (ε)) is a standard (parametric) optimization problem

and overcomes the complementarity constraints of (Q(ε)) by choosing a subset P ⊆ P
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beforehand. The travel costs of these paths (i.e. p ∈ Pk, k ∈ K) are forced to be within

the indifference band εk from the minimum travel cost λk. The remaining paths (i.e.

p ∈ P \ P ) carry no flow.

Given P ⊆ P, we can expect the constraints in FP (ε) to satisfy the regularity conditions

for any ε ∈ dom (FP ). However, without any additional information, for any ε ≥ 0, 2|P|

possible choices for P exist. We say that (Q(ε)) suffers under a combinatorial curse.

In Lemma 5.5.1 we stipulate relations between problems QP (ε)) and (Q(ε)). We use

statements of the lemma in the upcoming analysis.

Lemma 5.5.1. The following relations hold between FP (ε) and F(ε):

(i) Any feasible flow for FP (ε) is also feasible for F(ε). That is, given P ⊆ P and

ε ∈ dom (FP ):

(f, x, λ) ∈ FP (ε)⇒ (f, x, λ) ∈ F(ε);

(ii) For all ε ≥ 0 and (f, x, λ) ∈ F(ε) there exists a subset of paths P ε,x ⊆ P so that

(f, x, λ) ∈ FP ε,x(ε);

(iii) Assume ε = 0, there exists a subset of paths P ⊆ P so that (QP (ε)) reduces to (Qn);

(iv) There exists a tolerance vector ε and subset of paths P ⊆ P so that (QP (ε)) reduces

to (Qs);

(v) (Di et al., 2013). Assume 0 ≤ ε ≤ ε̃, then:

F(ε) =
⋃

P⊆P:FP (ε) 6=∅

FP (ε) ⊆
⋃

P⊆P:FP (ε̃)6=∅

FP (ε̃) = F(ε̃).

Proof. We prove the statements of the lemma one by one.

(i) Assume P ⊆ P and ε ∈ dom (FP ). Let (f, x, λ) ∈ FP (ε) be given. (f, x) ∈ F0(P )⇒
(f, x) ∈ F0 by definition. As we have that for all paths not in P the route flow is

null, i.e. p /∈ P ⇒ fp = 0, we get fp(cp(x) − λk − εk) = 0 for all these paths. For

the routes included in P , we have p ∈ P : fp ≥ 0 it holds that cp(x) − λk − εk ≤ 0.

Hence, fp(cp(x)− λk − εk) ≤ 0. The claim follows.

(ii) Assume a non-negative indifference band ε ≥ 0 and let (f, x, λ) ∈ F(ε). Choose for

all commodities k ∈ K those paths whose travel times are within the tolerance band

εk from the minimum cost λk. That is:

P ε,xk = {p ∈ Pk | cp(x)− λk − εk ≤ 0}, for all k ∈ K.

For each p /∈ P ε,xk , k ∈ K, we have then fp = 0 as these paths are too expensive.

Hence, (f, x, λ) ∈ FP ε,x(ε).
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(iii) We discussed earlier that in case ε = 0 (Q(ε)) reduces to Beckmann’s formulation

of a PRUE (Qn). (Qn) and (QP (ε)) are equivalent by choosing ε = 0 and, for each

k ∈ K,

Pk = Pnk := {p ∈ Pk | cp(xn)− λnk = 0}. (5.5.1)

Here (fn, xn), with corresponding KKT multiplier λn, is the (unique with respect

to link flows x) solution of (Qn) under Assumption 1.

P is not necessarily uniquely determined. In other words, different choices of P may

lead to the same result.

(iv) Denote by (fs, xs) with corresponding multiplier vector λs the system optimum, i.e.

the solution of problem (Qs). Set, for all k ∈ K, εsok as defined in (5.3.1) and choose

Pk = {p ∈ Pk | cp(xs)− λsk − εsok ≤ 0}.

In this case (QP (εso)) reduces to (Qs).

(v) Following our discussion, the feasible set F(ε), ε ≥ 0, is the union of all possible

choices of subsets of paths: F(ε) = ∪P⊆PF(ε). Furthermore, let P be fixed and

assume 0 ≤ ε < ε̃. We obtain that

(f, x, λ) ∈ FP (ε)⇒ (f, x, λ) ∈ FP (ε̃),

and, thus,

F(ε) ⊆ F(ε̃).

Which is the claim.

�

As discussed earlier, F(ε) 6= ∅ for all ε ≥ 0. Lemma 5.5.1 (ii) states that for all

ε ≥ 0 there exists a subset of paths P ε ⊆ P (i.e. depending on ε) so that FP (ε) is

nonempty. However, for an arbitrary ε ≥ 0 and arbitrary choice of P ⊆ P we cannot

expect the set FP (ε) to be nonempty. Nonetheless, choosing Pk = Pnk for all k ∈ K
as defined in (5.5.1), FPn(ε) is nonempty for all ε ≥ 0. More precisely, given P ⊆ P,

ε ∈ dom (FP )⇒ ε̃ ∈ dom (FP ) for all ε̃ ≥ ε.
The discussed relations between the feasible sets of the defined optimization problems

(Q(ε)) and (QP (ε)) relate the optimal value functions of these problems. The optimal

value function corresponds to the total travel time of the best-performing BRUE flow

distribution. The optimal value functions for the mentioned problems are thus defined as
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follows:

v(ε) := min
x∈F(ε)

s(x), and vP (ε) := min
x∈FP (ε)

s(x), (5.5.2)

for P ⊆ P. Recall from Lemma 5.5.1 that for given ε ≥ 0:⋃
P⊆P
FP (ε) = F(ε). (5.5.3)

Consequently, for a given ε ≥ 0 and P ⊆ P so that FP (ε) 6= ∅ the following relation holds:

v(ε) ≤ vP (ε).

From Lemma 5.5.1 (ii), for all ε ≥ 0, there exists a subset of paths P ε ⊆ P so that

v(ε) = vP ε(ε)

holds.

Given P ⊆ P, we can check the nonlinear programming optimality conditions corre-

sponding to problem (QP (ε)). Under affine linear latency assumptions and Assumption

1, (QP (ε)) becomes a convex mathematical program for each P ⊆ P. So, the solutions of

these problems are unique with respect to link flow x. Nonetheless, without any additional

information on the choice of the set P ⊆ P the decomposition by branches is not able

to overcome the combinatorial cure of the complementarity constraint problem (i.e. 2|P|

choices for P exist).

5.6 Synthesis

The Best-case BRUE problem, introduced in this chapter, is a mathematical program

with complementarity constraints. The feasible set of this program is not convex and a

regularity condition does not necessarily hold. However, we showed that we can decompose

the problem into branches of easier problems. We indicated that the user equilibrium is

a special case of the BRUE, since the BRUE reduces to the user equilibrium when the

indifference band is 0. Moreover, the Best-case BRUE problem reduces to the problem to

find the system-optimal flow distribution if the indifference band is sufficiently large. Since

the user equilibrium and system-optimal traffic assignment are easy to solve problems,

we use a parametric optimization approach: we study the behavior of the optimization

problem under perturbations in the indifference band. In the next chapter we study the

behavior of a branch problem under perturbations in the tolerance vector.
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Chapter 6

Behavior of (QP (ε))

This chapter discusses the behavior of the feasible set FP (ε), optimal value function vP (ε)

and optimal solution set SP (ε) corresponding to problem (QP (ε)) with respect to pertur-

bations in parameter ε for a given P ⊆ P. Let us introduce an equivalent formulation of

(QP (ε)):

min
x
s(x) s.t. x ∈ FxP (ε).

Where, for each ε ≥ 0, FxP (ε) is the projection of FP (ε) onto the x-space:

FxP (ε) =
{
x ∈ R|E| | ∃(f, λ) ∈ R|P| × R|K| s.t. (f, x, λ) ∈ F0(P ) ∩ Fl ∩ Fu(ε, P )

}
.

We introduce the necessary definitions of the mentioned functions for given P ⊆ P.

The optimal value function is defined as

vP (ε) := min
x∈FxP (ε)

s(x),

and the projection of the optimal solution set onto the x-space is defined by

SxP (ε) := arg min
x∈FxP (ε)

s(x). (6.0.1)

In our study, a (multi-)function is said to be continuous if a small change in the pa-

rameter (input) leads to a small change in the output. For instance, the analysis evaluates

whether link flows change smoothly as the parameter ε changes in problem (QP (ε)). Such

a function is also called stable in other studies (Lu and Nie, 2010; Smith, 1979). Through-

out this section, we will assume that the link latency functions in the network are affine

linear. Under the following Assumption 2, the set FxP (ε) is convex for given P ⊆ P and

ε ≥ 0.

Assumption 2 (Affine linear latencies). Let us assume that the link cost functions

are affine linear and strictly monotone, i.e.: l(x) = Ax + b where A = diag (ae, e ∈ E),
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ae > 0, for all e ∈ E. The route cost vector is then

c(f) = ΓT l(Γf) = ΓTAΓf + ΓT b = Ãf + b̃,

where R|P|×|P|+ 3 Ã := ΓTAΓ and R|P|+ 3 b̃ := ΓT b.

Remark 6.0.1. Since A is positive definite, Ã is positive semidefinite. If Γ has full

column rank, then Ã is positive definite.

Remark 6.0.2. Under Assumption 2, FxP (ε) is a closed polyhedron for all ε ∈ dom (FP ).

6.1 Related Work

Continuity analysis of parametric problems in the (fixed demand) static traffic assignment

has mostly been focusing on local sensitivity. That is: analyzing solutions in a neighbor-

hood around a parameter to account for changes in the parameter. This type of analysis

is particularly useful in anticipating on the effects on link flows by small changes in the

demand d and cost function (Patriksson, 2004).

Most studies in literature on this topic (e.g. Yang (1997)) are based on the seminal

study of Tobin and Friesz (1988) and follow-up study of Cho et al. (2000). The cited

studies used the Implicit Function Theorem to analyze local sensitivity. Let us introduce

a simple parametric program to discuss the limitations of this approach.

For given ε, find local minimizer x = x(ε) of

min
x∈Rn

s(x) s.t. x ∈ F(ε) := {x | gj(x, ε) ≤ 0, j ∈ J}. (P (ε))

Here, we assume that s(x) and gj(x, ε) are twice continuously differentiable. We are

interested in finding local minimizers of (P (ε)) where ε is close to ε̄. We look at the

following system with Lagrange multiplier vector µ ≥ 0:

F (x, ε, µ) :=

[
∇xs(x) +

∑
j∈J0(x̄,ε̄) µj∇xgj(x, ε)

gj∈J0(x̄,ε̄)(x, ε)

]
=

[
0

0

]
.

J0(x̄, ε̄) is the active index set of gj(x, ε), j ∈ J , for given ε̄ and feasible x̄ ∈ F(ε̄). We turned

our system (P (ε)) into a system of equalities F (x, ε, µ) = 0. The Implicit Function Theo-

rem states that if the KKT condition corresponding to (P (ε)) is satisfied with multiplier

vector µ̄, such that (i) the linear independence constraint qualification (LICQ) holds at x̄

with respect to F(ε̄), (ii) strict complementarity holds (i.e. µ̄j > 0, for all j ∈ J0(x̄, ε̄)),

and (iii) x̄ is a first or second order minimizer, then there exists a neighborhood Uδ(ε̄) of ε̄

and continuously differentiable function x(ε), µ(ε) defined on this neighborhood then x(ε)

is a first or second order minimizer of (P (ε)) for any ε ∈ Uδ(ε̄). The derivatives of x(ε),
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µ(ε) are calculated by[
∇εx(ε)

∇εµ(ε)

]
= −

[
∇(x,µ)F (x(ε), ε, µ(ε))

]−1
∇εF (x(ε), ε, µ(ε)).

In the context of the static traffic assignment, the conditions of the Implicit Function

Theorem are as follows. First, the problem should be reduced to a problem where only

routes with positive link flows are included (Chung et al., 2014; Patriksson, 2004), assuming

strict complementarity. Second, since ∇(x,µ)F (x(ε), ε, µ(ε)) should be invertible, a path

flow solution f(ε̄) corresponding to x(ε̄) should be chosen so that this path flow is non-

degenerate (Chung et al., 2014).

Application of the Implicit Function Theorem is particularly useful in the numerical

evaluation of small perturbations. However, the results only hold for the neighborhood

Uδ(ε̄) of ε̄. Although the assumptions of the Implicit Function Theorem were relaxed in

e.g. Patriksson (2004), the provided results only hold locally. Moreover, since LICQ does

not hold for problem (Q(ε)) we need to study continuity on a global and more abstract

level so that we can generalize the continuity results of (QP (ε)) to problem (Q(ε)).

Global continuity was studied in the fixed demand static traffic assignment setting by

Lu and Nie (2010). We take a similar approach in this chapter. Although the setting in

this chapter is different (we study perturbations with respect to indifference vector ε, Lu

and Nie (2010) considered perturbations in the demand and cost vector), some results can

easily be translated into the setting of Lu and Nie (2010). Continuity for problem (Q(ε))

was partially studied by Di et al. (2016).

6.2 Topology

We distinguish upper and lower semicontinuity. An upper semicontinuous multifunction

assures that a set does not explode after a small perturbation in the parameter. Similarly,

lower semicontinuity assures that the set does not implode after perturbing ε.

Definition 6.2.1 (Upper semicontinuity). A multifunction F is said to be upper semi-

continuous at a point ε̄ ∈ dom (F ), if for each τ > 0 there exists a δ > 0 so that the

following condition holds:

F (ε) ⊆ Uτ (F (ε̄)), for all ε ∈ Uδ(ε̄). (6.2.1)

Definition 6.2.2 (Lower semicontinuity). A multifunction F is said to be lower semi-

continuous at ε̄ ∈ dom (F ), if for each τ > 0 there exists a δ > 0 such that

F (ε̄) ⊆ Uτ (F (ε)), for all ε ∈ Uδ(ε̄) (6.2.2)
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holds.

Remark 6.2.1. The definitions of upper and lower semicontinuity in (6.2.1) and (6.2.2)

are due to Hausdorff. Rather than using upper (lower) semicontinuity, in the upcoming

proofs we frequently use the definition of outer (inner) semicontinuity (see Still (2006)).

Since our setting considers compact spaces, the definitions are equivalent.

In case a multifunction is both lower and upper semicontinuous at ε̄ it is said to be

continuous at ε̄. A multifunction F , continuous for all ε ∈ dom (F ), is said to be continuous

relative (to its domain). The upcoming definition of Lipschitz continuity is even stronger

and implies continuity and requires closedness of the point-to-set mapping.

Definition 6.2.3 (Closed mapping). A multifunction F is said to be closed at ε̄ ∈
dom (F ), if for any sequences εn, xn, n ∈ N, with εn → ε̄, xn ∈ F (εn), xn → x̄ implies

x̄ ∈ F (ε̄).

Definition 6.2.4 (Lipschitz continuity). The multifunction F is said to be Lipschitz

continuous at D ⊆ dom (F ), if F (ε) is closed for every ε ∈ D and there exists κ ≥ 0 such

that

F (ε̄) ⊆ Uκ‖ε̄−ε‖ (F (ε)) , for all ε, ε̄ ∈ D. (6.2.3)

For completeness, we give the definitions of upper and lower semicontinuity of a single-

valued function.

Definition 6.2.5 (Upper semicontinuous single-valued function). A single-valued

function v is said to be upper semicontinuous at ε̄ ∈ dom (v), if for each τ > 0, exists

δ > 0 so that

v(ε) ≤ v(ε̄) + τ, for all ‖ε− ε̄‖ < δ.

Definition 6.2.6 (Lower semicontinuous single-valued function). A single-valued

function v is said to be lower semicontinuous at ε̄ ∈ dom (v), if for each τ > 0, exists

δ > 0 so that

v(ε̄) ≤ v(ε) + τ, for all ‖ε− ε̄‖ < δ.

Under Assumption 2 and given ε ≥ 0, FxP (ε), P ⊆ P, is a closed polyhedron (Remark

6.0.2). Then, F(ε) is the union of a finite number of polyhedra but not necessarily a

polyhedron itself. In order to construct Fx(ε) for given ε ≥ 0 out of a set of FxP (ε),

P ⊆ P, it is required to know for which ε ≥ 0, FxP (ε) is nonempty. In other words, we are

interested in dom (FxP ). The next lemma shows that dom (FxP ) is closed for all P ⊆ P.

Lemma 6.2.1 (dom (FxP ) closed). dom (FxP ) is a (closed) polyhedron for all P ⊆ P.

Proof. For any (fixed) P ⊆ P and ε ≥ 0 the feasible set FxP (ε) is defined by linear

inequalities and equations (see Remark 6.0.2). There exist vector c ∈ Rm and matrices
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A ∈ Rm×|K|,B ∈ Rm×|K| so that for all ε the feasible set is described by

FxP (ε) =
{
x ∈ R|E| | Ax+ Bε ≤ c

}
. (6.2.4)

Consider H, the space where x = 0, i.e.:

H =
{

(x, ε) ∈ R|E| × R|K| | x = 0
}
.

We project FxP onto H. projH(FP ) is then the domain of FxP :

projH(FxP ) = {(0, ε) | exists x s.t. x ∈ FxP (ε)} .

By a well-known result (e.g. Theorem 2.5 in Faigle et al. (2013)) projH(FxP ) is also the

solution set of the system B̃ε ≤ c̃, B̃ ∈ Rm×|K|, c̃ ∈ Rm, which is a closed polyhedron. �

6.3 Behavior of FP (ε)

Lemma 6.3.1 shows that the feasible set FxP (ε), P ⊆ P is compact. We emphasize that

F0(P ) is bounded since 0 ≤ xe ≤
∑

k∈K dk for all e ∈ E and 0 ≤ fp ≤ dk for all

p ∈ Pk, k ∈ K.

Lemma 6.3.1 (FxP (ε) compact). Given P ⊆ P, the set FxP (ε) is a closed mapping on

dom (FxP ) and FxP (ε) is a compact set for any ε ∈ dom (FxP ).

