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I. BACKGROUND

This report describes the progress of the VICI project 10828, Bridging the gap between

particulate systems and continuum theory. In this progress report, we focus on the dissipative

particles, for example, granular materials. If the density of granular particles is very small,

we can derive the hydrodynamic equations from the kinetic theory of dissipative particles, on

the other hand, there are many attempts to describe the densely packed granular materials

by elastic or viscoelastic theories. Even though the both limits (extremely low and high

densities) are well studied by the continuum theories, the macroscopic properties of the

dissipative particles are drastically changed between the both limits, i.e., around the jamming

point. Therefore, we study the various features of the jamming transition of dissipative

particles in order to understand the macroscopic behaviors of granular particles near the

transition point by continuum theories.

II. INTRODUCTION

Jamming is one of universal features of vast ranged materials including both thermal and

athermal systems, for instance, glasses, granular particles, emulsions, colloidal suspensions,

foams and etc., where constituents are arrested in disordered states so as the materials gain

rigidity. Such jamming transitions are governed by temperature, density and external loads,

and a lot of systems can be mapped onto the unified phase diagram of jamming transition

[1–3].

Jamming of athermal systems, i.e., granular particles [4–7], emulsions [8, 9] and foams

[10, 11], occurs at zero temperature. In this sense, this transition is purely mechanical.

Increasing the density φ at zero temperature, the jamming transition occurs at the critical

density φc, so-called point J [1]. At this point, each constituent or particle begins to touch

with each other and mean coordination number z defined as the averaged number of contacts

per particle jumps to the mechanically stable value, i.e., isostatic value zc = 2d, from zero

in d-dimension [12], and some macroscopic variables indicate the acquisition of rigidity, for

example, pressure p and shear modulus K start to increase from zero, and bulk modulus

G discontinuously jumps to non-zero value [4–7]. Slightly above this threshold, the excess

coordination number ∆z = z − zc, p, K and G are scaled by the powers of the distance
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from the jamming point ∆φ = φ − φc as ∆z ∼ ∆φ1/2, p ∼ ∆φψ, K ∼ ∆φγ and G ∼ ∆φλ,

respectively, on the analogy of critical phenomena, while some of them show discontinuous

changes at the critical point like the first-order phase transitions and the critical exponents

ψ, γ and λ depends on the interparticle forces, which means the jamming transition is

entirely different from usual critical phenomena [4–7].

One can also find some structural signatures of jamming in monodisperse repulsive parti-

cles, where the first peak of the radial distribution function g1 diverges as g1 ∼ ∆φ−1 and its

left-hand width s, which is related to the mean overlap between particles 〈δ〉, decreases to
zero as approaching to the point J from φ > φc [5, 13–16]. Because g1s or g1〈δ〉 are approx-
imately equal to the averaged number of contacts, g1s ≈ zc or g1〈δ〉 ≈ zc at just above the

point J, thus both s and 〈δ〉 are scaled as s, 〈δ〉 ∼ ∆φ [4–7]. The radial distribution function

g(r) itself also diverges as g(r) ∼ 1/
√
r − 1 (r > 1) slightly above φc, where r is scaled by

the particle diameter, therefore a large number of particles are on the verge of touching with

each other near the jamming point. In the case of bidisperse particles, one can see a similar

divergence of the function g(ξ), where ξ = r/(ri+ rj) is the scaled interparticle distance and

ri + rj is the sum of radii of particles [7].

Vibrational modes of jammed particles also give us insight into the anomalous behaviors

of the jamming transition, where the density of normal modes D(ω) calculated by the

dynamical matrix shows an untrivial plateau in low frequencies and drops to zero at the

crossover frequency ω∗, which is unexpected from the Debye model D(ω) ∼ ωd−1. The

width of plateau and ω∗ becomes larger and smaller, respectively, as the system approaches

to φc from φ > φc, and ω
∗ is scaled as ω∗ ∼ ∆z [17–20].

In experiments, long range correlation of forces were not found in isotropically compressed

particles near the jamming point [21], therefore, the jamming transition lacked a diverging

length scale despite some quantities show critical behaviors. However, the crossover fre-

quency ω∗ predicts the existence of the diverging length scale l∗ ∼ ∆z−1 [17–20], which is

tested by both global and point responses of jammed particles [22–24]. Even though the

localization of the chracteristic length should be discussed [25], l∗ is physically important,

because a coarse graining of densely packed particles [26–29] is only effective in the length

scale l > l∗ [22–24], which means we cannot use the coarse graining method near the jamming

point because of l∗ → ∞.

