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Abstract

The study of disorder induced frequency filtering is presented for one–
dimensional systems composed of random, pre–stressed masses interacting
through both linear and nonlinear (Hertzian) repulsive forces. We drive
an ensemble of such systems at a specified frequency and examine the
frequency content of the propagated disturbance as a function of distance
from the source. It is shown that the transmitted signal contains only
low–frequency components and the attenuation is dependent on the mag-
nitude of disorder, the input frequency, and the contact model. Normal,
uniform, and binary distributions of mass are considered and observed
to produce similar filtering behavior, suggesting that only knowledge of
the distribution’s moments is significant in characterizing the bulk signal
transmission behavior of these systems.

1 Introduction

One–dimensional analogs of electronic, magnetic, and mechanical systems are
often employed for their use as simple models which have the potential to reveal
the physics of more general, higher dimensional systems [21]. As a subset of these
problems, chains of non–cohesive particles have received significant attention in
the literature. Linear arrangements of harmonic oscillators are common in the
introduction to lattice vibrations in solid state physics [1,11]. These treatments
are typically limited to infinitely repeatable unit cells containing one or two
particles/atoms for which dispersion equations relating the oscillation frequency
and wavelength are analytically accessible. It is from these periodic, linear
systems that more recent studies on inhomogeneous, disordered, and nonlinear
chains originate.

The introduction of nonlinear (e.g., Hertzian) particle interactions resembles
most experiments with granular chains of pre–stressed elastic spheres, and leads
to novel behavior such as soliton–like nonlinear waves [3, 16, 23–25, 30, 36]. Sen
et al. [35] provides a detailed account of prior studies concerning solitary waves
in granular chains. Note that many studies focus on uncompressed chains where
particles are barely in contact. Additionally, there is significant attention placed
on the behavior of “designed” and ordered nonlinear chains, often motivated by
energy modification and shock–protection applications. Studies have employed
smoothly varying mass distributions [32], “decoration” [10, 12, 13], tapering [6,
26,39,41], and controlled variation of the particle material [4,14]. Combinations
of both tapering and decoration have also been employed [7, 12].
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The inclusion of disorder through mass, size, or interaction (stiffness) varia-
tion (and combinations thereof) is a natural extension reflecting the disordered,
inhomogeneous state of many realistic discrete systems. One–dimensional sys-
tems provide a simple framework to study the basic effects of disorder without
consideration for the geometric complexity of higher dimensions, thus exclud-
ing the scattering of signals to other directions. Analysis of the spectrum and
density of eigenstates was the subject of many early studies in disordered one–
dimensional systems [5, 8, 27, 34]. In the context of quantum mechanical parti-
cles, Anderson [2] noted the localization of the wavefunctions in the presence
of sufficiently strong random potentials. This “Anderson localization” has been
confirmed in disordered mechanical systems of vibrating masses [20,33].

As with tapered and decorated chain arrangements, recent studies of ran-
dom granular arrays show an interest in the use of these systems to dissipate or
enhance energy propagation. Nesterenko [30] examined the downstream speed
and energy of particles in nonlinear random chains following an initial excita-
tion applied to one end of the system. It was reasoned that complex nonlinear
interactions between the chain members make the system behavior difficult to
predict in general. Manciu et al. [25] reports a spatially exponential decrease
of the incident kinetic energy for various amounts of mass disorder, with in-
creasing disorder leading to a faster energy loss. Fraternali et al. [9] employed
an evolutionary algorithm which generated random “protecting” chains whose
effectiveness was evaluated by the force transmitted at the end of the system.
It was noted that temporally short and high amplitude pulses were transformed
to low amplitude, longer wavelength (temporally longer) signals at the down-
stream receiver. Ponson et al. [31] employs a nonlinear chain of two–particle
unit cells which are randomly oriented, as in a spin system, and studies the ef-
fect of their disorder parameter on the spatial decay of the force transmitted by
such systems. Harbola et al. [13] decorate monodisperse chains with randomly
sized small masses and investigate the propagation time and decay of the pulse
velocity as a function of system penetration.