Proof. Let P ⊆ P arbitrary and ε0 ∈ dom (FxP ). Since cp(x) − λk − εk is a continuous

function with respect to (x, λ, ε), we get that for a sequence εl → ε0 and (xl, λl) ∈ FxP (εl),

(xl, λl)→ (x0, λ0):

cp(x
0)− λ0

k − ε0k = lim
l→∞

(cp(x
l)− λlk − εlk) ≤ 0,

holds for all p ∈ Pk, k ∈ K. A similar relation holds for the other defining (in)equalities.

Hence, x0 ∈ FxP (ε0) and FxP (ε0) is a closed mapping at ε0. Since ε0 is arbitrarily chosen,

the lemma holds.

Furthermore, since Fu(P, ε) and Fl are closed and F0(P ) is compact, the intersection

of these sets, defining FP (ε), is compact. It follows that FxP (ε) is compact. �

We are ready to state the first continuity result of feasible set FxP (ε), P ⊆ P. Therefore

we utilize the next proposition, stated and proven in Mangasarian and Shiau (1987).

Proposition 6.3.1. (Mangasarian and Shiau, 1987). Let the multifunction F (ε) be de-

fined by F (ε) := {x | Ax ≤ ε}. Then there exists K > 0 such that for any ε0, ε1 ∈ dom (F )
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it holds that for each x0 ∈ F (ε0) there is an x1 ∈ F (ε1) whereby

‖x1 − x0‖ ≤ K‖ε1 − ε0‖

holds.

Under Assumption 2, the set FxP (ε) is a polyhedron for all ε ∈ dom (FP ) (Lemma

6.3.1). Combining this fact with Proposition 6.3.1 gives the next corollary in which we

show that the feasible set FxP (ε) is Lipschitz continuous with respect to perturbations in

ε. Intuitively, the feasible set does not ex- or implode after a perturbation in ε.

Corollary 6.3.1 (FxP (ε) Lipschitz continuous). For any P ⊆ P exists M > 0 so that

for all ε0, ε1 ∈ dom (FP ) and for all x(ε0) ∈ FxP (ε0) there exists an x(ε1) ∈ FxP (ε1) with

the property:

‖x(ε1)− x(ε0)‖ ≤ M‖ε1 − ε0‖.

Hence, FxP (ε) is (Lipschitz) continuous relative to dom (FP ).

Proof. By Proposition 6.3.1 we find that under the assumptions of the corollary the

following holds (see (6.2.4)):

‖x(ε1)− x(ε0)‖ ≤ K‖Bε1 −Bε0‖

≤ K‖B‖‖ε1 − ε0‖

=M‖ε1 − ε0‖.

The second inequality follows from the matrix norm property ‖By‖ ≤ ‖B‖‖y‖ for any

vector y. �

Remark 6.3.1. The previous results and the results in the remainder of this chapter

depend on the continuity and convexity of inequality constraints cp(x) − λk − εk ≤ 0 and

−cp(x) + λk ≤ 0, p ∈ Pk, k ∈ K with respect to x, λ and ε. We lose convexity of the

feasible set if we apply a multiplicative indifference band rather than the additive one

(Remark 4.1.1). Moreover, the results of this chapter do not necessarily hold for higher

polynomial degree latency functions. Then, FP (ε) is not defined by linear (in)equalities.

6.4 Behavior of vP (ε)

We discuss continuity of the optimal value function vP (ε), P ⊆ P, as defined in (5.5.2)

with respect to perturbations in the indifference vector ε. Recall that we assume the link

cost functions to be affine linear (Assumption 2).

The next proposition is the result of the non-decreasing feasible set for increasing ε,

by Lemma 5.5.1 (v).
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Proposition 6.4.1 (vP (ε) monotonically non-increasing). Suppose ε0, ε1 ∈ dom (FP ),

then vP (ε0) ≥ vP (ε1), P ⊆ P.

The statement of Proposition 6.4.1 is straightforward: an increase in tolerance vector ε

widens the range of acceptable travel times: FP (ε0) ⊆ FP (ε1), provided ε1 ≥ ε0. Improve-

ment of the performance of the system requires cooperative behavior among individuals,

i.e. some people have to suffer in favor of others (Jahn et al., 2005). An increase in the

indifference band gives users the opportunity to act in favor of the system.

The following inequality follows directly from Proposition 6.4.1:

v(ε) ≤ v(0), for all ε ≥ 0.

Hence, the PRUE provides an upper bound on the performance with respect to total travel

time of the Best-case BRUE. In other words, the Best-case BRUE performs as least as

good as the PRUE (we made this observation in Example 4.2.1).

It turns out that the optimal value function vP (ε) is convex with respect to ε for given

P ⊆ P. This result is formalized in Lemma 6.4.1.

Lemma 6.4.1 (vP (ε) convex). The optimal value function vP (ε), P ⊆ P, is convex

relative to dom (FP ). That is, for εβ = βε0 + (1− β)ε1,

vP (εβ) ≤ βvP (ε0) + (1− β)vP (ε1),

where ε0 6= ε1 ∈ dom (FP ) and β ∈ [0, 1].

Proof. Let the assumptions of the Lemma hold. Assume x0 ∈ FxP (ε0) and x1 ∈ FxP (ε1).

x0 (x1 respectively) is the optimal solution corresponding to vP (ε0) (vP (ε1) resp.). Define

xβ := βx0 +(1−β)x1 (and λβ, εβ similarly). By Assumption 2, we claim that xβ ∈ FxP (εβ).

Indeed, using l(x) = Ax+ b,

ΓT (Axβ + b)− ΛTλβ − ΛT εβ = ΓT (Ax(βx0 + (1− β)x1) + b)

− ΛT (βλ0 + (1− β)λ1)− ΛT (βε0 + (1− β)ε1)

= βΓT (Ax0 + b) + (1− β)ΓT (Ax1 + b)

− βΛTλ0 − (1− β)ΛTλ1 − βΛε0 − (1− β)Λε1

= β
(
ΓT (Ax0 + b)− ΛTλ0 − ΛT ε0

)
+ (1− β)

(
ΓT (Ax1 + b)− ΛTλ1 − ΛT ε1

)
.

Obviously, a similar analysis holds for the other (in)equalities that define FxP (ε). The

claim of the lemma follows by convexity of the objective function s(x) with respect to link
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flows x:
vP (εβ) ≤ s(xβ) = s(βx0 + (1− β)x1)

≤ βs(x0) + (1− β)s(x1)

= βvP (ε0) + (1− β)vP (ε1).

We have proven that the optimal value function is convex on dom (FP ). �

Remark 6.4.1. The result of Lemma 6.4.1 does not hold when the indifference band is

assumed to be multiplicative (see (4.1.2)). In particular, the feasible set is then not convex

with respect to (x, ε).

Theorem 6.4.1 (vP (ε) continuous). vP (ε), P ⊆ P, is Lipschitz continuous with respect

to dom (FP ). That is, there exists D > 0 so that for all ε0, ε1 ∈ dom (FP ):

‖vP (ε0)− vP (ε1)‖ ≤ D‖ε0 − ε1‖.

Proof. Take any ε0, ε1 ∈ dom (FP ). Let x0 ∈ FxP (ε0), x1 ∈ FxP (ε1) be the optimal solutions

corresponding to these indifference bands respectively, in other words: s(x0) = vP (ε0) and

s(x1) = vP (ε1). By Corollary 6.3.1, exists M > 0 and x̃0 ∈ FxP (ε0) and x̃1 ∈ FxP (ε1) so

that:

‖x̃0 − x1‖ ≤ M‖ε0 − ε1‖, and ‖x̃1 − x0‖ ≤ M‖ε0 − ε1‖.

We find

vP (ε0)− vP (ε1) ≤ s(x̃0)− s(x1) ≤ K‖x̃0 − x1‖ ≤ KM‖ε0 − ε1‖

by Lipschitz continuity of s(x) relative to compact set F0 (since s(x) is continuously

differentiable, see Rockafellar and Wets (2009)). Similarly,

vP (ε1)− vP (ε0) ≤ s(x̃1)− s(x0) ≤ K‖x̃0 − x1‖ ≤ KM‖ε0 − ε1‖.

The statement of the theorem follows by defining D = KM. �

We observe that the optimal value function v(ε) for ε = 0 is equal to the total travel

time in the PRUE. Hence, v(0) = vPn(0) where Pn consists of all the paths with mini-

mum cost in the PRUE. As ε gradually increases, vPn(ε) changes (Lipschitz) continuously.

Moreover, vPn(ε) is close to v(0) when ε is close to 0. In the next section, we strengthen the

result of Theorem 6.4.1 and show that vP (ε) is piecewise quadratic relative to dom (FP ).

We conclude this section with a simple illustration. We indicated that for a given

subset of paths P , vP (ε) is globally Lipschitz continuous, decreasing, convex and piecewise

quadratic. Figure 6.4.1 illustrates this behavior for a one dimensional ε.
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ε

vP (ε)

dom(FP )

Figure 6.4.1: Illustration of piecewise quadratic, monotonically non-increasing behavior
of value function vP (ε), P ⊆ P, relative to dom (FP ). The dots indicate the borders
between pieces in which vP (ε) behaves quadratic.

6.5 Behavior of SP (ε)

Assumption 2 assures that the optimal link flow solution is unique for (QP (ε)), P ⊆ P,

for given ε ∈ dom (FP ). Indeed, (QP (ε)) is a convex optimization problem with a strictly

convex objective function. Thus, the optimal solution set for this problem with respect

to link flows is a singleton, i.e. SxP (ε) = {xP (ε)}. Note that corresponding route flows

f to x, and corresponding (lower bound) minimum path cost vector λ do not influence

the value function s(x). We can prove locally 1
2 -Hölder continuity of xP (ε) relative to its

domain by utilizing the second-order sufficient optimality conditions over a polyhedron

(see Still and Streng (1996)). However, since the objective function is quadratic, we prove

Lipschitz-continuity of the optimal solution xP (ε). We start by a theorem that proves

continuity of the optimal link flow solution.

Theorem 6.5.1 (xP (ε) continuous). xP (ε) is a continuous function relative to dom (FP ).

Proof. First we show that SxP (ε) is a closed mapping at each ε ∈ dom (FP ), using the

approach of Bank et al. (1983). We equivalently define SxP (ε) as the intersection of two

sets:

SxP (ε) = FxP (ε) ∩ {x | s(x) ≤ vP (ε)}.

Since the intersection of two closed mappings is closed, we solely have to prove that the

mapping defined by {x | s(x) ≤ vP (ε)} is a closed mapping.

Take ε0 ∈ dom (FP ) arbitrary. Let the sequences εn → ε0 be given and take xl s.t.

s(xl) ≤ vP (εn) for all l ∈ N. Then, xl → x0 implies that s(x0) ≤ vP (ε0). Indeed,

s(xl) ≤ vP (εl) implies s(x0) ≤ vP (ε0),
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by continuity of s(x) and vP (ε).

We show continuity of xP (ε). Take ε0 ∈ dom (FP ), x0 ∈ SxP (ε0), εl → ε0 and

xl ∈ SxP (εn). We have to show that xl → x0. Assume to the contrary that there ex-

ists a subsequence xlk 6→ x0. By compactness there exists a subsequence x
lkj of xlk which

converges, i.e. x
lkj → x̄ ∈ SxP (ε0) by closedness of SxP (ε) at any ε ∈ dom (FP ). Since

SxP (ε0) is a singleton, we get x̄ = x0, leading to a contradiction. �

In the previous section we proved that vPn(ε) is close to v(0) as long as ε is close to 0.

The result of Theorem 6.5.1 shows that the corresponding link flow is close as well.

To prove that xP (ε) is Lipschitz continuous we consider quadratic (convex) minimiza-

tion problem (Q̃P (ε)), given P ⊆ P, as equivalent of (QP (ε)). We project FP (ε) onto R|E|

and obtain FxP (ε), defined by linear (in)equalities. For the purpose of our argument we

define FxP (ε) := Ax ≤ ε.

min
x
xTAx+ bTx s.t. Ax ≤ ε. (Q̃P (ε))

Here, A ∈ Rm×k. A is a diagonal matrix and is positive definite (Assumption 2). So, for

fixed P ⊆ P and ε ∈ dom (FP ) we have a unique solution x̄ = xP (ε) of quadratic problem

(QP (ε)).

Given P ⊆ P, for each ε ∈ dom (FP ) the associated Lagrange dual problem of (Q̃P (ε))

is given by

2Ax+ b+ATµ = 0,

Ax ≤ ε,

(Ax− ε)Tµ = 0,

µ ≥ 0,

(6.5.1)

with corresponding multiplier µ ∈ Rm. By the mentioned assumptions, x solves (Q̃P (ε))

if and only if (x, µ) solves the system in (6.5.1). We utilize the Lagrange dual system of

(6.5.1) to prove that the optimal solution xP (ε) of problem (QP (ε)) is a piecewise affine

function with respect to its domain. We use a comparable approach as in Bank et al.

(1983).

Lemma 6.5.1 (xP (ε) piecewise affine). xP (ε) is a piecewise affine function with respect

to dom (FP ).

Proof. Let us define, given ε ≥ 0, the index set Ix(ε) ⊆ {1, . . . , n} with respect to a

feasible x of problem (Q̃P (ε)) (Aj,. is the jth row of matrix A):

Ix(ε) = {j | Aj,.x = εj}

By positive definiteness of matrix A, x̄ is the unique solution of (Q̃P (ε)). So, we can
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uniquely define the characterizing index set I = Ix̄(ε) corresponding to this optimal

solution. Hence, x̄ is a solution of the following system of equations:

2Ax+ATµ = −b;

Aj,.x = εj , j ∈ I;

µj = 0, j /∈ I.

(6.5.2)

Define the associated matrix MI to (6.5.2) by

MI =


2A AT

Aj,. 0

0 Im\|I|

 ,
where Im denotes an identity matrix of size m ×m. MI is not necessarily non-singular

and thus we need to define M+
I to be the pseudoinverse of MI (Bank et al., 1983, p. 135).

Then, [
x+

µ+

]
= M+

I


−b
ε

0


is the corresponding solution (x, µ) of system (6.5.2) with smallest Euclidean norm. Now,

for any ε ∈ dom (FP ), solution xP (ε) of (Q̃P (ε)) is given by (I = IxP (ε)(ε))

xP (ε) = −M+,1
I b+M+,2

I ε, (6.5.3)

obviously linear in tolerance vector ε. Here,

M+
I =

[
M+,1
I M+,2

I M+,3
I

M+,4
I M+,5

I M+,6
I

]
.

Since I ⊆ {1, . . . , n} only a finite number of active index sets I can occur. By continuity

of optimal solution xP (ε), we have that xP (ε) is a piecewise affine function with respect

to ε. �

We have proven that the optimal solution xP (ε) behaves continuously relative to

dom (FP ) and can be partitioned so that on each partition it is linear in tolerance vector ε.

The continuous and piecewise linear behavior of this function makes that xP (ε) is globally

Lipschitz continuous.

Theorem 6.5.2 (xP (ε) Lipschitz continuous). Given P ⊆ P, there exists W > 0 so
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that for all ε0, ε1 ∈ dom (FP ),

‖xP (ε0)− xP (ε1)‖ ≤W‖ε0 − ε1‖

holds. Here, xP (ε) = arg minx∈FxP (ε) vP (ε).

Proof. We claim that for a given index set I ⊆ {1, . . . ,m} the solution set of KKT

system (6.5.2) is convex. We define the stability set Ω(I) as the domain corresponding to

this index I:

Ω(I) =
{
ε ∈ dom (FP ) | IxP (ε)(ε) = I

}
.

Clearly, Ω(I) for all possible I gives a partitioning of dom (FP ).

Regard Ω(I) as the projection of the system

2Ax+ b+ATµ = 0;

Ax ≤ ε;

Aj,.x = εj , j ∈ I;

µj = 0, j /∈ I;

onto the ε-space. Since the projection of a closed polyhedron is a closed polyhedron, Ω(I)

is a closed polyhedron.

Segment [ε0, ε1] = {(1− β)ε0 + βε1|0 ≤ β ≤ 1} can be covered by finitely many Ω(I).

In other words: there exist finitely many points 0 = β0 < β1 < · · · < βn = 1 so that

[0, 1] = [β0, β1] ∪ [β1, β2] ∪ · · · ∪ [βn−1, βn].

Define εβ = ((1 − β)ε0 + βε1), β ∈ [0, 1]. For β ∈ [βj , βj+1], j = 0, . . . , n − 1, with

corresponding Ij , xP (ε) is given by the linear system (6.5.3) with I = Ij . Then:

xP (εβj )− xP (εβj+1) = M+,2
Ij (εβj − εβj+1),

‖xP (εβj )− xP (εβj+1)‖ ≤ ‖M+,2
Ij ‖‖ε

βj − εβj+1‖ ≤W‖εβj − εβj+1‖

for all j = 0, . . . , n− 1 with

W := max
j
‖M+,2
Ij ‖.

M+
Ij refers to the pseudoinverse of the matrix associated to the Langrage system (6.5.2)

for β ∈ [βj , βj + 1]. It follows by continuity of xP (ε) relative to its domain (Lemma 6.5.1)
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that there exists W > 0 so that for all ε0, ε1 ∈ dom (FP ) the following holds:

‖xP (ε0)− xP (ε1)‖ ≤
n−1∑
j=0

‖xP (εβj )− xP (εβj+1)‖

≤W
n−1∑
j=0

‖εβj − εβj+1‖

= W‖ε0 − ε1‖.

(6.5.4)

So, xP (ε) is Lipschitz continuous relative to its domain. �

Since xP (ε) is piecewise affine with respect to the domain, vP (ε) is a piecewise quadratic

function. The corollary follows directly from the fact that s(x) is a quadratic function given

Assumption 2.

Corollary 6.5.1 (vP (ε) piecewise quadratic function). Optimal value function vP (ε),

P ⊆ P, is a (Lipschitz) continuous piecewise quadratic function with respect to the domain

dom (FP ).

6.6 Example

In the upcoming example we show the piecewise quadratic behavior of the optimal value

function vP (ε) and the piecewise linearity of xP (ε). The example is an adapted Braess’

network and was earlier studied by Di et al. (2013, 2016) and Lou et al. (2010).