Probability distribution function (PDF) of forces also shows a sturactural signature of
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jamming [30, 31]. Particles in the jammed media are supported with each other and one

can see inhomogeneous distributions of forces on the force chain networks. The PDF of

forces P (f) above the jamming point shows a peak in the relatively small range of forces,

broadening tail in the large forces, and the non-zero value at zero force P (0) > 0 [32–

36]. From many observations of P (f) in experiments and numerical simulations, P (f)

is well fitted by the combination of power, exponential and gaussian functions P (f) =

(C0 + C1f
a)e−bf−cf

2

with the parameters C0, C1, a, b and c [37–42]. Because the jammed

media of athermal particles does not have temperature T , usual statistical mechanics cannot

be used to explain such features of P (f). Therefore, based on the concept of compactivity

of the static state of athermal particles [43–48], which is the analogue of the entropy, various

ensemble theories [49–57], the mean field or field theories [58–62] and entropy maximizations

[63–68] produced many predictions of the functional forms of P (f). There is also another

approach to understanding jamming of athermal systems where the theory of glass transition

with finite temperature is applied to the limit of T → 0 [69, 70]. Under external shear load,

the jammed media is stable until the load exceeds the yield limit [71, 72] and anisotropies in

P (f) develops along the sheared direction [21, 73]. Below the jamming, on the other hand,

one can also see the divergence of shear viscosity [74].

In this progress report, we study the static and dynamic properties of jamming transition

of two-dimensional bidisperse athermal particles by numerical simulations. Many previous

works of bidisperse systems focused on the case that the ratio of two different diameters

equals ρ = 1.4 and so on. Even though the critical scalings above jamming transition are

well established, the critical amplitudes have not been paid so much attention. Thus, one of

our purposes is systematic studies of the size ratio and the critical amplitudes. We explain

our simulation details in Sec. III. We study the static properties of jamming transition and

the PDF of forces in Sec. IV. We conclude our progress in Sec. V and discuss our future

works in Sec. VI.

III. DISCRETE ELEMENT METHOD (DEM)

We use the discrete element method (DEM) to demonstrate two-dimensional bidisperse

dissipative particles. In Sec. III A, we introduce the model of dissipative particles and in

Sec. III B, we explain our method to jam the system with the particles. In Sec. III C, we
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explain a criterion of the small time step for numerical integration of the equation of motion.

A. Equation of motion

We adopt the linear viscoelastic model for interaction between two particles and do not

take into account rotation of each particle. The equation of motion of i-th particle interacting

with j-th particles is given by

mi(t)ẍi =
∑

j

{knδij − ηn(vij · nij)}nij , (1)

where mi(t), xi, kn and ηn are the mass of the i-th particle at time t, the position of the i-th

particle, the spring constant and the viscosity coefficient, respectively, and the dot represents

the time derivative. The overlap δij , the normal vector nij and the relative velocity vij are

given by δij = ri(t)+rj(t)−|xi−xj|, nij = (xi−xj)/|xi−xj| and vij = ẋi− ẋj, respectively,

where ri(t) and rj(t) are the radii of i-th and j-th particles at time t, respectively.

B. Radius growth

We prepare 50 : 50 mixtures of the particles with different diameters σS(0) < σL(0) and

randomly distribute the particles in a L × L square periodic box, where the initial area

fraction φ(0) is much less than the jamming point. To jam the system with particles, we

adopt the Lubachevsky-Stillinger (LS) algorithm often used in the simulations of random

close packing of hard spheres [75, 76], where the diameter of each particle is slowly increased

[77]. The LS algorithm mimics isotropic compression, or more directly, the tunable-diameter

colloids [78–85]. We increase the diameter of each particle with the constant speed

σ̇i(t) = grσi(0) , (2)

where gr and σi(0) are the growth rate and the initial diameter, respectively, and the sub-

script i = L and S represents the large and small particles, respectively. Because we fix

the density of mass of particle, the mass of particle mi(t) is also increased. From Eq.(2),

σi(t) = σi(0)(grt+ 1), thus the ratio of two different diameters

ρ =
σL(t)

σS(t)
=
σL(0)

σS(0)
, (3)
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does not change through the simulation. When the area fraction φ(t) reaches to the target

value φ(t0) = φ at t = t0, we stop to increase the diameter, thus the diameter of large

particle at t = t0 is given by

σL(t0) =

√

8φ

πρN(1 + 1/ρ2)
, (4)

where ρN is the number density of particles.