Studies concerning the frequency–filtering effects of disorder have received
less attention than energy or force attenuation. Jia et al. [15] reports experi-
mental studies on ultrasound propagation through three–dimensional packings
of glass beads. The time and frequency analysis of the transmitted signal reveals
the appearance of an initial pulse close to the source that contains relatively
low frequencies with respect to the input spectrum. The initial pulse is followed
by an irregular signal, i.e. the “coda”, that contains the higher frequencies,
consistent with the lower phase velocity of higher frequency components. The
spectrum of this irregular signal seems to indicate more attenuation of the high
frequency components. Judge et al. [17] numerically examine the spectra of dis-
ordered micromechanical oscillators, focusing on frequency filtering within the
passband of ordered arrays. They note the significant change in the transmitted
spectrum with increasing disorder and the propagation of frequencies associated
with the natural frequency of the individual oscillators. The low–pass filtering
seen does not seem to be observed, likely due to the short length of the arrays
considered (5 oscillators). Mouraille and Luding [28,29] numerically studied the
high–frequency filtering present in three–dimensional packings perturbed from
their perfect crystalline geometry by a small random variation in the particle
sizes. Following a delta–like pulse of the boundary, only the low–frequency
components of the excitation are observed to propagate a significant distance.

2



The polydispersity introduced is quite small with respect to the particle length
scale (0.2% variation), but as this change is comparable to the contact length
scale remarkable differences in the propagation characteristics of the medium
are observed.

It is worth noting that nonlinear particle interactions permit frequency mix-
ing behavior. Given excitations at frequencies ω1 and ω2, a component at the
difference–frequency |ω2−ω1| is generated, among others. For sufficiently close
magnitudes, this is a low–frequency component. In realistic materials, the high–
frequencies are attenuated and only the difference–frequency is seen to propagate
a significant distance. Tournat et al. [40] observe the propagation of these low–
frequency signals in nonlinear chains, terming it self de–modulation. However,
such behavior is due to nonlinear interaction and is not a mass–disorder induced
effect. Frequency mixing due to disorder was also noted by Mouraille [28].

In this paper we study the effect of disorder and non–linearity on the trans-
mission of signals in one–dimensional systems. We consider initially static,
pre–stressed configurations with given disorder magnitude that are subjected
to a harmonic perturbation of the boundary. Prescribing a perturbation fre-
quency, we average over many configurations of the chain to observe ensemble
averaged behavior. In section 2 we derive the equations of motion that govern
the idealized system. In particular, the linear and Hertzian force models are
given in sections 2.1.2 and 2.1.3, respectively. Using these relations, we examine
the effects of disorder on the high–frequency filtering behavior in section 3, and
summarize and conclude in Section 4.

2 Modeling

In this section the equations of motion are derived employing a general nonlinear
force–displacement relation. Two specific cases follow, corresponding to the
harmonic (linear) and Hertzian models.

2.1 Compressed chain

In this study we consider one–dimensional arrays of (N + 2) random mass par-
ticles which interact with only their immediate neighbors in a purely repulsive
manner. In addition, we consider chains that are pre–compressed such that
there is some initial strain associated with the equilibrium configuration. The
absolute position, radius, and mass of a general particle j are given by x̃(j),
r̃(j), and m̃(j), respectively. Anticipating an appropriate scaling of the problem,
we employ the tilde symbols to denote dimensional quantities. The interaction
force between neighboring particles i and j is modeled as,∣∣∣F̃(i,j)

∣∣∣ = κ̃(i,j)δ̃
1+β
(i,j), δ̃(i,j) ≥ 0, (1)

where κ̃(i,j) is a “stiffness” that changes with the value of β and depends, in
general, on the properties of the contacting bodies. The particle overlap is
given as δ̃(i,j) = r̃(i) + r̃(j) − |x̃(j) − x̃(i)| such that it is strictly non–negative
for contacts. The Hertz and linear models are given by β = 1/2 and β = 0,
respectively [19, 22, 30]. Choosing a length scale ˜̀ (to be determined later) we
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scale the particle overlap: ∣∣∣F̃(i,j)

∣∣∣ = κ̃(i,j) ˜̀
1+βδ1+β(i,j), (2)

where δ(i,j) ≡ δ̃(i,j)/˜̀. Compressing the chain by an applied force P̃ , the dimen-
sionless initial particle overlap at the contact between i and j is,

∆(i,j) =

(
P̃

κ̃(i,j) ˜̀1+β

)1/(1+β)

. (3)

