Twente Granular Matter Days at University of Twente on Feb.01-02, 2012.

Slow dynamics in jamming transition

Kuniyasu Saitoh Multi Scale Mechanics University of Twente

Introduction

Jamming transition - thermal & athermal systems

- Constituents are arrested in the disordered state
- Glass, emulsions, colloids, and grains
- Temperature, density, and external loads

Critical scaling of athermal jamming

- Density $\phi \longrightarrow$ measure $\Delta \phi = \phi \phi_c$
- Excess coordination number, pressure, bulk & shear moduli

$$\Delta z \sim \Delta \phi^{1/2} \quad p \sim \Delta \phi^{\psi} \quad G \sim \Delta \phi^{\lambda} \quad K \sim \Delta \phi^{\gamma}$$

Structural signature (monodisperse case)

The first peak of the radial distribution function

$$g_1 \sim \Delta \phi^{-1}$$
 $g(r) \propto 1/\sqrt{r-1}$

Density of vibrational modes

- Untrivial plateau in low frequencies
- Diverging length scale

Method

Our purpose

To study static and dynamic properties of jamming of bidisperse *dissipative* particles.

Our approach – numerical model of dissipative particles

- DEM simulation
- Periodic boundary condition
- ✤ 2-dimensional bidisperse disks
- Linear spring & dashpot model

$$m_i(t)\ddot{\mathbf{x}}_i = \sum_j \left\{ k_n \delta_{ij} - \eta_n (\mathbf{v}_{ij} \cdot \mathbf{n}_{ij}) \right\} \mathbf{n}_{ij}$$

 $\dot{\sigma}_i(t) = g_r \sigma_i(0)$

- The number of disks N = 32768
- Restitution coefficient e = 0.99

✤ Parameters; $\phi, \rho \equiv \sigma_L / \sigma_S$ $0.8 \le \phi \le 0.9$ $1.2 \le \rho \le 2.2$

isotropic compression, or the tunable-diameter colloids.

Critical scaling above jamming

 $\Delta z \sim \Delta \phi^{1/2} \qquad \langle \delta \rangle, p \sim \Delta \phi, \qquad \delta_{\rm m} \sim \Delta \phi$

Structural signature above jamming

Radial distribution function of scaled distance

$$\xi = \frac{r}{r_i + r_j}$$

The first peak

$$g_+ \sim \Delta \phi^{-1} \longrightarrow g_+ \langle \delta \rangle \approx \text{const}$$

Extended overlaps

real = Force chain network
real + virtual = the Delaunay graph

- Overlap $\delta = r_i + r_j |\mathbf{x}_i \mathbf{x}_j|$
- Mean overlap extended to negative

 $<\delta>_G$ Mean negative *overlap*

 $<\delta>_{-}$

→ Defined both *below* and *above* jamming

PDF of forces

 $\Delta \phi = 1.3 \times 10^{-2}, 5.5 \times 10^{-4}, 4.5 \times 10^{-4}, 2.5 \times 10^{-4}, 5.0 \times 10^{-5}$

Slow dynamics above jamming – early stage

Critical slowing down?

 $\Delta\phi = 1.2 \times 10^{-2}, 2.5 \times 10^{-3}, 4.4 \times 10^{-4}, 1.4 \times 10^{-4}$

Ratio of the kinetic energy to the elastic potential

$$\varphi(t) \equiv \frac{K(t)/U(t)}{K(0)/U(0)}$$

Stretched dynamics

$$\varphi(t) = e^{-(t/\tau)^{\beta}}$$

* Scalings of the relaxation time and stretched exponent $\Delta \phi < 10^{-3}$

Slow dynamics above jamming – late stage

Long time tail

Power law decay

$$\varphi(t) = C_L t^{-\alpha t}$$

✤ Faster than the tail observed in the free cooling of granular gases

 $\alpha > 2.0$

Discussion & future works

Discussion

- How to understand the slow dynamics near jamming?
 - Approach; response theory? dynamic critical phenomena?
- System size
- Initial condition
- Growth rate
- Restitution coefficient

Future works

- ✤ How to understand the discontinuities of g(\xi) around 1?
- ✤ 3-dimension
- Monodisperse case
- Polydisperse case

Conclusion

- We numerically investigized the jamming of 2-dimensional bidisperse dissipative particles.
- We systematically studied the effect of the size ratio. $1.2 \le \rho \le 2.2$ **
- We found the new scaling of the maximum overlap. **
- We showed the divergence of the first peak of g(x). **
- We found the slow dynamics of K(t)/U(t) slightly above the jamming point. **

$$\tau \sim \Delta \phi^{-0.27} \qquad \beta \sim \Delta \phi^{-0.11}$$

We also found the long time tail of K(t)/U(t). **

 $\alpha \simeq 2.5$

Thank you for your attention!

$$\delta_m \sim \Delta \phi$$

$$g_+ \sim \Delta \phi^{-1}$$

Critical area fraction

$$\phi_{1} = \frac{\pi}{2} \frac{\rho^{2} + 1}{(\rho + 1)^{2}}$$
$$\phi_{2} = \pi/4.$$
$$\phi_{c} = w_{1}\phi_{1} + w_{2}\phi_{2}$$

 $w_1 = 0.1213$ and $w_2 = 0.9550 (w_1 + w_2 \simeq 1)$