In the following sections, we introduce the units of mass, length and time asmu = mL(t0),

lu = σL(t0) and tu = mL(t0)/ηn, respectively, and use kn = 1.0 × 104mu/t
2
u and gr = 0.04

in Eqs. (1) and (2), respectively. In Sec. IV, we prepare N = 32768 particles in the L× L

periodic box with L =
√

πN/4φlu, where the initial diameter of large and small particles are

given by 0.7lu and 0.7lu/ρ, respectively, which gives the initial area fraction φ(0) = 0.49φ.

We change the target area fraction φ and the size ratio ρ in the ranges 0.8 ≤ φ ≤ 0.9 and

1.2 ≤ ρ ≤ 2.4, respectively.

C. Criterion for the small time step

To integrate Eq.(1) numerically, the small time step h should be much less than the

typical response time

tc =
π

√

(kn/mij)− η20
, (5)

where mij = mi(t0)mj(t0)/(mi(t0) +mj(t0)) and η0 = ηn/(2mij) are the reduced mass and

the scaled viscosity coefficient, respectively [86]. In our bidisperse systems, tc is the smallest

if mij is given by two small particles and we use h ≃ tc × 10−2. The restitution coefficient e

is given by

e = exp(−η0tc) , (6)

and we find e ≃ 0.99 for every combinations of particles if φ and ρ are in the ranges

0.8 ≤ φ ≤ 0.9 and 1.2 ≤ ρ ≤ 2.4, respectively.

IV. STATIC PROPERTIES OF JAMMING TRANSITION

During the diameter σi(t) grows as Eq. (2), each particle gets into contact with the

surrounding particles. As a result, the particles are pushed and moved. The mass mi(t) is
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also increased, thus the kinetic energy per particle Kp(t) is increased at first. When φ(t)

reaches to the target value φ, we stop to increase the diameter and Kp(t) is decreased by

the inelastic collisions between particles, and finally, the system relaxes to the static state

Kp(∞) ≃ 0. In our simulation, we assume the system is static ifKp(t) < 10−10. If the system

becomes static and φ is larger than the critical area fraction φc, particles are arrested in

the disordered state and we observe force chain networks as shown in Fig. 1. In this figure,

the red solid line connects interacting two particles, where the width is proportional to the

strength of interacting forces, and the blue solid line connects the nearest neighbors without

contacts so as the red and blue lines constract the edges of the Delaunay graph [87]. In

the following subsections, we study the static properties of the jamming transition. In Sec.

IVA, we explain our results of φc. In Sec. IVB, we show the power law scalings of the

coordination number, the pressure, the mean overlap and the maximum overlap above the

jamming point. In Sec. IVC, we explain the radial distribution function of the scaled

distance g(ξ), which is more suitable for bidisperse systems than the usual difinition of the

radial distribution function, and show the divergence of the first peak of g(ξ). In Sec. IVD,

we explain our results of the PDF of forces.

A. Critical area fraction

We define the critical area fraction φc as the point at which the coordination number

z jumps to the isostatic value zc = 4 from zero. Above the jamming point, we remove

rattlers of which the number of contacts are less than 3 from our systems, because they do

not have any contribution to the force chain networks. The critical area fraction slightly

increases from ρ = 1.2 to 2.4 as shown in Fig. 2, where the open circles represent our

simulation results. Such a dependence of φc on ρ can be explained if we consider an isostatic

configuration as shown in Fig. 3, where rL and rS = rL/ρ are the radii of large and small

particles, respectively. The area fraction in the solid square is given by

φ1 =
π

2

ρ2 + 1

(ρ+ 1)2
, (7)

if rL is less than the edge of the solid square, i.e., rL ≤ (rL + rS)/
√
2 which is equivalent to