Associated with the length scale ˜̀, we have a characteristic mass m̃o, which we
take as the mean particle mass of the system. Dimensional analysis yields a
time scale,

t̃c =
1

˜̀β/2

√
m̃o

κ̃o
, (4)

where κ̃o functions as the characteristic stiffness of the system. This will be
defined with respect to the contact of two identical particles of the mean mass,
m̃o. In the nonlinear cases (β 6= 0) ˜̀ factors into this time scale. We may write
an equation of motion for the general particle i (i = 1, . . . , N) as:

m̃(i) d
2x̃(i)

dt̃2
= κ̃(i−1,i) ˜̀

1+βδ1+β(i−1,i) − κ̃(i+1,i)
˜̀1+βδ1+β(i+1,i). (5)

We denote the displacement of particle i from its equilibrium position x̃
(i)
o as

ũ(i) = ˜̀u(i) = x̃(i) − x̃(i)o . Thus, for a contact between i and j (with j > i)
the scaled overlap is δ(i,j) = ∆(i,j) − (u(j) − u(i)). With dimensionless mass

b(i) ≡ m̃(i)/m̃o and time τ ≡ t̃/t̃c we write

b(i)
d2u(i)

dτ2
= κ(i−1,i)

[
∆(i−1,i) − u(i) + u(i−1)

]1+β
−κ(i+1,i)

[
∆(i+1,i) + u(i) − u(i+1)

]1+β
, (6)

where the stiffness ratio κ(i,j) = κ̃(i,j)/κ̃o has been defined implicitly.
For the particles 1 and N we write equations of motion associated with the

imposed boundary conditions. We harmonically displace particle 0 at angular
frequency ωo = ω̃ot̃c and fix particle (N + 1):

u(0)(τ) = ε sinωoτ, (7)

u(N+1)(τ) = 0, (8)

where ε = ε̃/˜̀ is the scaled oscillation amplitude. Thus, the coupled system
of differential equations governing the modeled system is given by (6) with
substitution of (7) and (8) for i = 1 and i = N , respectively.

There are various choices available for the length scale ˜̀. One could use the
particle size or the driving amplitude. However, we choose the length scale to
be related to the overlap of a characteristic contact in static equilibrium. As
in defining the characteristic stiffness, we consider the contact of two identical
particles of the mean mass. Under the applied compressive force, the initial
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overlap between such particles provides us with ˜̀ = ∆̃o (∆o = 1). In a typical
simulation, the scaled driver amplitude ε� ∆o is chosen so as not to cause an
opening of contacts. However, we explore driver amplitudes that approach the
contact length scale under the restriction that particles remain in contact at all
times. Note that ε incorporates the pre–compression of the system through (3):

ε =
ε̃

∆̃o

= ε̃

(
κ̃o

P̃

)2/3

. (9)

Since κ̃o is set by the size of the particles (see Appendix B), small values of ε
represent systems with small driving and/or a large pre–stress through P̃ .

2.1.1 Linearized equations of motion:

Here we linearize the general force–displacement relation about the equilibrium
configuration. The non–dimensional phrasing of (1) is given by

F(i,j)(δ(i,j)) = κ(i,j)δ
1+β
(i,j), (10)

Expanding about the equilibrium position ∆(i,j) we obtain,

F(i,j)(δ(i,j)) = κ(i,j)∆
1+β
(i,j) + κ(i,j)(1 + β)∆β

(i,j)(δ(i,j) −∆(i,j)) +

κ(i,j)β(1 + β)∆β−1
(i,j)

2
(δ(i,j) −∆(i,j))

2 + . . . (11)

Assuming small displacements from equilibrium, we retain only the constant
and linear terms. With δ(i,j) = ∆(i,j) − (u(j) − u(i)) for particle indices such
that j > i we obtain

F(i,j)(δ(i,j)) = κ(i,j)∆
1+β
(i,j) − κ(i,j)(1 + β)∆β

(i,j)(u
(j) − u(i)), (12)

which is the linearized force of particle i on particle j for j > i. The equation
of motion for a general particle i is then,

b(i)
d2u(i)

dτ2
= κ(i−1,i)∆

β
(i−1,i)

[
∆(i−1,i) − (1 + β)(u(i) − u(i−1))

]
−κ(i+1,i)∆

β
(i+1,i)

[
∆(i+1,i) − (1 + β)(u(i+1) − u(i))

]
. (13)