Consider the network in Figure 6.6.1 with corresponding route set P that consists of

four paths. Namely:

a = {1, 6}, b = {1, 5, 4}, c = {2, 3, 4}, d = {2, 6},

that all connect OD pair (A,D). We send total demand of d(A,D) = 6.

We solve (Q(ε)) for ε = 0, which is equivalent to solving convex problem (Qn) (see

Section 5.3). We find

xn = (xn1 , x
n
2 , x

n
3 , x

n
4 , x

n
5 , x

n
6 ) = (4, 2, 0, 4, 2, 2).

Since in this particular case route flow f is uniquely determined out of link flow distribution

x, we have:

fn = (fna , f
n
b , f

n
c , f

n
d ) = (2, 2, 0, 2).

Solving for the system optimum gives:

fs = (2.846, 0, 0.308, 2.846).
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Figure 6.6.1: Extended Braess’ network (Lou et al., 2010).

Therefore, let us choose P = Pn = {a, b, d} and P = {a, b, c, d}. Solving the program in

(6.6.1) for P and P respectively, gives us dom (FP ) = [0,∞) and dom (FP) = [6.5,∞),

respectively.

min
(ε)

ε s.t. ∃(f, x, λ) ∈ FP (ε) (6.6.1)

We recall that F(ε) = ∪P⊆PFP (ε) and thus:

F(ε) =

 FP (ε) for ε ∈ [0, 6.5);

FP (ε) ∪ FP(ε) for ε ∈ [6.5,∞).

We consider the branches of problems (QP (ε)) and (QP(ε)) separately. We illustrate our

approach for the subset of paths P , but the analysis can easily be repeated for problem

(QP(ε)). (QP (ε)) is a convex quadratic minimization problem. Define the index sets

I = (If , Il, Iu) for (f, x, λ) ∈ FP (ε), given P ⊆ P, as follows:

If := {p ∈ P | fp = 0};

Il := {p ∈ P | cp(f) = λk};

Iu := {p ∈ P | cp(f) = λk + εk}.

Although numerous possibilities for I = (If , Il, Iu) exist, we can decompose dom (FP ) by

defining stability sets Ω(I) and using only four index sets:

Ω(I0) = {0}, Ω(I1) = [0, 13], Ω(I2) = {13}, Ω(I3) = [13,∞).

We define the following index sets:
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If Il Iu

I0 ∅ {a, b, d} {a, b, d}
I1 ∅ {b} {a, d}
I2 {b} {b} {a, d}
I3 {b} {b} ∅

Simple calculus leads to the optimal route flow fP (ε) corresponding to link flow solution

xP (ε) (we used f rather than x for convenience):

fP (ε) =



(2, 2, 0, 2) if ε ∈ Ω(I0);

(2 + 1
13ε, 2−

2
13ε, 0, 2 + 1

13ε) if ε ∈ Ω(I1);

(3, 0, 0, 3) if ε ∈ Ω(I2);

(3, 0, 0, 3) if ε ∈ Ω(I3).

Further,

vP (ε) =



552 if ε ∈ Ω(I0);

552 + 2
13(ε2 − 40ε) if ε ∈ Ω(I1);

498 if ε ∈ Ω(I2);

498 if ε ∈ Ω(I3).

Clearly fP (ε) (and thus xP (ε)) is piecewise affine and vP (ε) is a piecewise quadratic func-

tion. We apply the same method to find vP(ε) and xP(ε) on dom (FP). Figure 6.6.2 shows

the optimal flow solutions fP (ε) and fP(ε). Figure 6.6.3 shows the optimal value functions

vP (ε), vP(ε).

6.7 Synthesis

We studied the continuity of branch problem (QP (ε)) under affine linear latencies and

showed that the feasible set, optimal value function and optimal solution set corresponding

to this problem are (Lipschitz) continuous with respect to perturbations in the indifference

band. In the next chapter we try to generalize the results of problem (QP (ε)) to the Best-

case BRUE problem (Q(ε)).
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(a) Optimal route flow solution fP (ε) corre-
sponding to (QP (ε)).
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(b) Optimal route flow solution fP(ε) corre-
sponding to (QP(ε))

Figure 6.6.2: Optimal flow solutions f(ε) corresponding to the network in Figure 6.6.1.
The dots indicate borders between two stability sets.
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Figure 6.6.3: Piecewise quadratic optimal value function vP (ε) and vP(ε) corresponding
to the network of Figure 6.6.1.
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Chapter 7

Behavior of (Q(ε))

This chapter tries to generalize the results of problem (QP (ε)) to (Q(ε)). We treat in

detail continuity of feasible set F(ε), optimal value function v(ε) and optimal solution set

S(ε) with respect to perturbations in ε. We look at an equivalent formulation of (Q(ε)):

min
x
s(x) s.t. x ∈ Fx(ε). (7.0.1)

Throughout this chapter, Assumption 2 holds. So, we only consider the case in which the

latency functions of the edges are affine linear and strict monotone.

For each ε ≥ 0 the feasible set Fx(ε) in problem (7.0.1) is the projection of F(ε) onto

R|E|, i.e.:

Fx(ε) =
{
x ∈ R|E| | ∃(f, λ) ∈ R|P| × R|K| s.t. (f, x, λ) ∈ F0 ∩ Fu(ε) ∩ Fl

}
,

equivalently defined by

Fx(ε) =
⋃
P⊆P
FxP (ε),

which is a union of closed polyhedra and Fx(ε) is therefore a compact and nonempty set

for each ε ≥ 0. The corresponding optimal value function and optimal solution set are

respectively defined as

v(ε) := min
x∈Fx(ε)

s(x), and Sx(ε) := arg min
x∈Fx(ε)

s(x).

Before we treat continuity of the mentioned (multi-)functions in detail, it is important

to notice that the statements of previous chapter do not easily be generalize to problem

(Q(ε)). For instance FxP (ε) being continuous with respect to dom (FP ) for all P ⊆ P does

not imply that Fx(ε) is continuous at all ε ≥ 0. Similar claims hold with respect to v(ε)

and Sx(ε).
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7.1 Behavior of F(ε)

We turn our attention to the feasible set Fx(ε). Recall that the feasible set is the union

of the feasible sets of the branches, i.e. Fx(ε) =
⋃
P⊆P FxP (ε). Using this statement, we

arrive at the following lemma:

Lemma 7.1.1 (Fx(ε) closed and upper semicontinuous). The multifunction Fx(ε)

is

(i) a closed mapping at all ε ≥ 0.

(ii) upper Lipschitz semicontinuous relative to its domain, i.e. for all ε0 ≥ 0, exists

K > 0 and δ > 0 so that

Fx(ε1) ⊆ UK‖ε1−ε0‖
(
Fx(ε0)

)
, for all ε1 ∈ Uδ(ε0). (7.1.1)

Proof.

(i) Let ε0 ≥ 0 be arbitrary. Let εl → ε0, xl → x0 and xl ∈ Fx(εl). We show that

x0 ∈ Fx(ε0). By Lemma 5.5.1 exists for each l ∈ N, path set P l ⊆ P so that

xl ∈ FP l(εl). We can choose a subsequence xlj so that εlj → ε0, xlj → x0 and

xlj ∈ FxP 0(εlj ), i.e. P lj = P 0 for all εlj . By closedness of FxP 0(ε) we get that

x0 ∈ FxP 0(ε0).

(ii) Let ε0 be given. We show that there exists δ > 0 so that for all ε1 sufficiently

close to ε0, i.e. ‖ε1 − ε0‖ < δ we have ε1 ∈ dom (FP ) ⇒ ε0 ∈ dom (FP ) for any

P ⊆ P. Otherwise there would exist sequence ε1 → ε0, for which ε1 ∈ dom (FP )

but ε0 /∈ dom (FP ). This contradicts the fact dom (FP ) is closed. So, take δ > 0

as above and x1 ∈ Fx(ε1). There exists P ⊆ P so that x1 ∈ FxP (ε1). By applying

Corollary 6.3.1 we find (7.1.1).

�

Upper semicontinuity of F(ε) under affine linear latency functions was also proven by

Di et al. (2016).

In general, we cannot expect that F(ε) is Lipschitz continuous with respect to per-

turbations in ε. The ‘discontinuity’ may arise for example if the feasible sets for different

subsets of paths are distinct. By that we mean that

dom (FP ) 6= dom (FQ) , and FP (ε) 6= FQ(ε), for Q 6= P.
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Figure 7.1.1 illutsrates this behavior graphically. Here, we assume ε to be one-dimensional,

i.e. ε = te|K|, in which t ∈ R+ and e|K| is the all-ones vector of size |K|. Note that in

our illustration F(ε) = FP (ε) ∪ FQ(ε) and we see that dom (FP ) = {ε | ε ≥ 0} and

dom (FQ) = {ε | ε ≥ ε1}.

ε

x

FP (ε)

FQ(ε)

0 ε0 ε1 ε2

(a) F(ε) upper semicontinuous but
not lower semicontinuous at ε1.

ε

x

FP (ε)

FQ(ε)

0 ε0 ε1 ε2

(b) F(ε) connected but not lower
semicontinuous at ε1.

ε

x

FP (ε)

FQ(ε)

0 ε0 ε1 ε2

(c) F(ε) continuous at all ε.

Figure 7.1.1: Illustrations of continuity of F(ε) = FQ(ε) ∪ FP (ε).

Figure 7.1.1a indicates that although FP (ε) and FQ(ε) are both Lipschitz continuous

relative to their domain, F(ε) is upper semicontinuous at all ε ≥ 0 but it is not lower

semicontinuous at ε1. For an arbitrary x1 ∈ FQ(ε1) there does not exist a nearby x0 ∈
F(ε0) = FP (ε0) so that the distance between these two points is bounded from above.

Indeed, the set FQ(ε) implodes after perturbing ε1 to ε0. However, if we choose indifference

band ε2 ≥ ε1 this problem will not arise since FQ(ε2) is nonempty and then Corollary 6.3.1

holds.

If F(ε) is connected, as in Figure 7.1.1b, we can construct a path from any (ε0, x0)

to any (ε1, x1) without leaving the graph. Intuitively, all nonempty subsets FP (ε) should

then overlap. Figure 7.1.1b and Figure 7.1.1c shows that F(ε) being connected at all ε ≥ 0

is not a sufficient condition to assure continuity of F(ε). Still, perturbing ε1 to ε0 leads

to an implosion of feasible set F(ε) in Figure 7.1.1b. However, connectedness plays a role

in stability of the boundedly rational user equilibrium in a day-to-day setting (Di et al.,

2014b).

The implosion does not occur if we consider the setting in Figure 7.1.1c. Here, F(ε)

is continuous. These illustrations support our earlier statement that we cannot easily

generalize the continuity results of previous chapter.

Example 7.1.1. We show later that if f is uniquely determined out of x, F(ε) behaves

continuously. In this example, based on Di et al. (2016), we show that if we relax Assump-

tion 1, we cannot expect feasible set F(ε) to be lower semicontinuous.

Consider the two-link network in Figure 7.1.2a. Two edges connect commodity (A,B)
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in the network and each link has a linear latency function. We send demand d = 1 from

node A to B.

2

3

A B

(a) Example Network.

ε

x1

0 0.5 1 1.5 2

0.25

0.5

0.75

1

F(ε)

(b) F(ε) is only upper semicontinuous at ε = 1.

Figure 7.1.2: Example, relaxing Assumption 1, in which F(ε) is not lower semicontinu-
ous.

Figure 7.1.2b shows the corresponding feasible set F(ε) for varying ε. Obviously, F(ε)

is only upper semicontinuous at ε = 1. Indeed, for ε ≥ 1 any flow distribution that meets

the demand is a feasible flow. For ε < 1, only x1 = 1 is a feasible BRUE flow.

7.2 Behavior of v(ε)

It is straightforward to see that the optimal value function is the minimum of vP (ε) over

all possible subsets of P. In other words:

v(ε) = min
P⊆P:FP (ε)6=∅

vP (ε), for all ε ≥ 0. (7.2.1)

The optimal value function v(ε) for ε = 0 equals the total travel time of the PRUE flow

distribution. Hence, v(0) = vPn(0) in which Pn consists of all the paths having minimum

cost in the PRUE (see (5.5.1)). From our earlier discussion, the optimal value function

shows convex (in fact, piecewise quadratic) behavior over [0, ε0] as long as the optimal

solution lies in FxPn(ε) for all ε ∈ [0, ε0]. The optimal value function will make a jump at

ε0 in case the global minimizer at ε0 lies in FP (ε0) \ FPn(ε0), P 6= Pn. This jump makes

that we cannot expect v(ε) to behave continuously relative ε.

Figure 7.2.1 illustrates this property of v(ε) graphically. Here, we introduce a quadratic

objective function and depict its level set. In addition, we show the behavior of the

corresponding objective function v(ε) as defined in (7.2.1). Since Fx(ε) is in general

only upper semicontinuous (Figure 7.2.1a) we cannot expect v(ε) to behave continuously
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(Figure 7.2.1b). In this particular case, v(ε) makes a jump at ε1. Connectedness of Fx(ε)

as in Figure 7.2.1c is not a sufficient condition for continuity of v(ε). Indeed, the optimal

value function Figure 7.2.1d depicts is not different from the optimal value function in

Figure 7.2.1b. The behavior of v(ε) is then said to be piecewise continuous, i.e. v(ε) is a

single-valued function that is discontinuous but can be partitioned so that v(ε) behaves

continuously over each partition. In addition, v(ε) is a decreasing function with respect

to increasing ε (Proposition 6.4.1).

The next lemma formalizes previous discussion and indicates that v(ε) is a lower semi-

continuous function. So, v(ε) cannot become significantly smaller by perturbing ε.

Lemma 7.2.1 (v(ε) lower semicontinuous). For all ε0 ≥ 0 exists a Lipschitz modulus

LK > 0 and δ > 0 so that:

v(ε0)− v(ε1) ≤ LK‖ε1 − ε0‖, for all ε1 ∈ Vδ(ε0).

Proof. Let ε0 be arbitrary. Define δ > 0 as in Lemma 7.1.1 and take ε1 ∈ Vδ(ε0). Suppose

x̄(ε1) ∈ Fx(ε1) and x̄(ε0) ∈ Fx(ε0) are the optimal link flow solutions corresponding to

v(ε1), v(ε0) respectively. We have from Lemma 7.1.1 (i) that under the assumptions of the

Lemma for x̄(ε1) ∈ Fx(ε1) exists an x(ε0) ∈ Fx(ε0) (which is the closest in the Euclidean

norm) so that the distance is bounded by K‖ε1 − ε0‖:

v(ε0)− v(ε1) = s(x̄(ε0))− s(x̄(ε1))

≤ s(x(ε0))− s(x̄(ε1))

≤ L‖x(ε0)− x̄(ε1)‖

≤ LK‖ε1 − ε0‖.

The second inequality follows from the Lipschitz continuity of the (convex) objective func-

tion on the Euclidean space. �

Figure 7.2.1e and Figure 7.2.1f show that continuity of Fx(ε) is a sufficient condition

for v(ε) to be continuous.

Theorem 7.2.1 (v(ε) Lipschitz continuous if Fx(ε) is Lipschitz continuous). Sup-

pose Fx(ε) is Lipschitz continuous relative to its domain, then v(ε) is Lipschitz continuous

(in fact, piecewise quadratic) at all ε ≥ 0.

Proof. The proof is similar to the one given in Lemma 7.2.1. �

Let us interpret the result of this section. We showed that v(ε) is not necessarily con-

tinuous with respect to perturbations in ε under Assumption 2. Hence, from a sensitivity

analysis point of view, a small perturbation in ε may lead to a significant change in per-
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(a) F(ε) upper semicontinuous.
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(b) v(ε) discontinuous.
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(c) F(ε) connected.
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(d) v(ε) discontinuous.
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(e) F(ε) continuous.

0 ε0 ε1 ε2

vP (ε)

vQ(ε)
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ε

v(ε)

(f) v(ε) continuous.

Figure 7.2.1: Continuity of F(ε) and implications for continuity of v(ε).

formance of the system. This possibly occurs if the parameter ε is not in accordance with

the real-life indifference band, i.e. if ε is not perfectly calibrated.

Remark 7.2.1. If Fx(ε) is Lipschitz continuos, v(ε) is Lipschitz continuous as well rela-
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tive to ε ≥ 0. In fact, v(ε) is then a piecewise quadratic function because vP (ε) is piecewise

quadratic relative to dom (FP ) for all P ⊆ P. However, although vP (ε) is convex relative

to dom (FP ), v(ε) is then not necessarily convex (Figure 7.2.1f).

7.3 Behavior of S(ε)

We indicated that the continuity of Fx(ε) is a sufficient condition for v(ε) to be continuous

relative to its domain. In this section, we consider the continuity of the optimal solution

set S(ε).

Assumptions 1 and 2 assure that the optimal link flow solution is unique for problem

(QP (ε)), P ⊆ P, for all indifference vectors ε ≥ 0 in dom (FP ). Moreover, treating

this optimal solution xP (ε) as a function with respect to perturbations in ε, the optimal

link flow solution is piecewise affine and thus Lipschitz continuous relative to dom (FP )

(Theorem 6.5.2).

Similar claims for Sx(ε) are unlikely. The optimal solution set Sx(ε) is in general not

continuous. A look at Figure 7.2.1a and Figure 7.2.1b supports this claim. Here, F(ε) is

not continuous and therefore we cannot expect that v(ε) behaves continuously. Obviously,

having a continuous objective function makes that if the optimal value function is not

continuous, the optimal solution set cannot be continuous. On the other hand, if it turns

out that F(ε) is continuous, then we have that the optimal value function v(ε) is continuous

but in general we do not have that Sx(ε) is continuous.

Lemma 7.3.1 (v(ε) continuous ⇒ Sx(ε) upper semicontinuous ). Suppose v(ε) is

continuous relative to its domain, then Sx(ε) is upper semicontinuous at all ε ≥ 0.

