

Multi Scale Mechanics (msm)

Nicolás Rivas, n.a.rivas@utwente.nl

FROM COLLIDING PARTICLES TO A HYDRODYNAMIC DESCRIPTION OF GRANULAR MATTER

1. S. S. C.

by P. Imgrond et al.

by P. Imgrond et al.

by Dr. Gary Greenberg

"size binary mixture"

CONTINUOUS MEDIUM

"From colliding particles to a hydrodynamic description of granular matter" N. Rivas

"…any small volume element in the fluid is always supposed so large that it still contains a <u>very great number</u> of molecules."

"…very small compared with the volume of the body under consideration, but large compared with the <u>distances</u> between the molecules."

-Fluid Mechanics, L. D. Landau and E. M. Lifshitz, p.1.

CONTINUOUS MEDIUM

"From colliding particles to a hydrodynamic description of granular matter" N. Rivas

-J. M. N. T. Gray, M. Wieland, K. Hutter, 1998

-J. S. Olafsen et al. Phys. Rev. Lett. 81, 4369-4372 (1998)

--- N. Rivas et al. Phys. Rev. Lett. 106, 088001 (2011)

-N. Rivas et al. Granular Matter, 2012

Macroscopic consequences of microscopic phenomena

Quasi-2D: $L_{\gamma} \ll L_{\chi} \sim 100$ Number of particles, N = 6000 Dimensionless acceleration $\Gamma = A\omega^2/g \in (1,50)$ Low frequency $\omega \in (1,5)$, high amplitude A ~ 4

FINGERING STATE

LEIDENFROST STATE

CONVECTIVE STATE

- Simulations:
 - Molecular Dynamics (ED, DEM)
 - Granular Hydrodynamics Solver

"From colliding particles to a hydrodynamic description of granular matter" N. Rivas

—background from *P. Eshuis*, et al. Physics of Fluids, 2007

-background from *P. Eshuis*, et al. Physics of Fluids, 2007

"From colliding particles to a hydrodynamic description of granular matter" N. Rivas

Lx = 10	solid,
Lx = 50	dashed,
Lx = 100	points

Figure 7: Convection: Several density spatio-temporal diagrams for different L_x . Black is low density. From top left to bottom right, $L_x = \{20, 40, 50, 60, 90, 100\}$

"From colliding particles to a hydrodynamic description of granular matter" N. Rivas

ED SIMULATIONS

Segregation with Binary Mixtures

Event Driven Discrete Element Comparison

- Solve Granular Hydrodynamics equations:
 - Take part in the development of the differential equation solver software hpGEM.
- Further collaboration with experimental studies of the granular Leidenfrost effect, using ED simulations.
- Explore further the system phase space, using the speed advantage of ED simulations:
 - Study further the low frequency oscillations in the column geometry.
 - Explore the binary mixtures case, and try to explain the segregation with previously known mechanisms.