2.1.2 Linear coupling: β = 0

In the case of β = 0 we recover the harmonic chain with linear springs be-
tween the mass elements. Such a model is appropriate for realistic chains with
sufficiently high confining force; Sinkovits et al. [38] show that the frequency
spectrum of oscillations approaches that of a harmonic chain as this force is
increased. As expected, the general equations of motion (6) and the linear ex-
pansion (13) match exactly. We may compactly express the N linear equations
in the matrix form

M
d2u

dτ2
= Ku + f , (14)

where M is a diagonal matrix with the random mass ratios b(1) through b(N)

on the diagonal, and K is a symmetric, tri–diagonal matrix. The sub– and
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superdiagonal elements are given by K(i, i − 1) = κ(i−1,i) and K(i, i + 1) =
κ(i+1,i), respectively. The diagonal entries are K(i, i) = −(κ(i−1,i) + κ(i+1,i)).
Since the stiffnesses depend on the contacting particles, these values are random
in general. The forcing vector f has only one non–zero entry, which is f1(τ) =
ε sinωoτ in the first position. Other entries cancel by the equilibrium condition
κ(i−1,i)∆(i−1,i) = κ(i+1,i)∆(i+1,i).

Since we look to examine the effect of mass disorder alone, we take all cou-
pling stiffnesses to be independent of the contact (κ(i,j) = 1 ∀i, j). Accordingly,
all initial overlaps are equal with ∆(i,j) = 1. With this assumption, the stiffness
matrix simplifies, with K now having entries of −2 on the diagonal and entries
of +1 on the sub and superdiagonal.

We examine the solutions of the linear system (14) in section 2.2.

2.1.3 Nonlinear Hertzian coupling: β = 1/2

With β = 1/2 we obtain the Hertz contact model and the equations of motion
are given by (6), (7), and (8). The interparticle forces are dependent on the size
and material properties of the constituent particles (see Appendix B). We find
that the scaled stiffness κ(i,j) and initial overlap ∆(i,j) are given by

κ(i,j) =

√
2

b(i)1/3 + b(j)1/3

(
b(i)b(j)

)1/6
, (15)

and
∆(i,j) = κ

−2/3
(i,j) . (16)

As in the linearized version of the Hertz chain of given by (14), the nonlinear
chain of polydisperse spheres is, in general, disordered in both mass and coupling
stiffness.

2.1.4 Creation of mass–disordered, monodisperse chains

If we wish to remove the effects of contact disorder present in the Hertzian
model one may consider the modification of particles to create a monodisperse
(size) chain of varied mass. In this manner we may isolate the effect of mass
disorder. Numerically incorporating such a construction is trivial; the equations
of motion are given by (6), (7), and (8) and we assign κ(i,j) = 1 and ∆(i,j) = 1
for all contacts (i, j). In an experimental realization, one may imagine creating
such a monodisperse, mass–disordered chain by the removal of material from the
particle centers or the inclusion of denser cores. Since the Hertz model is based
on deformations local to the contacting surfaces, this change of mass should
have a negligible effect on the contact stiffnesses provided the modification is
sufficiently far from the surface.

2.2 Linear model– Eigenvalue analysis

With the goal of solving for the general motion of the linear chain under the im-
posed boundary conditions, we look to phrase (14) in its eigenvector basis. This
transformation decouples the equations of motion into N independent relations,
facilitating the process of finding a general solution. Upon determination of the
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solution in the eigensystem, a simple linear transformation yields the motion of
the particles.

Thus we first seek to determine the eigenvectors and eigenfrequencies associ-
ated with (14). We set f = 0 and assume that for each normal mode all masses
oscillate with a particular frequency ω. Defining A ≡ −M−1K (not symmetric,
in general) we arrive at the familiar eigenvalue problem:

Au = ω2u. (17)

This may be solved numerically to determine the set of N orthonormal eigen-
modes {s(j)} and eigenfrequencies {ω(j)}. We normalize the eigenvectors to
have the following orthonormality conditions (see Appendix A):

sT(i)Ms(j) = δij , (18)

where δij is the usual Kronecker delta symbol.
We sort the eigenvectors by increasing order of their associated eigenvalues

(frequencies) and assemble the (N × N) matrix S such that the jth column is
eigenvector s(j). Using S−1 as the transformation matrix between the paricle
displacements u and the eigenmode amplitudes z, we have z = S−1u. We also
note the similarity transform S−1AS = D, where D is a diagonal matrix with
the (increasing) eigenvalues along the diagonal.