Proof. Using the same proof as in Theorem 6.5.1, we find that Sx(ε) is a closed mapping

and it is contained in the compact set F0. Assume that Sx(ε) is not upper semicontinuous

at ε0. Now, exists sequence εl → ε0, xl ∈ Sx(εl) and xl → x0 but x0 /∈ Sx(ε0). Since

x0 /∈ Sx(ε0) we have that s(x0) > v(ε0). Then,

lim
l→∞

v(εl) = lim
l→∞

s(xl) = s(x0) > v(ε0),

contradicting the continuity of v(ε) at ε0. �

Main observation is that in general even Fx(ε) being continuous is not sufficient for our

optimal solution set Sx(ε) to behave continuously relative to ε ≥ 0. For an authority this

behavior is undesirable. For instance, if ε is not well-calibrated, the route choice behavior

of travelers for this indifference band may be completely different compared to the setting

in which the ε is perfectly mirrors real-life decisions. Obviously, it is questionable whether

the indifference band can be perfectly calibrated in practice.
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We finish this section by a numerical example in which v(ε) is continuous but the

optimal solution set is not.

4x1 + 2

9x4 + 102x3 + 9.53x2 + 10

x5 + 9

3x6 + 7

9x8

x7 + 4

A B

C
D

F
E

Figure 7.3.1: Network corresponding to Example 7.3.1

Example 7.3.1 (Discontinuous optimal link flows). Figure 7.3.1 shows a test net-

work including the latency functions for all links. There are two commodities: (A,F ) and

(E,F ), demand for both commodities is 3. There are three paths that connect (A,F ) and

two paths which connect (E,F ). The route flow f is uniquely determined out of x. Indeed,

rank

([
Λ

Γ

])
= 5. We will see in a later chapter that the full column rank of this matrix

implies continuity of the feasible set.
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Figure 7.3.2: Optimal value function and optimal solution for different ε in the Network
of Figure 7.3.1.

We perform numerical experiments for βε0 in which ε0 is the vector of maximum travel
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time differences in the system-optimal flow distribution and β ranges from 0 to 1. We found

the Best-case BRUE flow distribution using a branch-and-bound algorithm (Section 10.1).

We see that the optimal value function v(ε) behaves continuously and piecewise quadratic

with respect to ε (Figure 7.3.2a). However, the optimal link flow solution x1(ε) for edge

1 does not behave continuous with respect to an increasing ε (Figure 7.3.2b). We notice

that on the pieces on which v(ε) behaves quadratic, x1(ε) behaves affine linear.

7.4 Synthesis

We generalized the results from the branch problem (QP (ε)) to the Best-case BRUE

problem (Q(ε)). We showed that even under affine linear link costs, the problem is difficult

and lacks favorable properties. By that we mean that the feasible set, optimal value

function and optimal solution set are in general not continuous. In the next chapter

we propose a bilevel reformulation to generalize these results to more general latency

functions.
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Chapter 8

The Bilevel Reformulation

In previous chapters we showed that the Best-case BRUE problem (Q(ε)) is possibly not

continuous with respect to perturbations in ε, even if we limit ourselves to affine linear

link cost functions. In this chapter, we reformulate the problem as a bilevel optimization

problem which gives us the opportunity to consider problem (Q(ε)) under higher order

polynomial link cost functions given Assumption 1 (e.g. the BPR-function). We see that

the same difficulties arise as in the previous chapters. However, the bilevel formulation we

present in this chapter allows us to formulate an algorithm which finds an approximate

Best-case BRUE flow distribution for a given ε ≥ 0 without any additional assumptions

on the link cost functions. Chapter 9 discusses this algorithm.

8.1 The Bilevel Problem

The construction of the feasible set F(ε) of all BRUE flow distributions requires the

identification of the paths p ∈ Pk, k ∈ K, for which cp(x) − λk − εk ≤ 0 holds. To

decompose the feasible set by branches, we require a method to identify the acceptable

paths. However, we can construct F(ε) by solving a set of mathematical programs without

any explicit knowledge about these paths beforehand.

Consider the following optimization problem for any 0 ≤ ρ ≤ ε (formally: 0 ≤ ρ ≤ ΛT ε,

but we abuse notation for convenience):

min
(f,x)

z(f, x, ρ) :=
∑
e∈E

∫ xe

0
le(τ)dτ − ρT f s.t. (f, x) ∈ F0. (q(ρ))

We will refer to problem (q(ρ)) as the lower-level problem.

Before we continue, let us introduce the optimal value function φ(ρ) corresponding to

(q(ρ)):

φ(ρ) = min
(f,x)∈F0

z(f, x, ρ),
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and the optimal solution set ψ(ρ) given 0 ≤ ρ ≤ ε:

ψ(ρ) =
{

(f, x) (f, x) ∈ arg minφ(ρ), (f, x) ∈ F0

}
.

Under Assumption 1, the objective function z(f, x, ρ) is continuous on R|P| × R|E| × R|P|

and is convex in (ρ, f, x). Thus, (q(ρ)) is a convex optimization problem. We see that

any solution of (q(ρ)), provided 0 ≤ ρ ≤ ε, is a flow distribution which is contained in

F(ε). Since for convex optimization problems it holds that the KKT conditions are both

sufficient and necessary for a solution to be globally optimal, we can formulate the next

lemma.

Lemma 8.1.1. (Di et al., 2013). Let ε ≥ 0 be fixed. (f, x) ∈ F(ε) if and only if exists ρ,

0 ≤ ρ ≤ ε, so that (f, x) ∈ ψ(ρ).

Proof. We consider the system of KKT conditions corresponding to (q(ρ)). For that,

we introduce Langrange multiplier vector (β, λ, γ) ∈ R|E| × R|K| × R|P| and then any

(f, x) ∈ F0 is a global optimal solution of (q(ρ)) if and only if (f, x) satisfies the system

with Lagrange multipliers (β, λ, γ), γ ≥ 0:

l(x)− β = 0 (d− Λf)Tλ = 0 (Γf − x)Tβ = 0

fTγ = 0 ΓTβ − γ − ΛTλ− ρ = 0 (f, x) ∈ F0

(8.1.1)

We find that (we substitute βe = le(xe) for all e ∈ E):∑
e∈p

le(xe)− γp − λk − ρp = 0, for all p ∈ Pk, k ∈ K.

Since γp, ρp ≥ 0 for all p ∈ P we obtain:∑
e∈p

le(xe) ≥ λk + γp + ρp ≥ λk, for all p ∈ Pk, k ∈ K.

Whereas this inequality holds for all paths for this commodity, we interpret λk as the

minimum cost to travel for commodity k ∈ K:

min
p∈Pk

∑
e∈p

le(xe) ≥ λk, for all k ∈ K.

For any p ∈ Pk, k ∈ K, which carries flow (i.e. fp > 0), we obtain from the complementarity

condition fpγp = 0 that

fp > 0⇒
∑
e∈p

le(xe) = λk + ρp ≤ λk + εk ≤ min
q∈Pk

∑
e∈q

le(xe) + εk,

which is exactly the BRUE condition (4.1.1).
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To prove that for any (f, x) ∈ F(ε) exists 0 ≤ ρ ≤ ε so that (f, x) ∈ ψ(ρ), we again

use the KKT conditions in (8.1.1) and use a similar approach as in Di et al. (2013). Let

(f, x) ∈ F(ε) be arbitrary (obviously, (f, x) ∈ F0) and define βe = le(xe) for each e ∈ E.

Furthermore define for all k ∈ K:

λk := min
p∈Pk

le(xe).

and

ρp :=


∑

e∈p le(xe)− λk if
∑

e∈p le(xe) ≤ λk + εk;

εk otherwise.

It directly follows that 0 ≤ ρ ≤ ε. Define γp for each p ∈ Pk, k ∈ K as follows

γp :=

 0 if
∑

e∈p le(xe) ≤ λk + εk;∑
e∈p le(xe)− εk − λk otherwise.

The complementarity condition fTγ is satisfied and γp ≥ 0. Then:∑
e∈p

le(xe)− γp − λk − ρp = 0, for all p ∈ Pk, k ∈ K.

By our choices for the Lagrange multiplier vectors and 0 ≤ ρ ≤ ε, we have that (f, x, β, λ, γ)

satisfies the system in (8.1.1). �

The relation between mathematical program (q(ρ)) and set F(ε) has become clear.

Based on Lemma 8.1.1, the following holds:

F(ε) =
⋃

0≤ρ≤ε
ψ(ρ). (8.1.2)

Since (q(ρ)) is a convex problem for all 0 ≤ ρ ≤ ε, the lower-level problem is easy to solve

(in polynomial time if we consider affine linear link cost functions). In general, we can

apply optimization tools for traffic engineering (e.g. convex combinations method). The

solution leads to a BRUE flow distribution(s) (for given 0 ≤ ρ ≤ ε) and the union of all

possible BRUE flow distributions (as expressed in (8.1.2)) serves as the feasible set in the

Best-/Worst-case BRUE problem (5.0.1).

Based on our analysis, we reformulate problem (Q(ε)) for given ε ≥ 0 as a bilevel
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optimization problem:

min(ρ,f,x) s(x)

s.t. 0 ≤ ρ ≤ ε, and (f, x) solves

min(f,x) z(f, x, ρ)

(f, x) ∈ F0

(8.1.3)

Rather than considering the program in (8.1.3) we study a single-level reformulation of

the bilevel problem:

min(ρ,f,x) s(x)

s.t. 0 ≤ ρ ≤ ε
(f, x) ∈ ψ(ρ)

(Q̃(ε))

(Q̃(ε)) is the problem to find the Best-case BRUE flow distribution: the leader chooses

variable 0 ≤ ρ ≤ ε so that the realized BRUE in the lower level (Lemma 8.1.1) leads to

the minimum total travel time. Although problem (q(ρ)) is easy to solve, problem (Q̃(ε))

is a bilevel optimization problem and NP-hard in general (Bard, 1998). Furthermore,

the equivalent formulation of (Q̃(ε)) that considers KKT conditions of the lower-level

problem does not satisfy a constraint qualification and thus we cannot find for each descent

direction a feasible curve into this direction. Consequently, we cannot simply apply the

KKT conditions to the bilevel problem (Section 5.2)

A similar approach would adopt the inertial user equilibrium (IUE) (Zhang and Yang,

2015) in the lower-level. Zhang and Yang (2015) showed that any BRUE flow can be

constructed by an IUE and that any IUE is contained in F(ε) for a certain ε. However,

we prefer the formulation in (q(ρ)) due to its similarites with Beckmann’s formulation for

the PRUE.

Remark 8.1.1. We note that the feasible set of problem (Q̃(ε)) is defined on the space

R|P|×R|P|×R|E|, while (Q(ε)) is defined on the space R|P|×R|E|. Figure 8.1.1a illustrates

this behavior abstractly for Example 4.2.1.

Important observation is that the mapping ψ : 0 ≤ ρ ≤ ε→ R|P|×R|E| is not injective.

Figure 8.1.1b shows the projection of F̃(ε) onto the (two-dimensional) ρ-space for Example

4.2.1. We depict F(ε0) = ∪0≤ρ≤ε0ψ(ρ) and F(ε1) = ∪0≤ρ≤ε1ψ(ρ). We indicate how F(ε0)

and F(ε1) are related. By that we mean that for any (ρ0, f0, x0) ∈ F̃(ε0) any ρ1 = ρ0 +e2δ,

δ ∈ R, has the same corresponding flow distribution (f0, x0). (e2 is an all-ones vector of

size 2.) Hence, (ρ1, f0, x0) ∈ F̃(ε1) if 0 ≤ ρ1 ≤ ε1. In particular, any 0 ≤ ρ ≤ ε1 in the

light-gray area corresponds to a flow distribution (also contained) in F(ε0).

Remark 8.1.2 (Variational inequality formulation). The formulation of (q(ρ)) al-

lows us to define a (more general) variational inequality of the BRUE flow distribution.

In fact, (f, x) ∈ F0 is a BRUE flow as in (4.1.1) if and only if exists 0 ≤ ρ ≤ ε so that
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(b) Projection of F̃(ε) onto R|P|.

Figure 8.1.1: Illustration of feasible set F̃(ε) corresponding to Example 4.2.1 .

(f, x) ∈ F0 solves the variational inequality

(c(f)− ρ) (f̄ − f) ≥ 0, for all (f̄ , x̄) ∈ F0.

Bilevel optimization problems often use a variational inequality formulation. A variational

inequality that defines a boundedly rational flow distribution in the dynamic environment

is given by Han et al. (2015). Their definition can be reduced to the static setting as well.

8.2 Behavior of the Lower-Level Problem

We turn the attention to lower-level problem (q(ρ)). We indicated that we can construct

F(ε) by solving (q(ρ)) for all 0 ≤ ρ ≤ ε. Even under linear latencies, F(ε) does not meet a

constraint qualification (Section 5.2). In this section we study the easy lower-level problem

(q(ρ)) and we will generalize results to F(ε). Therefore we consider (q(ρ)) as a parametric

optimization problem under perturbations in ρ.

Remark 8.2.1. F0 is compact and nonempty. Moreover, it does not depend ρ.

Since z(f, x, ρ) is continuous, we state he following lemma.

Lemma 8.2.1 (Existence lower-level solution). Problem (q(ρ)) attains its minimum

for all ρ ≥ 0, i.e. ψ(ρ) 6= ∅. Moreover, φ(ρ) > −∞.

Proof. Let ρ0 ≥ 0 be fixed. Since z(f, x, ρ0) is a continuous function and F0 is com-

pact, there exists a point (f0, x0) ∈ F0 at which this minimum is attained. So φ(ρ0) =

z(ρ0, f0, x0) is finite. �

71



Similar to the PRUE and system-optimal flow distribution, the solution set ψ(ρ) for

fixed ρ ≥ 0 is unique with respect to link flow x. This follows from the strict convexity of

the objective function z(f, x, ρ) with respect to x. We formalize the claim.

Lemma 8.2.2 (Unique x in lower-level solution). For any ρ ≥ 0, (f, x) ∈ ψ(ρ) is

unique with respect to link flow x.

Proof. Suppose ρ0 ≥ 0 to be fixed. Let (f0, x0), (f1, x1) ∈ ψ(ρ0) be two optimal solutions

of problem (q(ρ0)) with x0 6= x1. We construct (fβ, xβ) = (βf0+(1−β)f1, βx0+(1−β)x1)

for all β ∈ [0, 1]. Since z(f, x, ρ) is strictly convex with respect to x under Assumption 1

(by the second derivative test), we get for all 0 < β < 1:

z(fβ, xβ, ρ0) = z(βf0 + (1− β)f1, βx0 + (1− β)x1, ρ0)

=
∑
e∈E

∫ βx0e+(1−β)x1e

0
le(τ)dτ − ρ0T (βf0 + (1− β)f1)

< β

(∑
e∈E

∫ x0e

0
le(τ)dτ − ρ0T f0

)
+ (1− β)

(∑
e∈E

∫ (1−β)x1e

0
le(τ)dτ − ρ0T f1

)
= βz(f0, x0, ρ0) + (1− β)z(f1, x1, ρ0).

This would imply that z(fβ, xβ, ρ0) has a (strict) lower objective value, which contradicts

the optimality of (f0, x0) and (f1, x1). �

Remark 8.2.2. The result of Lemma 8.2.2 implies that there may exist several BRUE

route flow distributions f corresponding to the same link flow x. This problem is well-

studied for the PRUE (see e.g. Bar-Gera (2006); Borchers et al. (2015)) and most studies

imposed additional conditions on f to force uniqueness. For problem (q(ρ)) the set H(x, ρ)

of route flows corresponding to BRUE link flow distribution x for 0 ≤ ρ ≤ ε is defined as

H(x, ρ) =
{
f Γf = x,Λf = d, f ≥ 0, ρT f = ω

}
.

Here, ω is the value of ω = ρT f0 for an arbitrary (f0, x0) ∈ ψ(ρ). We emphasize that

an additional condition should be fulfilled for any f to be a BRUE route flow distribution

compared to the PRUE flow distribution (see Remark 3.2.1 and Example 4.2.3).

As was earlier indicated, any PRUE flow distribution is also a BRUE flow distribution

for any ε ≥ 0. Indeed, if ρ = 0, the lower-level problem reduces to

min
(f,x)

∑
e∈E

∫ xe

0
le(τ)dτ s.t (f, x) ∈ F0. (8.2.1)

This is exactly Beckmann’s formulation (Beckmann et al., 1956) of the problem of finding

a PRUE flow distribution.
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Although the behavior of the optimal value function φ(ρ) of the lower-level problem

under perturbations of ρ is not of interest perse, the continuity of φ(ρ) is used to study

the continuity of the optimal solution set mapping ψ(ρ) with respect to ρ.

Lemma 8.2.3 (φ(ρ) continuous). φ(ρ) is a continuous function at all ρ ≥ 0.

Proof. The proof is given in Theorem 6.4.1. �

We proved continuity of φ(ρ) since continuity of φ(ρ) turns out to be (more than)

sufficient for ψ(ρ) to be a closed mapping.

Lemma 8.2.4 (ψ(ρ) closed mapping). ψ(ρ) is a closed mapping at all ρ ≥ 0.

Proof. We define ψ(ρ) equivalently as

ψ(ρ) = F0 ∩ {(f, x) | z(f, x, ρ)− φ(ρ) ≤ 0}.

By this definition of ψ(ρ), we can use the proof that is given in the first part of Theorem

6.5.1. �

Obviously, ψ(ρ) is a closed mapping and a compact set for each ρ ≥ 0. Moreover,

since F0 contains ψ(ρ), we find that ψ(ρ) is an upper semicontinuous mapping. We can,

however, solely guarantee continuity if ψ(ρ) is unique for each ρ. We emphasize that this

does not hold in general since there may exist several route flows f that all correspond to

the same link flow x (Remark 8.2.2).

Lemma 8.2.5 (ψ(ρ) upper semicontinuous). ψ(ρ) is upper semicontinuous at all ρ ≥
0.

Proof. The proof is analagous to the proof of Lemma 7.3.1. �

As mentioned, we can prove the continuity of the lower-level solution set if the solution

is unique with respect to x and f for any 0 ≤ ρ ≤ ε. The proof for this case is similar as

the proof of Theorem 6.5.1 and therefore omitted here.