(1 + 1/ρ) ≥
√
2 and always satisfied if 1.2 ≤ ρ ≤ 2.4. If the large and small particles are

regularly arranged as Fig. 3, the system is tiled with the solid square in Fig. 3. On the
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FIG. 1. Force chain network above the jamming point. The red and blue solid lines respectively

represent the real and virtual contacts, where the width of the red solid line is proportional to

the strength of force between interacting two particles and the blue solid line connects the nearest

neighbors without contacts. The red and blue lines constract the edges of the Delaunay graph.

other hand, the area fraction of square occupied by the same kind of particles is given by

φ2 = π/4. Then, φc is given by the weighted sum

φc = w1φ1 + w2φ2 , (8)

where w1 and w2 are the weights of φ1 and φ2, respectively. The solid line in Fig. 2 is Eq.(8)

with w1 = 0.1213 and w2 = 0.9550 (w1 + w2 ≃ 1). Although the isostatic configurations

in our simulations are much more complicated than Fig. 3, the numerical result of φc is

well explained by our simple model. It should be noticed, however, φc is influenced by the

system size and the procedures for jamming, for instance, the growth rate and the initial

condition, etc [4, 5, 88, 89].
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FIG. 2. Critical area fraction φc as a function of ρ, where the open circles and the solid line is our

simulation results and Eq. (8), respectively.

FIG. 3. An isostatic configuration of a large particle and four small particles, where rL and rS are

the radii of the large and small particles, respectively, and the edge length of the solid square is

given by (rL + rS)/
√
2.

B. Power law scalings of jamming

Slightly above the jamming point, 〈δ〉, ∆z and p are scaled as

〈δ〉 = Aδ(ρ)∆φ
µ , (9)

∆z = Az(ρ)∆φ
ζ , (10)

p = Ap(ρ)∆φ
ψ , (11)

respectively [4–7], where the pressure is defined as p =
∑

i<j rijfij/(2L
2) with the interpar-

ticle distance rij and force fij [90]. In Eqs. (9)-(11), the critical exponents µ, ζ and ψ do

not depend on ρ, however, the critical amplitudes Aδ(ρ), Az(ρ) and Ap(ρ) are the functions
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of ρ. From our simulation, we also find that the maximum overlap δm is scaled as

δm = Am(ρ)∆φ
λ . (12)

Figure 4 displays normalized variables 〈δ〉∗ ≡ 〈δ〉/Aδ(ρ), ∆z∗ ≡ ∆z/Az(ρ), p
∗ ≡ p/Ap(ρ)

and δ∗m ≡ δm/Am(ρ), where 1.2 ≤ ρ ≤ 2.2 and the best fit scalings give µ = 1.0 ± 0.003,

ζ = 0.55 ± 0.001, ψ = 1.03 ± 0.0006 and λ = 0.97 ± 0.001, respectively. Therefore we

confirm ∆z ∼ ∆φ1/2 and 〈δ〉, p ∼ ∆φ, and find δm ∼ ∆φ. In Fig. 5, we also plot the critical

amplitudes, where Aδ(ρ), Az(ρ), Ap(ρ) and Am(ρ) becomes smallest around ρ = 1.8.

The overlap δ is defined between interacting two particles, i.e., defined on the real contact

(the red solid line in Fig. 1), therefore, the mean overlap 〈δ〉 is meaningful only if φ > φc

because 〈δ〉 = 0 in φ < φc. However, each particle can be also connected with the nearest

neighbors without contact by the virtual contact (the blue solid line in Fig. 1), and we

can also define δ = ri + rj − |xi − xj| on these lines. Such ”overlaps” are negative and the

mean value extended to the negative region 〈δ〉G ≡ 〈δ〉+ 〈δ〉−, where 〈δ〉− is the mean value

of negative overlaps, is also defined in φ < φc. Figure 6 is 〈δ〉G as a function of φ, where

the vertical dotted line is the border between below and above φc. To calculate 〈δ〉G below

the jamming point, we do not remove rattlers from our systems. From this figure, we find

a discontinuous change of 〈δ〉G at φc. Therefore, 〈δ〉G is one of the signatures of jamming

transition below φc. Far below φc, 〈δ〉G increases linearly with the slope 0.357. Far above

φc, 〈δ〉G asymptotically approaches to the same line. However, it should be noted that both

〈δ〉G and 〈δ〉− cannot be scaled by the power of |∆φ|.