With the use of S we transform the general equation of motion (14) and
obtain the decoupled form:

d2z

dτ2
= −Dz + h, (19)

where h = S−1M−1f . We are thus left to solve N independent equations of the
form:

d2zj
dτ2

+ ω2
(j)zj = hj , (j = 1, . . . , N). (20)

For the case of hj = 0 (i.e. no driving) we obtain the trivial harmonic solution

zj = z
(o)
j exp(±iω(j)τ) = Aj sinω(j)τ + Bj cosω(j)τ . In our specific case of

harmonic driving, the transformed forcing vector h may be rephrased as follows.
Since f = ε sinωoτe1 (e1 = [1 0 . . . 0]T ) we have:

h = S−1M−1ε sinωoτe1 =
ε sinωoτ

b(1)
y (21)

where y = S−1e1 is the first column of S−1. Exploiting the orthogonality given
in (18) we left–multiply y by STMS = I and find y = STMe1 = b(1)STe1.
Thus y is proportional to the first row of S. We then write (20) as

d2zj
dτ2

+ ω2
(j)zj = εS1j sinωoτ, (22)

which has the general solution

zj(τ) = Aj sinω(j)τ +Bj cosω(j)τ +
εS1j

ω2
(j) − ω2

o

sinωoτ. (23)
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The 2N undetermined constants {Aj} and {Bj} are determined from the initial
conditions z(0) = S−1u(0). Taking u(0) = 0 and du/dτ(0) = 0 as the initial
conditions on particle displacements and speeds, we have:

zj(τ) =
εS1j(

ω2
(j) − ω2

o

) (sinωoτ −
ωo
ω(j)

sinω(j)τ

)
, (24)

which transforms back to the expression for the displacement history of particle
p,

u(p)(τ) =

N∑
j=1

Spjzj(τ) = ε

N∑
j=1

SpjS1j(
ω2
(j) − ω2

o

) (sinωoτ −
ωo
ω(j)

sinω(j)τ

)
. (25)

For a given chain arrangement, we may calculate the displacement history from
(25) and this way investigate the frequency spectrum at a particular location in
the chain. Discussion of the terms in (25) is deferred to section 3.3.

We finally note that in the case of an undriven (ε = 0) monodisperse linear
chain, we obtain the dispersion relation [1],

ω(k) = 2 sin kro, (26)

where k and ro are the dimensionless wavenumber (purely real) and particle
radius, respectively. This sets the cutoff frequency for propagative waves at
ω ≤ ωmax = 2. At ωmax = 2.0 we have the minimum wavelength λmin = 4ro.
That is, signal frequency components in the pass–band of 0 < ω ≤ 2 propagate
without attenuation. Frequencies above the cutoff are termed evanescent waves
as the wavenumber has an imaginary component which causes the signal to
exponentially decay with distance. Since our random chains contain masses
distributed about the monodisperse system of b(i) = 1 we will consider driving
frequencies ωo on the order of ω = 2, in the range [0.1ωmax, 1.6ωmax].

3 Results and Discussion

In this section we present results on the high–frequency filtering effects of ran-
dom chains.

Section 3.1 discusses the construction of the random systems for several mass
distributions. We also introduce our definition of the disorder parameter.

Section 3.2.1 contains results for the chain with linear contact forces, with
masses chosen from a normal mass distribution and uniform contact stiffness,
examining the effects of disorder and driving frequency. A comparison of mass
distributions is shown in 3.2.2, and section 3.2.3 investigates the role of coupling
(contact stiffness) disorder in harmonic chains.

Results related to the nonlinear chain are presented in section 3.4. Similar
to the linear chain we perform a parameter study in section 3.4.1 and examine
the effect of disorder and driving frequency. The driving amplitude is also
considered. We follow this in section 3.4.2 with results for the nonlinear chain
featuring uniform contact interactions, which isolates the effect of mass disorder.
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3.1 Chain generation

We introduce mass disorder to the chains by employing random number algo-
rithms that approximate a specified probability distribution. In this study we
consider normal f (n)(b), uniform f (u)(b), and binary discrete f (d)(b) distribu-
tions, where b is the scaled mass.

