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d = 1; lx = (5, 50), ly = 5, N = (300, 3000)
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video column

Leidenfrost state

Color is kinetic energy

a = 0.1, ω = 25
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Color is kinetic energy

Convection state
a = 0.1, ω = 50
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Further description of states: P. Eshuis et al. Granular Matter, vol. 15, pp. 893-911.
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How do granular dynamics depend on particle size?
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How do granular dynamics depend on particle size?

Modify ‘d’ while retaining the 
macroscopic phenomenology

Monday, January 27, 14



How do granular dynamics depend on particle size?

Modify ‘d’ while retaining the 
macroscopic phenomenology

=
granular hydrodynamics equations
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particle conservation

momentum conservation

energy conservation
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energy conservation in steady state

Fourier’s law Dissipation by particle-particle 
collisions
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energy conservation in steady state
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energy conservation in steady state
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energy conservation in steady state

transport coefficients scalings with d
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13

restitution coefficient scaling with d

energy conservation in steady state

Monday, January 27, 14



equivalent systems 𝕊(d; lx, ly, N, r, a,ω)
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𝕊n = 𝕊{d=n,...}
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What can equivalent macroscopic systems 
with different number of particles show us?
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A = 1.0d, ω = 14.0(d/g)1/2

(40 Hz for 5mm particles)
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low-frequency oscillations
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Amplitude of the oscillations decreases...
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The mode of the LFOs is invariant,
while the amplitude seems to depend on fluctuations.

What can equivalent macroscopic systems 
with different number of particles show us?
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The mode of the LFOs is invariant,
while the amplitude seems to depend on fluctuations.

N. Rivas et al., New Journal of Physics, 2013
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What can equivalent macroscopic systems 
with different number of particles show us?
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• The obtained granular hydrodynamic scalings with particle size 

lead to convergence of macroscopic fields as ‘d’ diminishes.

• Low-frequency oscillations amplitude is driven by fluctuations.

Particle size scalings in vertically 
vibrated granular media
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Current work:

• Comparison with solution of granular hydrodynamics.

• Leidenfrost/convection transition for different ‘d’:

Particle size scalings in vertically 
vibrated granular media
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