8.3 Behavior of the Bilevel problem

We showed that the lower-level problem (q(ρ)) is a convex optimization problem. The

corresponding feasible set and optimal value function are convex. We try to generalize

results to the bilevel problem (Q̃(ε)). ε is the parameter vector, similar as in the analysis

of (Q(ε)).
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We introduce for each ε ≥ 0, the feasible set F̃(ε) that corresponds to (Q̃(ε)):

F̃(ε) =
{

(ρ, f, x) 0 ≤ ρ ≤ ε, (f, x) ∈ ψ(ρ)
}
.

By this definition, we can regard F(ε) as the projection of F̃(ε) onto R|P| × R|E|. The

optimal value function v(ε) of the problem is defined as:

v(ε) := min
(ρ,f,x)∈F̃(ε)

s(x),

and the optimal solution set S̃(ε) as

S̃(ε) := arg min
(ρ,f,x)∈F̃(ε)

v(ε).

We regard S(ε) as the projection of S̃(ε) onto the (f, x)-space.

We study continuity of the feasible set F̃(ε) with respect to perturbations in ε. Obvi-

ously, F̃(ε) is an increasing set, i.e. for all ε1 ≥ ε0 ≥ 0 we have that (note the equivalence

with Lemma 5.5.1 (v))

F̃(ε0) ⊆ F̃(ε1).

Furthermore, if ε = 0, F(0) = {(fn, xn)} in which (fn, xn) is a PRUE flow distribution.

Now, F̃(0) = {(0, fn, xn)}. It directly follows that F̃(0) ⊆ F̃(ε) for any ε ≥ 0. The

problem in (Q̃(ε)) reduces to finding a system optimum if ε ≥ εso. Indeed, the leader in

the upper level is free to choose ρ and does so such that in the lower-level a system-optimal

flow is realized.

Lemma 8.3.1 (F̃(ε) closed). F̃(ε) is a closed mapping at all ε ≥ 0 and compact for all

ε ≥ 0.

Proof. Let ε0 ≥ 0 be arbitrary. Let sequences εl → ε0 be given and (ρl, yl) ∈ F̃(εl) for

all l ∈ N. Then, (ρl, yl) → (ρ0, y0) implies that (ρ0, y0) ∈ F(ε0) since 0 ≤ ρ0 ≤ ε0 by

continuity, and y0 ∈ ψ(ρ0) whereas ψ(ρ0) is closed. �

We assure existence of a BRUE flow distribution under the same mild assumptions

Beckmann et al. (1956) used to assure existence and uniqueness of a PRUE flow distribu-

tion. The statement in the next lemma is similar to the one in Lemma 8.2.1. Moreover,

the optimal value function v(ε) is positive for all ε ≥ 0 since the travel time is positive for

each link and the total demand is positive.

Trivially, v(ε) is decreasing with respect to ε. That is, for ε1 > ε0 we have v(ε1) ≤ v(ε0).

Lemma 8.3.2. For any ε ≥ 0, v(ε) > 0 and S̃(ε) is nonempty. Moreover, F̃(ε), v(ε) are

upper and lower semicontinuous relative to εgeq0, respectively.

74



Proof. We prove that S̃(ε) is nonempty. Consider problem (Q(ε)). Then, F(ε) =

∪P⊆PFP (ε). Obviously the inequalities that define FP (ε) are continuous and hence FP (ε)

is a compact set for each P ⊆ P. Since a finite union of compact sets is compact, F(ε)

is compact set for each ε ≥ 0. By the extreme value theorem it follows that there exists

(f, x, λ) ∈ F(ε) which minimizes s(x). We can easily find a ρ which gives (f, x) ∈ ψ(ρ).

We prove that F̃(ε) is upper semicontinuous at all ε ≥ 0 using the proof of Still (2006).

Suppose, for the sake of contradiction, F̃(ε) is not upper semicontinuous at ε0. Then, for

some sequence εl → ε0 and (ρl, yl) = (ρl, f l, xl) ∈ F(εl) and some δ > 0 so that for all l

‖(ρl, yl)− (ρ, y)‖ ≥ δ, for all (ρ, y) ∈ F̃(ε0).

However, since F̃(ε) is contained in a compact set, we have that there exists a converging

subsequence (ρlj , ylj )→ (ρ0, y0). Since F̃(ε) is closed, (ρ0, y0) ∈ F̃(ε0). So, F̃(ε) is upper

semicontinuous at ε0.

Given ε0 ≥ 0, we show that to any δ > 0 exists τ > 0 so that

v(ε0) ≤ v(ε) + δ, for all ‖ε− ε0‖ < τ.

Assume for the sake of contradiction that this does not hold. Then exists δ0 > 0 and

sequence εl → ε0 so that

v(ε0) > v(εl) + δ0, (8.3.1)

for all l ∈ N. Take to εl corresponding (ρl, yl) = (ρl, f l, xl) ∈ F̃(εl) with yl ∈ ψ(ρl).

Without loss of generality (taking a subsequence) we may assume (ρl, yl) → (ρ0, y0). By

closedness of F̃(ε) it follows that (ρ0, y0) ∈ F̃(ε0) and thus

v(ε0) ≤ s(x0) = lim
l→∞

s(xl) = lim
l→∞

v(εl)

contradicting (8.3.1). �

For general latency functions under Assumption 1 the same problems arise as for

problem (Q(ε)) under Assumption 2. The feasible set does not explode after a small

perturbation in ε but it can, on the other hand, implode. The optimal value function

v(ε) cannot become significantly smaller by a change the parameter, but is in general not

upper semicontinuous.

The discussed characteristics are undesirable from a traffic engineering perspective. As

discussed for the problem under affine linear latencies, the tolerance vector ε should be

perfectly calibrated. A small perturbation of ε can lead - from a behavioral perspective - to

completely different choice behavior. Since in practice it is difficult to pertfectly calibrate

ε, for the NDP this may lead to the implementation of a policy measure which is not
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necessarily optimal in practice.

8.3.1 Connectedness of F(ε)

This section concerns the connectedness of F(ε), i.e. the set of feasible BRUE flow distri-

butions. First, we present the necessary definitions.

Definition 8.3.1 (Connected set). Set X is said to be connected if X is not a union

of two nonempty separated sets, i.e. there exist no nonempty open sets Y and Z for which

Y ∪ Z = X, and Ȳ ∩ Z = Y ∩ Z̄ = ∅

holds. Here, Ȳ (Z̄) stands for the closure of set Y (Z).

In some cases it is more appealing to use the definition of path-connectedness (or

arcwise connectedness) of a set. Intuitively, in a path-connected set X we can construct a

path from any point x ∈ X to any other point y ∈ X without leaving X. A path-connected

set X is also connected.

Definition 8.3.2 (Path-connected set). Set X is said to be path-connected if for any

x, y ∈ X exists path γ connecting x and y, i.e. exists continuous mapping γ : [0, 1] → X

so that γ(0) = x and γ(1) = y.

For general latency functions, Han et al. (2015) showed that under assumptions F(ε)

consists of a union of connected sets but is not necessarily connected itself. In Di et al.

(2014b) it is claimed that F(ε) is connected in case the latency functions in the network

are affine linear. However, the proof utilizes a strong assumption which is difficult to

check beforehand. We study the connectedness of F(ε) in more detail. Note that ψ(ρ) is

a polyhedron (and thus connected) for each ρ. It appears that F(ε) is connected for any

ε ≥ 0 provided that Assumption 1 holds.

Theorem 8.3.1 (F(ε) connected). F(ε) is connected for each ε ≥ 0.

Proof. Let us fix ε and define

E(ε) = {0 ≤ ρ ≤ ε}.

Because E(ε) is a convex set for all ε ≥ 0, it is also connected for all ε ≥ 0. Indeed,

take ρ0, ρ1 ∈ E(ε) and construct path γ via γ(β) = βρ1 + (1− β)ρ0. Obviously, γ(0) = ρ0

and γ(1) = ρ1 and the path is linear and thus continuous.

Let us define F(ε) = ∪ρ∈E(ε)ψ(ρ) and suppose, for the sake of contradiction, that

F(ε) is not connected. Then there are two open sets A,B so that F(ε) = A ∪ B and
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Ā ∩B = A ∩ B̄ = ∅. Denote by ρ(A), ρ(B) the following projections:

ρ(A) = {ρ ∈ E(ε) | ψ(ρ) ⊆ A};

ρ(B) = {ρ ∈ E(ε) | ψ(ρ) ⊆ B}.

We may assume that both ρ(A), ρ(B) are nonempty. Furthermore, ρ(A) ∩ ρ(B) = ∅ since

otherwise exists ρ̄ ∈ ρ(A) ∩ ρ(B) and ψ(ρ̄) ∈ A ∩B contradicting Ā ∩B = ∅.
By the definition of upper semicontinuity of ψ(ρ) at any ρ0 ∈ E(ε) for each τρ0 exists

δρ0 > 0 so that

ψ(ρ) ⊆ Uτρ0 (ψ(ρ0)), for all ρ ∈ Uδρ0 (ρ0)

holds. For any ρ ∈ ρ(A) take τρ and corresponding δρ so that Uτρ(ψ(ρ)) ⊂ A, then we

obtain that ⋃
ρ∈ρ(A)

Uδ(ρ) ∩ E = ρ(A).

The union of the open balls
⋃
ρ∈ρ(A) Uδρ(ρ) is obviously open. So we find that ρ(A) is rela-

tively open in E(ε). Furthermore, ρ(B) is relatively open in E(ε) as well. Then, E(ε) can

be separated by a pair of relatively open sets in E(ε). This contradicts the connectedness

of E(ε). This proof appeared earlier in Zgurovsky et al. (2012). �

8.3.2 Unique Lower-Level Response

It turns out that the continuity of the feasible set and optimal value function highly depend

on the continuity of the optimal solution set in the lower level. In general, we cannot expect

ψ(ρ) being continuous. However, in an upcoming chapter we study a regularized problem

for which this property holds. Therefore, we include the claims in which the lower-level

response is assumed to be unique for each choice of ρ by the upper level. We add a remark

to discuss the conditions under which ψ(ρ) behaves continuously with respect to ρ. By

a unique lower-level response we mean that for each upper-level choice of ρ, the solution

of the lower-level response (f, x) is unique with respect to f and x. It turns out that a

unique lower-level response is a sufficient condition for F̃(ε) and v(ε) to be continuous.

Theorem 8.3.2 (F̃(ε) continuous). Let the lower-level response be unique for each

0 ≤ ρ ≤ ε, then F̃(ε) is continuous with respect to ε. In fact, F̃(ε) is Lipschitz-continuous

relative to its domain under Assumption 2.

Proof. First, we prove the claim of the theorem under Assumption 2. We proved earlier

that F̃(ε) is a closed mapping. Let ε0, ε1 ≥ 0 be arbitrary. Then for any (ρ0, y0) =
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(ρ0, f0, x0) ∈ F̃(ε0) we have that there exists (ρ1, y1) ∈ F̃(ε1) so that

‖(ρ1, y1)− (ρ0, y0)‖ ≤ C‖ρ0 − ρ1‖

≤ CN‖ε0 − ε1‖,

in which the latter inequality follows from Proposition 6.3.1. The first inequality follows

from the optimality conditions of the objective function over a polyhedron for a strictly

convex function (Theorem 9.1.2).

Let us consider the case which relaxes Assumption 2. Since we have that F̃(ε) is upper

semicontinuous (Lemma 8.3.2) we solely prove that F̃(ε) is lower semicontinuous relative

to ε. Recall that ψ(ρ) is continuous relative to ρ, and thus lower semicontinuous.

So, given ρ0 for any y0 = (f0, x0) ∈ ψ(ρ0) and sequence ρl → ρ0, exists a sequence

yl so that yl ∈ ψ(ρl) for l large and ‖yl − y0‖ → 0. We emphasize that this sequence is

unique. Define E(ε) = {0 ≤ ρ ≤ ε}. This multifunction is continuous at each ε.

Suppose F̃(ε) is not lower semicontinuous at ε0 ≥ 0. Then exists (ρ0, y0) ∈ F̃(ε0) and

εl → ε0, then for all (ρl, yl) so that (ρl, yl) ∈ F̃(εn), for l large, ‖(ρl, yl)− (ρ0, y0)‖ > δ for

some δ > 0.

However, by continuity of E(ε) for each ε0 and εl → ε0 exists ρl ∈ E(εl), for l large,

and ‖ρl − ρ0‖ → 0. By continuity of ψ(ρ), exists yl ∈ ψ(ρl) so that ‖yl − y0‖ → 0. Hence,

F̃(ε) is lower semicontinuous. �

The result states that the feasible set cannot explode or implode after perturbing ε.

Consequently, the optimal value function cannot become sufficiently smaller or larger by

perturbing ε. If ψ(ρ) is continuous with respect to perturbations in ρ (i.e. any ρ ≥ 0 has

a unique lower level response (f, x)), the optimal value function v(ε) is continuous relative

to ε.

Theorem 8.3.3 (v(ε) continuous). If ψ(ρ) is continuous with respect to perturbations

in ρ, v(ε) is continuous at all ε ≥ 0. In fact, if ψ(ρ) is Lipschitz continuous with respect

to ρ then v(ε) is Lipschitz continuous relative to ε.

Proof. First, we prove this statement for the case in which the latency functions are

linear. Suppose (ρ̄0, ȳ0), (ρ̄1, ȳ1) are the optimal solutions corresponding to v(ε0), v(ε1)

respectively. Under the assumptions of the theorem, for all (ρ0, y0) = (ρ0, f0, x0) ∈ F̃(ε0)

exists (ρ1, y1) ∈ F̃(ε1) so that the distance is bounded by N‖ε1 − ε0‖ (by Lipschitz conti-
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nuity of F̃(ε), see Theorem 8.3.2):

v(ε1)− v(ε0) = s(x̄1)− s(x̄0)

≤ s(x1)− s(x̄0)

≤ Φ‖x1 − x̄0‖

≤ ΦN‖ε1 − ε0‖.

The second inequality follows from the Lipschitz continuity of the (convex) objective func-

tion. x1 ∈ F̃(ε1) is chosen so that it is closest to x0 with respect to the∞-norm. Similarly,

we find that v(ε0)− v(ε1) ≤ ΦN‖ε1 − ε0‖. These two results lead to the claim.

Let us relax Assumption 2. We know by Lemma 8.3.2 that v(ε) is lower semicontinuous.

Left is to prove that v(ε) is upper semicontinuous. We know that F̃(ε) is continuous, in

particular lower semicontinuous.

Since F̃(ε0) is lower semicontinuous, for any (ρ0, y0) ∈ F̃(ε0) and sequence εl → ε0 there

exists a sequence (ρl, yl) so that (ρl, yl) ∈ F̃(εl), for l large, and ‖(ρl, yl)− (ρ0, y0)‖ → 0.

Take (ρ0, y0) ∈ S̃(ε0), i.e. s(y0) = v(ε0). Then we have for the mentioned sequence,

for l large,

v(εl) ≤ s(yl) ≤ s(y0) + δ = v(ε0) + δ,

for some δ > 0, by continuity of s(y). v(ε) is thus upper semicontinuous. �

The result of this theorem is in line with our earlier results. By the assumptions of

the theorem v(ε) behaves piecewise continuous relative to ε ≥ 0.

Remark 8.3.1 (Conditions under which lower-level response is unique). Full

column rank of

[
Λ

Γ

]
guarantees continuity of the optimal solution set ψ(ρ) of the lower

problem. Then, any 0 ≤ ρ ≤ ε leads to a unique solution in (f, x) and the optimal solution

set is continuous. The feasible set F(ε) and optimal value function v(ε) are now both

continuous as well.

The question remains whether this condition is natural. We answer this question neg-

atively. Borchers et al. (2015) showed a range of basic examples for which the condition

was not satisfied.

The difficulty of the problem (Q̃(ε)) lies in the non-unique lower-level response for a

given 0 ≤ ρ ≤ ε choice of the leader. It is well known that these problems are difficult

to solve (see Dempe (2003)). Therefore, we propose a regularized approach in the next

chapter to approximate the Best-case BRUE flow distribution.
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8.4 Synthesis

We reformulated the Best-case BRUE problem as bilevel optimization problem. This

reformulation allowed us to evaluate continuity of (Q(ε)) under more general link cost

functions. It turns out that the same difficulties arise as under linear latency functions.

However, if the lower-level response is unique for each 0 ≤ ρ ≤ ε the feasible set and optimal

value function behave continuously under perturbations in ε. The next chapter therefore

proposes a perturbed lower-level problem that forces a unique lower-level response for each

ρ.
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Chapter 9

A Regularized Approach

In previous chapter we saw that if x uniquely determines f , the feasible set and opti-

mal value function behave continuously for any link cost function under Assumption 1.

However, f is generally not unique for each x. In this chapter we propose an approach

to handle the non-unique lower-level response by perturbing the objective function of the

lower-level problem. Now, we find a regularized lower-level problem which we use for

algorithm development.

9.1 The Regularized Bilevel Problem

Let us consider, as suggested by e.g. Dempe (2000), the regularized lower-level problem

(qα(ρ)) corresponding to (q(ρ)). We define the regularized problem, given 0 ≤ ρ ≤ ε and

α ∈ R+, as:

min
(f,x)∈F0

z̃(f, x, ρ, α) := z(f, x, ρ) + α‖f‖2 s.t. (f, x) ∈ F0. (qα(ρ))

Trivially, if α = 0 problem (qα(ρ)) reduces to (q(ρ)). For any positive α we have that the

objective function z̃(f, x, ρ, α) is strictly convex since the Hessian matrix of this function

with respect to variables (f, x) becomes:

∇2
(f,x)z̃(f, x, ρ, α) =

[
2αI|P| 0

0 ∇xl(x)

]
,

in which I|P| is the identity matrix of size |P|. This matrix is positive definite by positive

definiteness of 2αI|P| and ∇xl(x). From Lemma 8.2.2 it follows that the solution of (qα(ρ))

is unique both in f and x. However, we cannot guarantee that the solution of (qα(ρ)) is a

solution to (q(ρ)). Therefore, we choose α > 0 close to zero to assure that the solution is

close to the solution of the BRUE lower-level problem (q(ρ)). We say that we approximate

a BRUE flow distribution.
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Let ψα(ρ) denote the optimal solution set corresponding to problem (qα(ρ)) given

0 ≤ ρ ≤ ε. The regularized bilevel problem (Q̃(ε)), given α > 0, becomes:

min(ρ,f,x) s(x)

s.t. 0 ≤ ρ ≤ ε
(f, x) ∈ ψα(ρ)

(Q̃α(ε))

As mentioned, the lower level has a unique response for any α > 0. Furthermore, let us

introduce the corresponding feasible set

F̃α(ε) =
{

(ρ, f, x) 0 ≤ ρ ≤ ε, (f, x) ∈ ψα(ρ)
}
,

and optimal value function

vα(ε) := min
(ρ,f,x)∈F̃α(ε)

s(x).