For the normal distribution, we prescribe the mean µ and standard deviation
σ = ξµ. Due to the scaling by the mean mass, µ = 1 and σ = ξ. The parameter
ξ determining the magnitude of the standard deviation will be used to quantify
the disorder of the system. When sampling masses to create the normally
distributed random chains, we enforce a lower cutoff such that bmin > 0. No such
cutoff is implemented for the largest masses. In Figure 1 we plot the ensemble–
averaged 〈bmin〉 and 〈bmax〉. For each figure we average over a set of 105 chains
sampled from a normal distribution (mean µ = 1 and standard deviation ξ), with
each chain containing 2000 particles. We note that the restriction of b > 0 causes
the ensemble–averaged minimum mass values to be bounded as we increase the
width of the distribution (disorder) ξ. Values of the largest ensemble–averaged
masses increase linearly with ξ, as expected.

(a) (b)

Figure 1: Ensemble–averaged minimum and maximimum masses. The masses
are sampled from normal distribution with mean µ = 1 and standard deviation
ξ. Each chain contains 2000 particles and the ensemble has 105 chains.

For comparison between the three distributions, we match the moments of
the theoretical probability density functions. In general, the nth moment of a
given distribution f (q)(b) is defined as,

M (q)
n =

∫ ∞
−∞

bnf (q)(b) db, (27)

where q is used to identify the specific distribution type. Since only positive
masses are permitted, the lower limit of integration may be changed to zero.

For probability distributions, the zeroth moment is 1 by definition. A normal

distribution with mean µ = 1 and standard deviation σ = ξ has M
(n)
1 = 1,
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M
(n)
2 = 1 + ξ2. The uniform distribution in the interval [ba, bb] (symmetric

about µ = 1) has M
(u)
1 = (bb + ba)/2 and M

(u)
2 = (b2b + babb + b2a)/3. Equating

M
(n)
1 = M

(u)
1 and M

(n)
2 = M

(u)
2 we obtain:

ba = 1−
√

3ξ, (28)

bb = 1 +
√

3ξ. (29)

The binary discrete distribution with masses bc and bd is given by f (d)(b) =
c1δ(b− bc) + (1− c1)δ(b− bd), where δ(s) is the Dirac–delta function. The nth

moment is M
(d)
n = c1b

n
c + (1− c1)bnd . Matching the first three moments to that

of the normal distribution we find,

bc = 1− ξ, (30)

bd = 1 + ξ. (31)

Note that in matching the moments of the distributions, the requirement that
ba > 0 (non–zero, positive mass) in (28) imposes that ξ < 1/

√
3 ≈ 0.5774.

By employing three different mass distributions that have the same moments,
we may compare the filtering behavior of these systems and investigate the role
that the mass distribution plays.

3.2 Linear chain filtering

Given an array of (N + 2) random masses (where the end particles have pre-
scribed motion), we numerically solve the eigenvalue problem as described in
section 2.2, yielding the (N ×N) eigenvector matrix S and the N eigenfrequen-
cies {ω(j)} (j = 1, . . . , N). With equation (25) we calculate the displacement

history u(p)(τn) of particle p at discrete time steps τn = ndτ on the interval
τ = [0, τmax]. The time window is sufficiently large and the scaled time step dτ
is chosen to be small enough to permit sampling at the frequencies of interest.
We then perform a discrete Fourier transform to obtain the spectrum of this
signal. In particular, we examine the absolute value of the Fourier components,
U (p)(ω). This calculation is performed for particles p = 1, . . . ,M . The length
of the chain (N + 2), M , and τmax are chosen such that the signal has not
reflected from the fixed particle p = N + 1 and the high frequencies have been
given sufficient time to propagate due to their lower phase velocity. The spectra
of oscillations for the sampled particles may be compactly visualized by the use
of a three–dimensional plot projected into a two–dimensional plane. Here we
plot in the (p, ω) plane and represent the values of the absolute Fourier compo-
nents U (p)(ω) with a greyscale. At each location p, the U (p)(ω) array of values
is normalized to unity. In our convention, darker shades correspond to larger
values with the scaling set such that black corresponds to a Fourier component
≥ 0.2. This is applied for all of the following figures. For two particular chain
arrangements, we obtain Figure 2. We will later show averages over 200 different
realizations.
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(a) (b)

Figure 2: Frequency propagation spectrum for two instances of a single real-
ization of a normally distributed disordered chain with uniform linear coupling.
ξ = 0.5, ωo = 3, dτ = 0.0667, τmax = 546.41, N = 500, M = 200.