C. Radial distribution function

In monodisperse systems, the first peak of the radial distribution function g(r) diverges

as ∆φ−1 above the jamming point, which is one of the structural signatures above jamming

[4–7]. In bidisperse systems, however, the radial distribution function g(r) has three peaks

around σS, σL and (σL + σS)/2, respectively, thus we need to introduce more appropriate

expression for the structure of bidisperse systems. If we scale the distance between i-th and

j-th particles r as

ξ =
r

ri + rj
, (13)
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FIG. 4. Double logarithm plots of 〈δ〉∗ (upper-left panel), z∗ (upper-right panel), p∗ (lower-left

panel), δ∗m (lower-right panel), respectively, where z∗, p∗ and δ∗m are plotted as functions of 〈δ〉.

The filled circles, open circles, filled squares, open squares, stars and crosses are the results of

ρ = 1.2, 1.4, 1.6, 1.8, 2.0 and 2.2, respectively.

where ri and rj are the radii of i-th and j-th particles, respectively, a similar divergence of

the function g(ξ) can be seen [7], however, the results are not shown in Ref. [7]. Figure 7

shows our results of g(ξ), where we scaled the system size L by the mean value of ri + rj,

i.e., (3/2+ 1/ρ)lu, and the first peak is found around ξ = 1. As shown in Fig. 8, we can see

discontinuous jumps at ξ = 1 in both below and above φc. Such discontinuous jumps of the

radial distribution functions are also found in the ”jamming” as the zero temperature limit

of monodisperse glass transitions [70]. Slightly above the jamming point, the first peak of

g(ξ) diverges as

g+ = A+(ρ)∆φ
−η+ . (14)
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FIG. 5. Critical amplitudes as functions of ρ, where The filled circles, open circles, filled squares,

open squares and stars are Az(ρ)×10−1, Ap(ρ)×10−4, Aδ(ρ), Am(ρ)×0.5 and A+(ρ), respectively.
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FIG. 6. Extended mean overlap 〈δ〉G as a function of φ, where ρ = 1.4. The vertical dotted line is

the border between below and above φc.

We plot A+(ρ) and g∗+ ≡ g+/A+(ρ) in Figs. 5 and 9, respectively, where we find η+ =

0.962 ± 0.001. Therefore, from Eqs. (9) and (14), we reconfirm the important relation

g+〈δ〉 ≈ const.

D. Probability distribution function of forces

The PDF of forces P (f) also indicates a signature of jamming [30, 31]. Figure 10 (left) is

our results of the PDFs of forces with ρ = 1.4 and different φ. Slightly above the jamming

point, P (f) has sharp peak near f = 0. The sharp peak is leveled and P (f) is broadened as
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FIG. 7. The radial distribution function of the scaled distance g(ξ), where ρ = 1.4 and ∆φ =

5.25× 10−2.
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FIG. 8. Discontinuous jumps of g(ξ) at ξ = 1, where ρ = 1.4, and ∆φ = −1.74 × 10−2 (left) and

∆φ = 2.25× 10−2 (right), respectively.

φ goes away from φc. Figure 10 (right) is the scaled PDF of forces P (f ∗), where the force

is normalized by the mean value as f ∗ ≡ f/〈f〉. In this figure, the PDFs of forces with

different φ are collapsed. We find such collapse can be seen in ∆φ < 10−1, however, the

PDFs of forces in ∆φ > 10−1 decays much faster and cannot be collapsed. The solid curve

in Fig. 10 (right) is the empirical fitting function

P (f ∗) = (A0 + A1f
∗a0)e−a1f

∗
−a2f∗2 , (15)

where the fitting parameters are given by A0 = 0.076, A1 = 0.74, a0 = 0.23, a1 = 0.11

and a2 = 0.36, respectively. Figure 11 (left) is the logarithm plot of P (f ∗) as a function of

f ∗, where P (f ∗) in f ∗ < 1 can be well fitted by the solid line f ∗a0e−a1f
∗

predicted by the
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FIG. 9. Double logarithm plot of g∗+ as a function of 〈δ〉. The filled circles, open circles, filled

squares, open squares, stars and crosses are the results of ρ = 1.2, 1.4, 1.6, 1.8, 2.0 and 2.2,

respectively.

so-called q-model, however, P (f ∗) decays much faster than f ∗a0e−a1f
∗

above f ∗ = 1. Figure

11 (right) is the logarithm plot of P (f ∗) as a function of f ∗2, where the solid line represents

the Gaussian function e−a2f
∗2

. Such a Gaussian decay in large forces is also pointed out

in the study of umbrella sampling of force network ensembles [42], where it can be seen in

extremely large forces f ∗ > 5 that P (f ∗) decays faster as approacing the jamming point.