Lastly, the optimal solution set of problem (qα(ρ)):

S̃α(ε) := arg min
(ρ,f,x)∈F̃α(ε)

vα(ε).

We prove the continuity properties of the regularized lower problem (qα(ρ)) for fixed α > 0.

We emphasize that any continuity property for the feasible set, optimal value function and

optimal solution set of problem (Q̃(ε)) holds in particular for the feasible set, optimal value

function and optimal solution set respectively of problem (Q̃α(ε)).

Theorem 9.1.1 (ψα(ρ) continuous). For any α > 0, ψα(ρ) is continuous relative to ρ.

Proof. The same proof as in Theorem 6.5.1 holds. �

It turns out that the optimal solution set ψα(ρ) behaves Lipschitz continuously with

respect to changes in ρ if Assumption 2 holds and is locally 1
2 -Hölder continuous without

any additional assumption. Consider the case in which Assumption 2 holds. In other

words, the latency functions of the edges in the network are affine linear.

Theorem 9.1.2 (ψα(ρ) Lipschitz continuous). Let Assumption 2 hold. Suppose α > 0

to be fixed. Suppose y(ρ) = (f(ρ), x(ρ)) ∈ ψα(ρ) for ρ ≥ 0, then there exists C > 0 so that

for all ρ0, ρ1 ≥ 0,

‖y(ρ1)− y(ρ0)‖ ≤ C‖ρ1 − ρ0‖

holds.

Proof. If we consider the case in which the latency functions are affine linear, the objective

function z̃(f, x, ρ, α) becomes quadratic for any α ≥ 0. Let us consider this regularized
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lower problem for any α > 0, ρ ≥ 0:

min
(ρ,f,x)

z̃(f, x, ρ, α) =
1

2
xTAx+ bTx− ρT f + α‖f‖2 s.t.(f, x) ∈ F0 (q̃α(ρ))

Obviously, the matrix [
2αI|P| 0

0 A

]
is diagonal and positive definite. Consequently, the solution (f, x) of (q̃α(ρ)) is unique.

For each ρ ≥ 0, the KKT conditions of (q̃α(ρ)) become:

Ax+ b+ β = 0 Λf = d

ΓTβ + 2αf − ρ− ΛTλ− γ = 0 Γf − x = 0

γT f = 0 γ, f ≥ 0

(9.1.1)

with corresponding multipliers (β, λ, γ). By Assumption 2, (f, x) solves (q̃α(ρ)) if and

only (f, x) satisfies (9.1.1) with the corresponding Lagrange multipliers. As in the proof

of Lemma 6.5.1 we can choose I ⊆ {1, . . . , |P|} and consider solution (ρ, f, x, β, λ, γ) of

(9.1.1) so that (f, γ) satisfies:

fp = 0, p ∈ I;

γp = 0, p /∈ I;
(9.1.2)

and define stability set Ω(I) as

Ω(I) = { ρ solution of (9.1.1) satisfies (9.1.2) given I }.

We can apply the same proof as in Lemma 6.5.1 and Theorem 6.5.2 to prove Lipschitz

continuity of the optimal solution set ψα(ρ). �

In general, we cannot expect ψα(ρ) to be Lipschitz continuous. For higher order

polynomial link cost functions under Assumption 1, ψα(ρ) is locally 1
2 -Hölder continuous

with respect to perturbations in ρ.

For the upcoming result we require the optimality conditions of nonlinear program-

ming. We can apply the next theorem since a constraint qualification holds for the con-

straints in F0. We introduce the Lagrange function corresponding to problem (qα(ρ)),

α > 0, for ρ ≥ 0:

L(f, x, ρ, β, λ, γ) = z̃(f, x, ρ, α) + (d− Λf)Tλ+ (Γf − x)Tβ − fTγ

in which (β, λ, γ) is the vector of KKT multipliers.

Theorem 9.1.3 (Second-order sufficient optimality conditions over a polyhe-
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dron). Let ρ0 ≥ 0. If (f0, x0) satisfies the first-order stationarity conditions (note that

∇ = ∇(f,x))

∇L(f0, x0, ρ0, β0, λ0, γ0) = 0, and γ0T f0 = 0

with multipliers (β0, λ0, γ0), γ0 ≥ 0 in combination with

τT∇2L(f0, x0, ρ0, β0, λ0, γ0)τ > 0, for all τ ∈ C(f0, x0) where τ 6= 0,

then there exists a neighborhood U(f0, x0) ⊆ R|E| × R|P| of (f0, x0) and ζρ0 > 0 so that

for all (f, x) ∈ F0 ∩ U(f0, x0):

z̃(f, x, ρ0, α)− z̃(f0, x0, ρ0, α) ≥ ζρ0‖(f, x)− (f0, x0)‖2. (9.1.3)

Here, C(f0, x0) is the set of feasible directions at (f0, x0):

C(f, x) :=

 τ = (τ f , τx) ∈ R|P|+|E|

∇z̃(f, x, ρ0, α)T τ ≤ 0

Γτ f − τx = 0

Λτ f = 0

τ fp ≥ 0 for all p ∈ P : fp = 0


Proof. (The proof is based on Faigle et al. (2013) and Still and Streng (1996)). For

notational purposes, we drop ρ and α in the notation of our analysis. Suppose a flow

(f0, x0) satisfies the assumptions of the theorem with KKT multipliers (β0, λ0, γ0). Define

the compact set of feasible directions at (f0, x0) as

K(f0, x0) =
{
τ ∈ C(f0, x0) ‖τ‖ = 1

}
.

Put ζ as

ζ := min
τ∈K(f0,x0)

1

2
τT∇2L(f0, x0, β0, λ0, γ0)τ. (9.1.4)

The minimization problem in (9.1.4) is well-defined. Indeed, K(f0, x0) is compact, the

objective function is continuous, and

τT∇2L(f0, x0, β0, λ0, γ0)τ = τT∇2z̃(f0, x0)τ > 0

holds for all τ 6= 0. Thus, ζ > 0. By any choice of τ , due to the linear constraints, τ is a

feasible direction. That is: for each τ exists a feasible curve through (f0, x0) into feasible

direction τ . We show that (9.1.3) holds for each ζρ0 < ζ.

Suppose that φ < ζ arbitrarily and suppose (f0, x0) is not a second order minimizer

as in (9.1.3) with ζρ0 = φ. Then, exists an infinite sequence of points (f l, xl) → (f0, x0)

satisfying (f l, xl) 6= (f0, x0) and z̃(f l, xl) − z̃(f0, x0) ≤ φ‖(f l, xl) − (f0, x0)‖2, l ∈ N. We
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can write (f l, xl) = (f0, x0) + τ ltl, ‖τ l‖ = 1, tl > 0. Now tl → 0, τ l → τ and ‖τ‖ = 1 (for

a subsequence). For this sequence it holds that

z̃(f l, xl)− z̃(f0, x0) ≤ φ‖(f l, xl)− (f0, x0)‖2.

We apply the second-order Taylor expansion:

φ(tl)2 ≥ z̃(f l, xl)− z̃(f0, x0) = tl

[
−ρ+ 2αf0

l(x0)

]T
τ l +

1

2
tl

2
τ l
T

[
2αI|P| 0

0 ∇xl(x0)

]
τ l

0 = Γf l − xl = tl

[
Γ

−I|E|

]T
τ l

0 = Λf l − d = tlΛT τ f,l

0 ≥ −f lP = tl −∇ff0
P
T
τ f,l

(9.1.5)

where P = {p ∈ P | f0
p = 0}.

Multiplying with the respective KKT multipliers and adding, we obtain for (f l, xl):

φ(tl)2 ≥ tl∇L(f0, x0, β0, λ0, γ0)τ l +
1

2
tl

2
τ l
T∇2L(f0, x0, β0, λ0, γ0)τ l (9.1.6)

By the assumptions of the theorem we find that ∇L(f0, x0, β0, λ0, γ0) = 0. Dividing

(9.1.6) by tl
2

we obtain:

ζ > φ ≥ 1

2
τ l
T∇2L(f0, x0, β0, λ0, γ0)τ l > 0 (9.1.7)

Recall that ‖τ l‖ = 1. In case τ ∈ K(f0, x0) we reach a contradiction since we chose ζ

so that it was the minimum in (9.1.4). We have liml→∞(f l, xl) = (f0, x0), and, hence,

liml→∞ t
l = 0. We divide the equations in (9.1.5) by tl and let l→∞:

0 ≥

[
−ρ+ 2αf0

l(x0)

]T
τ

0 = Γτ f − τx

0 = Λτ f

0 ≥ −τ fP

,

which are exactly the (in)equalities defining C(f0, x0). So, τ ∈ K(f0, x0) which contra-

dicts φ < ζ. �

We use the second order optimality conditions to prove that the feasible set of the

regularized bilevel problem is locally 1
2 -Hölder-continuous.
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Theorem 9.1.4 (ψα(ρ) locally Hölder). Given α > 0, the mapping ψα(ρ) is locally
1
2 -Hölder continuous relative to its domain, i.e. for all ρ0 ≥ 0 exists a θ, δ > 0 so that for

all ρ1 ∈ Uδ(ρ0) and y0 ∈ ψα(ρ0), y1 ∈ ψα(ρ1) the following holds:

‖y1 − y0‖ ≤ θ‖ρ1 − ρ0‖
1
2 .

Proof. Let α > 0 and ρ0 ≥ 0. Since ψα(ρ) is continuous (Theorem 9.1.1) we may assume

that if ρ1 is sufficiently close to ρ0, the corresponding optimal solution y1 ∈ ψα(ρ1) is

sufficiently close to y0 ∈ ψα(ρ0). Formally, the second order optimality conditions say

that there exists a γ > 0 so that for all flows in the neighborhood Uγ(ψα(ρ0)) satisfy

(9.1.3). By continuity of ψα(ρ): for all τ > 0 exists δ > 0 so that

ψα(ρ) ⊆ Uτ (ψα(ρ0)) for all ρ ∈ Uδ(ρ0),

and selecting τ = γ. So, denoting y1 ∈ ψα(ρ1) as the optimal solution for ρ1 and y0 ∈
ψα(ρ0) in which ρ1 ∈ Uδ(ρ0) we find:

‖y1 − y0‖2 ≤ ‖z̃(f
1, x1, ρ0)− z̃(f0, x0, ρ0)‖

ζ

≤ ‖z̃(f
1, x1, ρ0)− z̃(f1, x1, ρ1) + φα(ρ1)− φα(ρ1)‖

ζ

≤ D1‖ρ1 − ρ0‖+ ‖φα(ρ1)− φα(ρ0)‖
ζ

.

Then Lipschitz continuity of the lower level optimal value function φα(ρ) is sufficient to

prove the claim of the theorem. Let y1, y0 be chosen so that z̃(y1, ρ1) = φα(ρ1) and

z̃(y0, ρ0) = φα(ρ0). Notice that y1, y0 ∈ F0. We get:

φα(ρ1)− φα(ρ0) ≤ z̃(y0, ρ1)− z̃(y0, ρ0)

≤ D2‖ρ1 − ρ0‖.

Analogously, we find that

φα(ρ0)− φα(ρ1) ≤ z̃(y1, ρ0)− z̃(y1, ρ1)

≤ D2‖ρ1 − ρ0‖.

The last inequality follows since the function ρT f is Lipschitz continuous with respect to

both ρ and f . Here, D1, D2 denote Lipschitz constants. Then,

‖y1 − y0‖2 ≤ D1 +D2

ζ
‖ρ1 − ρ0‖.
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So,

‖y1 − y0‖ ≤ θ‖ρ1 − ρ0‖
1
2 ,

by defining

θ =

(
D1 +D2

ζ

) 1
2

.

�

The continuity of the feasible set F̃α(ε) follows directly. From Theorem 8.3.2 and

Theorem 8.3.3 we conclude the following.

Corollary 9.1.1 (F̃α(ε), vα(ε) continuous). For any α > 0, F̃α(ε), vα(ε) are continuous

relative to ε ≥ 0.

If we assume affine linear latencies, i.e. Assumption 2 holds, then we can strengthen

our result.

Corollary 9.1.2 (F̃α(ε), vα(ε) Lipschitz continuous). Let Assumption 2 hold. For any

α > 0, F̃α(ε) and vα(ε) are Lipschitz continuous relative to ε ≥ 0.

We proposed a regularized problem to overcome the difficulties of the lower-level prob-

lem. The objective function of the lower-level problem is strictly convex in (f, x), assuring

a unique result (f, x) ∈ ψ(ρ) for each 0 ≤ ρ ≤ ε. However, the solution of this lower

problem is not necessarily a BRUE flow distribution as in (4.1.1).

9.2 Descent Algorithm

The mathematical optimization problem for the Best-case BRUE flow distribution re-

quires complex and computationally expensive algorithms. Due to this complexity, these

approaches are less appropriate for larger network instances. Therefore, this section pro-

poses descent method to approximate an optimal solution of the regularized bilevel prob-

lem. We use the necessary optimality conditions of a bilevel convex optimization problem

without upper-level constraints. Although there may exist more efficient approaches for

this particular context, we consider this approach as it easily extends to the context of e.g.

second-best toll pricing (11.2.1). Before we continue, let us rewrite the problem in (qα(ρ))

to reduce the number of variables. Here, Ff0 is the projection of F0 onto the f -space.

min
f

∑
e∈E

∫ (Γf)e

0
le(τ)dτ − ρT f + α‖f‖2 s.t. f ∈ Ff0 =

{
f Λf = d, f ≥ 0

}
.

(9.2.1)

Based on this formulation, we make some necessary observations:

• For any ρ, the lower-level solution exists and is unique with respect to (f, x).
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• It is easy to show that the Linear Independence constraint qualification (LICQ)

holds. For an arbitrary solution f of (9.2.1) consider for each k ∈ K,

Jk(f) = {p ∈ Pk | fp = 0}.

Then, the vectors

Λk,., ∇ffp, p ∈ Jk,

are linearly independent for any k ∈ K since there exists for each k ∈ K a path p ∈ Pk
for which fp > 0 holds. The active constraint gradients are linearly independent and

the KKT multipliers of the lower-level problem are unique.

• The second-order sufficienct optimality conditions of the lower-level problem hold

for each 0 ≤ ρ ≤ ε by strict convexity of the objective function in the lower level

(see Theorem 9.1.3).

For the sake of our method, based on Friesz et al. (1990), we reduce the regularized

bilevel problem to a bilevel problem in which no upper-level constraints are present:

min(ρ,f) s̃(f) := (Γf)T l(Γf)

s.t. f solves

minf
∑

e∈E
∫ (Γf)e

0 le(τ)dτ − ρT f + α‖f‖2

f ∈ Ff0

(9.2.2)

We try to set up a descent method for computing a local minimum of problem (9.2.2) as

follows. Suppose at (ρ0, f0), with solution f0 = f(ρ0) of the lower-level problem in (9.2.2),

we are able to compute the directional derivative of f(ρ) into direction d (assuming this

limit exists):

w(f0; d) = lim
t→0+

f(ρ0 + td)− f(ρ0)

t
. (9.2.3)

We obtain using (9.2.3):

s̃(f(ρ0 + td))− s̃(f(ρ0)) = ∇f s̃(f0)(f(ρ0 + td)− f(ρ0))

= t∇f s̃(f0)w(f0; d).

So, any direction d that satisfies

∇f s̃(f0)w(f0; d) < 0,

yields a descent direction d for the upper-level problem.

We use the following theorem, which was presented in a more general form in Savard

and Gauvin (1994).
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Theorem 9.2.1 (Necessary optimality conditions bilevel problem). Let (ρ0, f0)

be an optimal solution for (9.2.2). Then for any upper-level direction d ∈ R|P| at ρ0, the

directional derivative of the objective function of the upper-level problem satisfies

s̃′(f0; d) = ∇f s̃(f0)w(ρ0; d) ≥ 0.

The descent direction w(ρ0, d) of f(ρ) at ρ0 in direction d is the optimal solution for ρ = ρ0

of the quadratic program (f0 = f(ρ0)):

minw (dT , wT )∇2
ρ,fL(ρ, f)(d,w)

s.t. Λw = 0

wp ≥ 0 for all p : f0
p = 0(

ΓT l(Γf)− ρ+ 2αf
)T
w = 0

(9.2.4)

To prove that the directional derivative equals the optimal value corresponding to the

solution of quadratic program (9.2.4) we refer to e.g. Gauvin and Janin (1988).

The necessary optimality conditions gives us a straightforward approach to find a

descent direction. Indeed, as long as there exists a solution (d0, w0) of the linear-quadratic

bilevel problem:

min
(d,w)
∇f s̃(f0)w s.t. (w, d) ∈ G =

 (w, d)

−1 ≤ d ≤ 1

w solves (9.2.4)

dp ≤ 0 ρ0
p = εk, p ∈ Pk, k ∈ K

dp ≥ 0 ρ0
p = 0, p ∈ P

 ,

(9.2.5)

for which the optimal value is negative, we can move in a direction to lower the total

travel time. We emphasize that the linear-quadratic problem (9.2.5) reduces to a linear

problem with complementarity constraints if we consider the single-level reformulation of

(9.2.5). That is, problem (9.2.5) in which we replace lower-level problem (9.2.4) with its

KKT optimality conditions. We apply a simple branch-and-bound technique to solve this

problem (see Bard (1998)).

Let us assume that we find at iteration i a direction vector di and step size ∆i, then

ρi+1 is updated out of ρi by ρi+1 = ρi + ∆idi. Nevertheless, in the above analysis we

considered the problem in which no upper-level constraints are present. Since 0 ≤ ρ ≤ ε

assures that the solution of the problem is a BRUE flow as in (4.1.1) for a fixed ε, we

need to make sure that in our algorithm the upper-level constraints are met. Therefore,

we update ρi+1 via

ρi+1
p = min{max {0, ρip + ∆i

pd
i
p}, εk} (9.2.6)
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for each p ∈ Pk, k ∈ K, as suggested by Friesz et al. (1990).

Descent Algorithm

Step 1. Determine initial value 0 ≤ ρ0 ≤ ε and δ > 0, set i = 0.

Step 2. Solve (9.2.1) and obtain f i. Identify path set P i = {p ∈ P | f ip = 0}, and solve

(9.2.5) using P i to find descent direction vector di.

Step 3. Calculate stepsize ∆i.

Step 4. Determine ρi+1 using (9.2.6).

Step 5. If ‖ρi+1 − ρi‖ < δ, then terminate, otherwise let i = i+ 1 and go to Step 2.

Let us take a look at Step 3. Although we can apply a basic line search procedure, we

use a predetermined convergent step size. Hence,

∆i =
ΛT ε

i

for all i ∈ N.

We emphasize that this descent method is beneficial since during the steps of the

algorithm only convex problems should be solved. Indeed, at Step 2 we first solve the

convex lower-level problem and then we solve a linear-quadratic bilevel problem. A branch-

and-bound algorithm globally solves the linear-quadratic problem. This branch-and-bound

algorithm only requires to solve linear programs. However, the number of linear programs

to be solved can be exponential with respect to |P|. For numerical issues, we need to

implement a tolerance value to check whether the complementarity condition is satisfied.

We consider ab ≤ 1× 10−3 to be zero, for a, b ∈ R+.

9.3 Synthesis

We proposed a regularized bilevel problem in which the lower-level objective function is

perturbed to assure that the lower-level response is unique. Moreover, this regularized

problem has a continuous feasible set and optimal value function with respect to pertur-

bations in the indifference band ε. Based on the regularized bilevel problem we proposed a

descent method to approximate the Best-case BRUE flow distribution. The next chapter

applies this descent method on a test network.
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Chapter 10

Numerical Experiments

Appraisal of transport policies is a major concern for transportation engineers (Sheffi,

1985) and requires accurate prediction of traffic flows. In the previous chapters we dis-

cussed the behavior of the Best-case BRUE problem (Q(ε)) under perturbations in the

indifference band ε and we proposed a descent method in approximating the Best-case

BRUE flow distribution. This chapter reports on some numerical experiments in a test

network. First, we propose a relaxation algorithm to find the best-performing BRUE flow

distribution with respect to the total travel time.

10.1 A Relaxation Algorithm

Let us once again take a look at the complementarity reformulation of (Q(ε)):

min s(x)

−c(x) + ΛTλ ≤ 0

fp(cp(x)− λk − εk) ≤ 0 for all p ∈ Pk, k ∈ K
(f, x) ∈ F0

(10.1.1)

Difficulty is that (10.1.1) not necessarily satisfies a constraint qualification. We showed

that we can overcome this issue by identifying path set P ⊆ P beforehand (Section 5.5). If

we assume that affine linear latency functions are present in a network (i.e. Assumption 2

holds), the problem (10.1.1) is relatively straightforward to solve. The course of action is,

for a fixed ε ≥ 0, to evaluate (QP (ε)) for all possible choices of P ⊆ P. For this particular

problem, we consider two approaches in identifying the proper path set P so that the

convex problem (QP (ε)) finds the global optimum of (Q(ε)).

• The two-stage approach. This approach consists of two steps: choice set generation

and traffic assignment. First, we generate a choice set and then we assign traffic over

these possibly used paths in a way such that the total travel time is minimized. That

is, generate for a given ε ≥ 0 a family of path set P̃(ε) = {P ⊆ P | ε ∈ dom (FP )}
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and then solve (QP (ε)) for all P ∈ P̃(ε). Such an approach was applied by Di et al.

(2016). They constructed this family by assuming that the path set is monotonically

non-decreasing : given f1 ∈ F(ε1) then for any f0 ∈ F(ε0), ε1 > ε0, we have that

P 0 ⊆ P 1. Here,

P 0 = {p ∈ P | cp(f0) ≤ min
q∈P

cq(f
0)+ε}, and P 1 = {p ∈ P | cp(f1) ≤ min

q∈P
cq(f

1)+ε}.

We show via a counterexample that this claim is not necessarily true:

x1 + 6

x2 + 20

x3 + 18

x4 + 20

A B C

Figure 10.1.1: Example Network.

Example 10.1.1. Consider the network with a single commodity (A,C) in Figure

10.1.1. Demand d = 20. We solve for the PRUE which leads to the PRUE link flow

xn:

xn = (17, 3, 11, 9).

The route cost is cp(x
n) = 52 for all p ∈ P. From the route cost vector c(xn), we

identify the used paths:

Pn = {a, b, c, d},

in which

a = {1, 3}, b = {1, 4}, c = {2, 3}, d = {2, 4}.

In other words, we can find a route flow distribution in which all the paths carry

flow. If we solve for a BRUE for ε0 = 6.5, we get the link flow vector

x0 = (14, 6, 10.5, 9.5),

with corresponding path cost vector

c(x0) = (48.5, 49.5, 54.5, 55.5).

The used paths are then

P 0 = {a, b, c}.

Obviously, P 0 ⊂ Pn.

• The enumeration or branch-and-bound approach. We consider the following pro-
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gram, given P,R ⊆ P, for given ε ≥ 0:

min
(f,x,λ)

s(x) s.t. (f, x, λ) ∈ F(P,R)(ε), (10.1.2)

in which F(P,R)(ε) is defined as

F(P,R)(ε) =

 (f, x, λ)

(f, x) ∈ F0

cp(x)− λk − εk ≤ 0 for all p ∈ Pk, k ∈ K
(f, x, λ) ∈ Fl
fR = 0

 .

This method starts by solving for the system optimum (Qs), i.e. solve (10.1.2)

with P = R = ∅. If the optimal solution to this problem happens to satisfy the

complementarity condition in (4.1.1) then we are done. Otherwise we have at least

one path p ∈ Pk, k ∈ K for which fp(cp(x)−λk− εk) > 0. We add two subproblems.

One subproblem has P = P ∪ {p}, R = R, the other subproblem considers R =

R ∪ {p} and P = P . We solve (10.1.2) for the updated P,R. We continue to add

subproblems until the solution of (10.1.2) satisfies (4.1.1) for all p ∈ Pk, k ∈ K. If we

find a feasible BRUE flow, we compare the corresponding objective value with the

best BRUE solution thus far. We update the optimal value function or discard our

new BRUE flow. If the objective function is worse, we discard a complete subtree.

We also discard a subtree if the objective value of a solution (not necessarily satisfying

(4.1.1)) is worse than the best solution satisfying (4.1.1) thus far. We compare and

update the optimal value function and continue until we find the global optimal

solution. This algorithm terminates in a finite number of iterations with the global

optimum of (Q(ε)).

It is well-known that a branch-and-bound approach in a general setting possibly

ends up evaluating 2|P| convex problems. Some preliminary tests with this algo-

rithm showed that also in practice numerous convex optimization problems should

be solved in our context.

Remark 10.1.1. The two-stage approach is solely applicable under strong conditions. If

the path set is monotonically non-decreasing under Assumption 2 we solve a sequence of

integer programs to find all P ⊆ P for which ε ∈ dom (FP ). If we consider parallel-

link networks under the same assumption, we can efficiently find the acceptable path set.

Hence, in this particular case, we find the Best-case BRUE in polynomial time.

Under more general latency functions, l(x) might be highly nonlinear. This makes

problem (10.1.1) an optimization problem with a set of nonlinear constraints. The enu-

meration approach, as discussed, possibly evaluates a combinatorial amount of choices of
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P . If l(x) is nonlinear, it solves numerous nonlinear optimization problems which leads to

high computation times. We provide an alternative approach based on Ban et al. (2006).

Let us introduce parameter vector 0 < α ∈ R|P |+ and define the perturbed complemen-

tarity constraints

fp(cp(x)− λk − εk) ≤ αp and − cp(x) + λk ≤ 0, (10.1.3)

for all p ∈ Pk, k ∈ K. A similar analysis as in Section 5.2 shows that for any α > 0 the

system in (10.1.3) satisfies a constraint qualification for any feasible point in the feasible

set (Figure 10.1.2).

υ

θ

θ(υ − ε) ≤ α

0 ε

Figure 10.1.2: Abstract one-dimensional illustration of the feasible set corresponding to
the system of inequalities (10.1.3) for abitray ε > 0 and α > 0. Here, θ = fp, υ = cp(x)−λk.

The system in (10.1.1) becomes for α ≥ 0:

min s(x)

−c(x) + ΛTλ ≤ 0

fp(cp(x)− λk − εk) ≤ αp, for all p ∈ Pk, k ∈ K
(f, x) ∈ F0

(10.1.4)

Then, letting α → 0 will provide a solution to (Q(ε)). The problem in (10.1.4) is still

a nonlinear optimization problem, but there are ample approaches to solve these type of

problems, e.g. the Sequential Quadratic Programming (SQP) algorithm.

Optimization software requires an initial choice (f0, x0). Therefore, α reduces every

iteration and we use the solution of the previous iteration as input for the new iteration.

Overall, the algorithm to solve (Q(ε)) for local minimizers is similar to the one presented

in Ban et al. (2006) and is as follows:

Relaxation Algorithm

Step 1. Choose initial parameter vector α0 > 0. Set iteration limit M and update factor
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0 < σ < 1. Set i = 0.

Step 2. Solve (10.1.4) using αi. If i ≤M , set αi+1 = σαi. Moreover, set i = i+ 1 and repeat

Step 2. Otherwise, go to Step 3.

Step 3. Solve the exact problem (Q(ε)), if it is successful, we obtain an exact solution.

Otherwise, an approximate solution is achieved.

The algorithm requires to solve M + 2 nonlinear programs. Step 2 is performed M + 1

times while we need an additional problem in Step 3. We overcome the combinatorial

curse of (Q(ε)) and we solve a predetermined number of nonlinear programs. The time

needed to perform such a nonlinear program highly depends on the network instance and

mainly determines the actual CPU time of the algorithm.

The proposed relaxation algorithm differs from the descent approach as follows. The

relaxation approach can be seen as a dual approach while the descent approach is a

primal method. In the descent algorithm we start with a feasible solution and seek for

an improvement while remaining feasible, in the relaxation algorithm, on the other hand,

we start with an infeasible solution and tighten the constraints so that we find a solution

which is feasible for (Q(ε)).

This algorithm was originally constructed by Ban et al. (2006) to solve the Continuous

Network Design Problem (CNDP). In fact, frequent algorithms meant for the CNDP also

apply to the Best-case BRUE problem.

Remark 10.1.2. In all the discussed algorithms, we assume that we know the matrix Γ

beforehand. The formulation in (Q̃(ε)) requires this matrix since we define ρ per path in

the path set. We stress that it might be difficult to construct the whole path set beforehand.

Therefore, Lou et al. (2010) proposed a link-based definition of the BRUE flow distribution.

This definition is more restrictive since for paths that only consist of links with positive

flows, the link-based BRUE definition requires its travel time to be within the indifference

band, even when the path carries no flow (Lou et al., 2010). Another possible approach

is to construct a subset of the complete path set via e.g. the k-shortest path algorithm.

Although this approach is more restrictive, it is not necessarily unrealistic. Large detours

that connect a commodity are not included in this set but are also not likely to be used in

practice.

10.2 Network Instances

We study the impact of a varying ε on the Best-case BRUE link flow distribution. There-

fore, we adopt a test network. Although the test network cannot be considered realistic,

it suits the purpose of this section to compare performance of the provided algorithms.
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Figure 10.2.1: Nguyen & Dupuis Network

Nguyen & Dupuis Network

Figure 10.2.1 depicts the network which was introduced by Nguyen and Dupuis (1984).

The network has four origin-destination pairs, namely (1, 2), (1, 3), (4, 2) and (4, 3). We

identified all possible paths (|P| = 25) for these commodities. The settings for this network

were taken from Ohazulike et al. (2013).

Table 10.2.1 lists the demand for each commodity.

Table 10.2.1: Demand for the Nguyen & Dupuis Network

origin destination demand

1 2 200
1 3 400
4 2 200
4 3 150

We adopted the BPR travel time function for all edges in the network:

le(xe) = κte

(
1 + 0.15

(
xe
ce

))4

,

in which te is the free flow travel time on link e, ce is the capacity of the edge e and κ is

the value of time. As mentioned, the BPR function satisfies Assumption 1.

We adopted some basic parameter settings for both algorithms (Table 10.2.2).

For both methods, we used the MATLAB software tool for implementation. In partic-

ular, for any nonlinear program we used the SQP algorithm to find an optimal solution.

The interior-point algorithm (with termination tolerance 1× 10−5) is used to solve a lin-

ear problem in the descent method. In general, we used the basic settings for all these
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Table 10.2.2: Algorithm settings

∆ ρ0 α0 M δ

Descent ΛT ε/i 0 1× 10−3 - 1× 10−2

Relaxation 0.1 - 10 10 -

algorithms. Nevertheless, preliminary tests showed that we had to manually increase

MATLAB’s default value for the maximum number of iterations allowed. Furthermore,

we introduced a numerical lower and upper bound on w in problem (9.2.5) and multiplied

the constraints and objective function by factor 10. Both algorithms are tested on the

same computer. We applied the manifold suboptimization algorithm (Lawphongpanich

and Yin, 2010) to solve the Best-case link-based BRUE flow distribution as articulated

by Lou et al. (2010). We used the SNOPT solver (Gill et al., 2005) in AIMMS to solve

this problem. As initial solution for this algorithm we used the PRUE flow distribution.

We note that the manifold algorithm requires to solve nonlinear programs. Moreover, Lou

et al. (2010) indicated that only a subset of the BRUE flow distributions is considered in

this setting. On the other hand, the link-based BRUE formulation does not require matrix

Γ (Remark 10.1.2).

10.3 Performance of the Algorithms

Let us compare both algorithms with respect to the outcome (i.e. total travel time of the

BRUE flow distribution) and CPU time. We tested the network instances for βε0 in which

β ∈ {0.01, 0.02, . . . , 1} and ε0k is the maximum travel time difference between two routes

for each commodity k ∈ K in the system-optimal flow distribution.

Figure 10.3.1a depicts the system objective corresponding to the flow distributions

of the relaxation algorithm and the descent approach. It also shows performance with

respect to total travel time of the link-based BRUE. The upper vertical line in Figure

10.3.1a gives the total travel time of the PRUE flow while the bottom line corresponds

to the global performance for the system-optimal flow. Trivially, the total travel time is

bounded from below and above by the travel time attached to the system-optimal and

PRUE flow respectively (cf. Lou et al. (2010)).

Figure 10.3.1a shows that the relaxation method outperforms the descent approach

with respect to global performance. Indeed, for any choice of β, the total travel time of

the flow found by the relaxation method is less than or equal to the performance of the

flow distribution found by the descent method. Moreover, the relaxation approach attains

the system optimum for β = 1, which is line with the behavior of the Best-case BRUE

problem (see Section 5.3). For small values of β, the descent method finds a BRUE flow

distribution with equal travel time.
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Figure 10.3.1: Algorithm performance in Nguyen & Dupuis Network.

A possible explanation for the inferior performance of the descent method is as follows.

The descent approach is based on the necessary optimality conditions of a relaxed problem.

Thus even for this relaxed problem only a local minimum can be found. We note that due

to the complexity of the problem, we cannot check whether a Best-case BRUE is actually

obtained.

We see that our relaxation method outperforms the link-based BRUE: for all values of

β, we find a BRUE flow distribution with less travel time. However, for large values of β

(i.e. β ≥ 0.8), the link-based BRUE approaches the global performance of the relaxation

algorithm. When comparing the descent method with the link-based BRUE, we see that

the descent method performs better than the link-based approach for small values of β.

Figure 10.3.1b analyzes the CPU time for both approach and shows that the relaxation

approach outperforms the descent method. These results are somewhat surprising since the

relaxation method requires nonlinear programs to be solved. However, the optimization

tool handles these programs quite efficiently. Moreover, for each iteration, the descent

method requires to solve a branch-and-bound scheme. This might lead to solving an

exponential number of linear programs with respect to the number of paths in the network.

The CPU time for the relaxation method is bounded from above by 5 seconds, while the

descent approach might require almost 200 seconds to find a flow distribution.

We discuss some apparent anomalies in Figure 10.3.1a. We see that for some values

of β, the total travel time corresponding to the descent approach worsens compared to

the performance for a smaller indifference band. This behavior is due to some numerical

issues in the optimization tool. We emphasize that the relaxation method was able to

solve the exact problem for any β except β = 0.26, 0.34, 0.35, 0.95, 0.97. In these cases, it

terminated with an approximate solution.

All in all, we conclude that the relaxation algorithm outperforms both the descent

98



method as the link-based BRUE approach. Nonetheless, we can improve performance of

the latter two approaches. Therefore we should use a different initial solution or evaluate

the same instance for multiple initial solutions. Moreover, the CPU time of the descent

approach improves if we look for any descent direction rather than the steepest.

10.4 Policy Impact

The purpose of this section is twofold. First, we study the implications of adopting a

bounded rationality traffic assignment for scenario evaluation. We answer the question

whether implementation of the (Best-case) BRUE assignment is different from the PRUE

assignment whereas other bottlenecks may be identified. Since the BRUE flow distribution

adds complexity to the traffic assignment problem, a negligible difference in flows implies

that the adoption of a BRUE assignment is unnecessary complex. Second, we study

the implications for the NDP. If the Best-case BRUE substantially improves performance

compared to the PRUE, it might be beneficial to steer the network for a given ε towards the

Best-case BRUE. Whereas the global performance of the PRUE flow gives a lower bound

on performance of the Worst-case BRUE, our analysis here provides a lower bound on the

maximum improvement that is obtained by steering to the Best-case BRUE. From the

assumptions of bounded rational choice behavior, the Best-case BRUE improves overall

performance while no individual has the incentive to change routes.