In our DEM simulation, however, P (f ∗) cannot reach the regime f ∗ > 5 and significant

difference of P (f ∗) cannot be seen. In Fig. 12, we display the fitting parameters A0, A1, a0,

a1 and a2 as functions of ρ.

Becuase we use Eq. (1) and the system is in static state, the forces is directly connected

to the overlaps as f = knδ and 〈f〉 = kn〈δ〉. If P (f) is also given by [37–42]

P (f) = (B0 + B1f
b0)e−b1f−b2f

2

, (16)

Eqs. (9) and (16), and the relation P (f ∗) = 〈f〉P (f) lead the following scalings

B0 ∝ ∆φ−1 , (17)

B1 ∝ ∆φ−(a0+1) , (18)

b0 = a0 , (19)

b1 ∝ ∆φ−1 , (20)

b2 ∝ ∆φ−2 . (21)
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FIG. 10. The PDFs of forces P (f) (left) and P (f∗) (right), where ρ = 1.4 and the solid line

in the right panel is Eq. (15). Here, the open circles, open squares, crosses, open triangles and

open inverted-triangles are the results of ∆φ = 1.3 × 10−2, ∆φ = 5.5 × 10−4, ∆φ = 4.5 × 10−4,

∆φ = 2.5× 10−4 and ∆φ = 5.0× 10−5, respectively.
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FIG. 11. The logarithm plots of P (f∗) as functions of f∗ (left) and f∗2 (right) where ρ = 1.4.

The solid lines in the left and right panels are f∗a0e−a1f
∗

and e−a2f
∗2

, respectively. Here, the

open circles, open squares, crosses, open triangles and open inverted-triangles are the results of

∆φ = 1.3 × 10−2, ∆φ = 5.5 × 10−4, ∆φ = 4.5 × 10−4, ∆φ = 2.5 × 10−4 and ∆φ = 5.0 × 10−5,

respectively.

Because of P (f) = P (knδ), the function g(1−ξ) (ξ < 1) is equivalent to P (f) and P (0) = B0

is diverges in the same way with the first peak g+, which is consistent with Eq. (17). We

also confirmed Eq. (20) is correct in our simulation and other scalings indicate that P (f)

shows the structural signature of jamming transition as shown in Fig. 10 (left).

15



1.2 1.4 1.6 1.8 2.0 2.2
0.2

0.4

0.6

0.8

1

1.2

fi
tt

in
g
 p

a
ra

m
e
te

r

1.2 1.4 1.6 1.8 2.0 2.2
0.6

0.65

0.7

0.75

0.8

fi
tt

in
g
 p

a
ra

m
e
te

r

FIG. 12. Fitting parameters A0, A1, a0, a1 (left) and a2 (right) as functions of ρ. In the left panel,

the open squares, filled circles, open circles and filled squares are the results of A0, A1, a0 and a1.

In the right panel, the filled circles are the results of a2. .

V. SUMMARY

In summary, we numerically investigated the static properties of jamming transition

of two dimensional bidisperse dissipative particles. Especially, we systematically studied

the influence of size ratio ρ and show results of the critical amplitudes which were not

paid so much attention in the previous works. We also found the new scaling law of the

maximum overlap δm ∝ ∆φ and introduced the extended mean overlap 〈δ〉G which indicate

the signature of jamming transition below the jamming point. We also showed the results

of the radial distribution function of scaled distance g(ξ), which is more suitable for the

structures of bidisperse systems than the usual definition of g(r), and found the divergence

of the first peak of g(ξ). In our studies of the PDF of forces, we found the collapse of P (f) of

different density and proposed some ciritcal scalings of the coefficients in the fitting function

of P (f).

VI. FUTURE WORKS

We studied the bidisperse systems with the size ratio in 1.2 ≤ ρ ≤ 2.4 to avoid cristal-

lization of particles. Thus, the study of monodisperse and polydisperse cases are our future

works. In addition, the studies in 3-dimension are also our future works. Although we

discussed the influence of system size, we did not discuss the influences of the growth rate

gr and the restitution coefficient e. Therefore, we will study the dependence on gr and e in
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our future works.
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