We assume that the indifference band is fixed and does not differ among commodi-

ties. Furthermore, ε ranges from 0.1 to 0.6. We implement this setting to capture a

more realistic setting than in the previous section, which solely had the purpose to com-

pare computational performance of the algorithms. For comparison, we also evaluate the

outcomes of the PRUE and the system-optimal flow.

Table 10.4.1: Nguyen & Dupuis network results for different values of ε.

ε Obj. RMSE MaxAbs Paths

0 5173 8
0.1 5112 (-1.18%) 32.35 72.31 8
0.2 5068 (-2.04%) 50.96 112.52 8
0.3 5036 (-2.65%) 65.90 145.07 8
0.4 5029 (-2.79%) 71.77 142.86 6
0.5 5023 (-2.90%) 74.83 169.39 8
0.6 5023 (-2.91%) 77.00 175.49 10
εso 5023 (-2.91%) 76.99 175.49 10

Table 10.4.1 lists the results, generated using the relaxation algorithm. In addition,

we used the by-product route flow distribution. We report on differences with respect to

the objective value (total travel time of the solution), the maximum absolute difference

(the maximum absolute difference in link flow), root mean square error (RMSE) and the
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number of paths carrying flow. The RMSE gives the expected difference in link flow for

an arbitrary edge. For policy evaluation, we discuss the differences between the link flow

distributions. Large differences between the PRUE and BRUE assignment with respect

to the link flow imply that new or different bottlenecks might be identified for the same

scenario under different behavioral assumptions.

The results show that boundedly rational behavior of users leads to a different traffic

assignment. By that we mean that we observe large differences in the link flow solution.

Even for ε = 0.1, we expect a link flow difference on an arbitrary link of more than

30 (total demand is 950), with a maximum absolute difference over 70. Hence, traffic

distributes differently over the network. If we further increase the indifference band ε, we

observe even more extreme results. Figure 10.4.2 plots the flow distributions and shows

that traffic distributes more evenly over the network. We emphasize that for ε = 0.2 the

algorithm terminated with an approximate solution.

We conclude that traffic management measures which steer the network towards the

Best-case BRUE flow distribution are powerful to minimize congestion and thereby pre-

serve fairness. Assume ε to be fixed and assume an arbitrary BRUE flow distribution is

realized in practice. Table 10.4.1 shows that even for small values of ε, the Best-case distri-

bution leads to a major improvement with respect to the total transit time. For example,

assuming that users have an indifference band of ε = 0.1, more than 30% of the benefit of

the system optimum with respect to total travel time is obtained by the Best-case BRUE

distribution. For ε = 0.2, this percentage further increases to 70%.

It follows that the indifference vector ε should be a well-calibrated parameter. Earlier,

we indicated that the optimal solution set is not necessarily continuous with respect to

perturbations in ε. The numerical experiments confirm this claim. A small change in ε

leads - from a behavioral perspective - to completely different route choices. Han et al.

(2015) made the same claim in the dynamic setting.

To reduce complexity of the problem (Q(ε)), we suggest to identify for given ε, even

under nonlinear latencies, an appropriate path set Pk ⊆ Pk, k ∈ K. Table 10.4.1 lists

therefore the number of paths that carry flow for this instance. Hence, if we solve (QP (ε))

under nonlinear latencies with the listed paths, we find the same flow distribution as

the relaxation algorithm. We emphasize that, although not directly clear, an ad-hoc

identification of Pk would not lead to this flow distribution. In other words: P 6= Pn and

P 6= P so for all tested 0 < ε < εso. We need to further investigate whether this ad-hoc

identification is a possible way to approximate the Best-case BRUE and to limit CPU

time.
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(a) ε = 0 (b) ε = 0.1

(c) ε = 0.2 (d) ε = 0.3

Figure 10.4.1: Flow distributions in Nguyen & Dupuis Network under different ε.

10.4.1 Route Guidance with User Constraints

We recap the setting of the route guidance system with user constraints as introduced in

Section 4.3. Route guidance systems often face unfairness issues, which makes implemen-

tation difficult in practice. We therefore consider these issues for the Best-case BRUE flow

distribution. That is, we assume that an authority implements a route guidance system

which steers the network towards this BRUE flow. The numerical results for the Nguyen

& Dupuis network imply that, assuming a PRUE to be realized in absence of coordination,

a route guidance measure with user constraints is beneficial.

Figure 10.4.2a shows the cumulative distribution of travel time among travelers (un-

fairness) in a Best-case BRUE flow distribution for varying ε. These results show that in

our instance a Best-case BRUE flow steers at least 20% of all travelers along the shortest

time path. A perfect rationality perspective assumes that the remaining demand has an

incentive to switch routes. On the other hand, the bounded rationality perspective says

that the travel time improvement is only marginal and therefore induces no switch. In
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the system-optimal flow distribution, some travelers experience 10% longer travel times

compared to other users. This percentage reduces to 2.5%, 5%, 7.5% for ε = 0.1, 0.2 and

0.3 respectively.

Figure 10.4.2b compares the transit time of users in a route guidance setting to the

travel time in a PRUE. We observe that some travelers face an increase in travel time

in order to achieve a system optimum. In fact 20% of all users experience more delay

compared to the delay in the PRUE. In practice, drivers may not notice this increase. In

other words, they are indifferent to this change (Vreeswijk et al., 2013a). On the other

hand, 10% of the demand ends up on a route which is 9% faster.

These preliminary results show that a route guidance system which steers the network

to a Best-case BRUE flow distribution is promising. That is: we can improve travel time,

while we limit the unfairness and the additional experienced delay. For this particular

instance, the Best-case BRUE for ε = 0.1 is the flow distribution to aim for. Indeed, no

traveler experiences additional delay, a route switch only marginally improves the transit

time (at most 2.5%) and the distribution achieves 30% of the benefit of the system optimum

with respect to travel time.

We emphasize that the experiment should be repeated in more realistic networks. For

instance, the travel time increase in a system optimum compared to a PRUE was shown

to be 25% in a realistic network considered by Jahn et al. (2005). Furthermore, the travel

time ratio with respect to the shortest time path was in this instance of Jahn et al. (2005)

more than 2. A future analysis should also include the distribution of impacts among

OD-pairs.
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(a) Unfairness distribution in Best-case BRUE
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Figure 10.4.2: Unfairness distributions in Nguyen & Dupuis Network under different ε.
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10.5 Synthesis

In order to incorporate the BRUE in the NDP, we proposed in previous chapter a descent

method in approximating the Best-case BRUE flow distribution. In this chapter, we

proposed a relaxation algorithm, which solves a sequence of nonlinear programs to find this

best-performing flow. Both algorithms were tested in a numerical example and compared

based on outcome and CPU time. For both aspects, the relaxation algorithm outperforms

the descent method.

Furthermore, we investigated the implications for policy evaluation in the bounded

rationality traffic assignment. In the test network, the BRUE differs substantially from

the PRUE and system-optimal flow distributions. Lastly, we found that steering the

network towards the Best-case BRUE may lead to major benefits in terms of total travel

time. Indeed, 30% of the benefit of the system-optimal assignment was obtained by the

Best-case BRUE for a small indifference band.
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Chapter 11

Conclusions

This study incorporated a behavioral view on route choice decision making in a traffic

assignment model to increase the validity of the Network Design Problem. The objective of

the research was to develop and analyze a static traffic assignment model that incorporates

bounded rationality.

We draw the following main conclusions:

• (Choice Behavior and the Network Design Problem). The adoption of boundedly

rational decision making of travelers in the static traffic assignment leads to a non-

unique lower-level response in the NDP. It adds a new dimension to the NDP since it

is unknown which lower-level flow is most likely to be realized in practice. In order to

cope with the uncertainty, we recommend to consider the best and worst-performing

flow distribution under bounded rationality.

• (Mathematical Analysis). We formulated a bilevel optimization problem for which

the solutions correspond to the Best-case BRUE conditions. This optimization prob-

lem is a mathematical program with complementarity constraints, which are difficult

to solve numerically and different local minimizers may co-exist. As a solution, we

offered an approach that replaces the problem by a union of easy to solve problems.

Parametric analysis showed that the problem lacks favorable continuity properties:

only a strong and unnatural condition guarantees continuity of the feasible set and

optimal value function with respect to perturbations in the indifference band.

• (Usability for Scenario Analysis). Due to the complex mathematical structure of

the problem, we constructed an optimization problem that finds an approximate

Best-case BRUE flow distribution. The feasible set and optimal value function of

this problem are continuous with respect to perturbations in the indifference band.

We provided a relaxation algorithm and descent approach to find this flow distribu-

tion. We recommend authorities to consider adopting these algorithms to evaluate

105



scenarios: numerical experiments showed that the BRUE assignment substantially

differs from the PRUE assignment.

We used a parametric optimization approach in our study. We elaborate on the con-

clusions.

Choice Behavior and the Network Design Problem

Traffic assignment models assume users to be perfectly rational. In other words, travelers

evaluate all possible route alternatives and choose the minimum cost route. In the NDP,

any intervention by an authority in the upper level leads to a unique perfectly rational

response in the lower level. However, empirical studies suggest that the assumption of

perfectly rational decision making is naive. In practice, users are boundedly rational and

choose suboptimal routes. We incorporated the definition of bounded rationality from

Mahmassani and Chang (1987) in the static traffic assignment: users solely change paths

if the new route improves the travel time by more than the indifference band.

This behavioral aspect in the static traffic assignment has serious consequences for the

NDP. Even in simple 2 × 2 matrix games difficulties arise: there is a whole set of BRUE

flows that differ in system performance. This leads to an additional dimension in the

lower level of the NDP and thereby induces uncertainty among upper-level performance.

It unknown which lower-level flow is most likely to be realized in practice, and it becomes

unclear which upper-level measure will lead to optimal performance of the system. Hence,

we need to make an additional assumption on the lower-level response. We showed that

this might lead to adverse effects: a pricing scheme designed under best-case assumptions

can lead to an inferior performance of the system in practice.

Authorities should therefore focus on the extremes of possible network performances.

That is: assess performance of BRUE flow distributions with best and worst-case perfor-

mance with respect to the total travel time.

Mathematical Analysis

We formulated a mathematical optimization problem for which the optimality conditions

correspond to the BRUE condition. We were particularly interested in finding the best-

performing flow with respect to total travel time among all BRUE flows. It turned out that

this best-performing flow is difficult to calculate since the feasible set is not convex and

violates a regularity condition. Consequently, standard optimization tools do not apply.

We adopted a parametric optimization approach whereas the Best-case BRUE problem

reduces to simple convex problems for certain values of the indifference band. Indeed, the

problem is equivalent to the PRUE problem in case the indifference band is zero and

reduces the system-optimal traffic assignment when the indifference band is sufficiently

large.
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To handle the non-convexity and violation of the regularity constraint, we proposed to

decompose the problem - assuming affine linear latencies - into branches of optimization

problems. These branches are easy to solve and the union of the feasible sets of all

branches corresponds to the feasible set of the Best-case BRUE problem. Each branch

behaves continuously with respect to perturbations in the indifference band. By that we

mean that the feasible set, optimal value function and optimal solution set are continuous

(multi-)functions with respect to perturbations in the band.

The Best-case BRUE problem, on the other hand, is not necessarily continuous. Even

under affine linear link latencies, the feasible set, optimal value function and optimal solu-

tion set are generally not continuous relative to perturbations in the parameter. However,

mild assumptions guarantee the existence of a BRUE flow.

A bilevel reformulation of the Best-case BRUE flow distribution problem allowed us

to analyze the assignment under general latency functions. We showed that this bilevel

problem lacks favorable continuity properties. The reformulation indicated that under the

condition that the link flow uniquely determines the route flow, continuity of the set of

BRUE flows and optimal value function is guaranteed. Nevertheless, this condition is very

strong and does not occur regularly.

Usability for Scenario Analysis

The mathematical optimization problem for the Best-case BRUE flow distribution re-

quires complex and computationally expensive algorithms. Due to this complexity, these

approaches are less appropriate for large networks. We provided two algorithms that

approach local minima of the Best-case BRUE problem in limited time. The relaxation

algorithm approaches the Best-case BRUE by solving a sequence of nonlinear programs

while the descent method solely uses convex and linear optimization problems to approach

a minimum.

We conducted numerical experiments on a test network to indicate the usability of

these algorithms for scenario analysis. The relaxation method outperforms the descent

approach in terms of outcome with respect to total travel time and CPU time. Both

methods allow integration in the NDP and authorities should consider to adopt these

approaches.

A preliminary analysis showed the impact for the NDP. If a Best-case BRUE flow

distribution is realized rather than the PRUE, the distribution leads to different results

for scenario analysis: link flows and total travel time differ significantly. Furthermore, we

showed that the Best-case BRUE flow distribution is a desired state for authorities since

this flow limits unfairness among users and substantially improves the travel time.

107



11.1 Discussion

Some aspects of this research are subject for discussion.

We made some necessary assumptions. Assumption 1 forces the travel time function

to be monotonically increasing and separable with respect to the link flow. Although

this assumption is common in static traffic assignment literature, we recognize that this

assumption does not mirror a realistic link cost function. Major drawback of the basic

setting is that the flow on a link can exceed capacity and an excess of demand does not lead

to a traffic queue. Simple extension of the model (by adding a linear constraint that does

not allow the flow to exceed capacity) partially reduces this problem. Mathematically,

this will not induce any new problems compared to the setting we adopted. In a realistic

setting we suggest to adopt e.g. elastic demand and asymmetric link cost functions. Other

basic extensions are likely to improve realism as well. For instance, we can integrate the

BRUE assignment in a stochastic setting. Then, the travel time includes a random term.

In this context, a BRUE assumes travelers to switch routes when they think they can

improve travel time.

We made some basic assumptions with respect to the indifference band ε. As ear-

lier mentioned, the indifference band is an individual-specific threshold (Vreeswijk et al.,

2013b) and we prefer to consider this band as a stochastic variable. Also, the indifference

band depends on the traffic situation, which suggests that the indifference band is endoge-

nous. This setting is considered by Han et al. (2015). Both extensions increase complexity

and were therefore not considered in our study.

The numerical experiments were conducted on the Nguyen & Dupuis network to indi-

cate performance of the proposed algorithms. Obviously, this network is not realistic. We

should further study the integration of the assignment model for scenario analysis and the

algorithms should be tested with respect to their outcome on multiple realistic instances.

In particular, an efficient method should be adopted to generate a path set. However, the

analysis still holds if not a complete path set is generated. In this perspective, we prefer

the link-based approach of Lou et al. (2010) . They formulated a link-based reformula-

tion of the BRUE problem to avoid constructing this set. However, this approach only

considers a subset of all possible BRUE flows.

In total, three algorithms were compared with respect to the outcome with regard

to global performance. However, the performance of the descent approach and manifold

suboptimization algorithm highly depend on the initial solution, as was also indicated by

Lou et al. (2010). We adopted basic settings for these algorithms.
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11.2 Future Research

In our research, we mainly focused on the Best-case BRUE flow distribution. As sug-

gested in Example 4.2.2, from an authorities’ perspective, it might be more appropriate

to consider the Worst-case BRUE problem in the NDP. Under linear latency assumptions,

any branch problem turns into a concave minimization problem over a convex set. These

problems are known to be difficult to solve. However, scenario analysis requires an algo-

rithm to approach the Worst-case BRUE. A single-level reformulation of the Worst-case

BRUE, similar as in Section 8, allows us to apply the manifold suboptimization algorithm

(Lawphongpanich and Yin, 2010).

In a traffic management context, authorities want to steer the network to a system

optimum. A possible measure implements road pricing. We could adapt our problem to

the program of finding the first- or second-best tolling scheme under boundedly rational

choice behavior. Let y ∈ R|E|+ be the toll vector and ymax ∈ R|E|+ be the toll vector of

the maximum allowed tolls. The optimization problem corresponding to the second-best

tolling scheme becomes:

min(ρ,y,f,x) s(x)

s.t. 0 ≤ ρ ≤ ε
0 ≤ y ≤ ymax, and (f, x) solves

min(f,x)

∑
e∈E

∫ xe
0 (le(τ) + ye) dτ − ρT f

(f, x) ∈ F0

(11.2.1)

It is clear that, mathematically, this setting does not induce additional issues. However,

this toll-setting is said to be ‘optimistic’. We need further research on the Worst-case

BRUE flow distribution to find a toll setting which is robust. By that we mean a toll

setting which minimizes the Worst-case travel time, i.e. replace the upper-level objective

in (11.2.1) by

min
y

max
(ρ,f,x)

s(x).

This context was considered in Di et al. (2016) under linear latency assumptions. A traffic

management setting in which an authority steers the network from a given BRUE state

to the Best-case BRUE is also topic for future research.

We focused ourselves on a static model which gives certain restrictions compared to

a day-to-day or fully dynamic model. The static model suffices to predict impacts on

a strategic level and is favorable in terms of computational effort and understandability

compared to its dynamic counterparts. On the other hand, we recognize that the static

assignment is a steady state of a day-to-day model. Other research (e.g. Guo and Liu

(2011)) investigated a day-to-day model in which individuals are assumed to repeat their
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choice from day to day unless an alternative becomes available which substantially im-

proves travel time. This behavior of individuals can be ‘exploited’ for traffic management

purposes as was shown in a simple numerical example in Vreeswijk et al. (2013a).

In a fully dynamic setting, the route guidance system as considered in Section 4.3 is

particularly applicable in case of non-recurrent congestion. In case of incidents, users tend

to switch routes as their intended route alternative shows unexpected bad performance

(Chorus et al., 2006; Mahmassani and Liu, 1999). In particular, a route guidance with

user constraints could reduce congestion. Since these non-recurrent events account for 26%

of all congestion on the Dutch highway network (Rijkswaterstaat, 2015), improvement of

global performance leads to substantial economic benefits. However, the computational

effort to calculate the Best-case BRUE is important whereas optimization occurs in a

dynamic setting and ongoing fashion. Therefore we underline the necessity to use heuristics

in this context. In particular genetic algorithms may serve this purpose.

A whole range of applications can adopt a similar setting. The route guidance setting

describes an optimization problem that both concerns overall performance and equity. For

instance, a similar problem arises in personnel scheduling, in which workload should be

equally distributed among employees (Karsu and Morton, 2015).
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