In both of Figures 2a and 2b we note a rapid decrease of the input frequency
within several particle diameters from the driver. Following this, we observe
the persistence of several lower frequencies (ω < ωo) which are dependent on
the particular chain arrangement. However, by p = 200 we note that the fre-
quency content of the two arrangements is more comparable and frequencies
ω ' 0.5 have absolute Fourier components that are relatively small with respect
to ω / 0.5. This range of propagated frequencies is dependent on the disorder
parameter, as investigated in Section 3.2.1.

Examining the evolution of a particular frequency component ω∗ as it prop-
agates down the chain, we note the dark and light oscillations (“stitching”)
apparent for certain frequencies in both plots of Figure 2. For lower frequen-
cies, the wavelengths of these features match closely with those obtained from
the dispersion relation (26) for the perfect chain, as shown in Figure 3. Here, for
a single chain realization, we compare the features of the dispersion relation to
the spatial filtering behavior. To construct this figure we perform a discrete dou-
ble Fourier transform of the u(p)(τ) signal. With this plot we may examine the
wavelength λ of the stitching as ω∗ is varied. Note the close agreement between
the analytical result (black circles) and the data in the low–frequency/long–
wavelength limit (ω / 0.5). As the frequency increases, there is significant
deviation of the disordered system from the monodisperse chain. The dark hor-
izontal lines change with the particular chain arrangement and correspond to
strong, but spatially short excitations, indicating localization of the oscillations
at frequency ω∗.
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(a) (b)

Figure 3: The dispersion relation (a) obtained from the simulation displayed in
(b). The black circles are obtained from the perfect chain dispersion relation
(26) at 20 equidistant k∗ values. Darker shades correspond to greater magnitude
Fourier components.

The light areas of the stitching thus correspond to nodes of the wave, where
the oscillations at the particular frequency ω∗ are insignificant. Based upon the
chain arrangement this behavior is more visually apparent at certain frequencies,
but Figure 3 confirms that there is a “selected” wavelength associated with
the oscillations at each frequency. However, we note that the stitching is a
consequence of the wave component interactions since it is not present in our
simulations with perfect chains; in such cases a monochromatic horizontal line is
observed to propagate without change (if ω ≤ 2). Simulations of perfect chains
produce dispersion plots that exactly match the black circles plotted in Figure
3.

3.2.1 Frequency–filtering of the monodisperse linear chain: nor-
mally distributed masses

Here we employ a normal distribution of masses and perform a parameter study
on the effects of disorder magnitude ξ and source frequency ωo. For each set of
data, we generate an ensemble of 200 random chains. Each chain contains N =
500 particles and we examine the displacement signal for particles 1 through
M = 200. Selection of the chain length N and the value of M is based on
examining the results of longer systems; for relatively high disorder (ξ = 0.5)
we note minimal change in the spectrum of transmitted frequencies beyond
approximately 200 particles from the excitation source.

By requiring that the signal does not reach the fixed end–particle p = (N+1),
a sampling time interval τ = [0, τmax] is approximately determined from the
analysis of several chain arrangements (“microstates”). If the fixed end is indeed
reached in a particular microstate, the reflected signal certainly does not have
sufficient time to propagate backwards to the specified sampling region, p < M .

With τmax set, we divide the time span into q steps such that dτ = τmax/q
is small enough to detect the relevant large frequencies in a given signal. As
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stated in Section 2.2, a monodisperse linear chain will propagate normalized
frequencies ω ≤ 2 and we drive the disordered chains at frequencies of this
order. We select q = 8192 time steps which yields dτ u 0.0667 for the given
time interval. We note that this time step permits detection of frequencies
ω / 47.1, which is many times greater than the largest eigenfrequencies.

For each realization in the ensemble of disordered chains, we calculate the
motion and the Fourier transform for the particles in the sampled region p < M .
To obtain the ensemble frequency content, we subsequently average over the
Fourier transform data for each microstate.

We emphasize that for Sections 3.2.1 through 3.2.2 we are concerned with
systems where only the masses are disordered. The coupling stiffnesses κ(ij) = 1
are the same for all contacts in the chain. In section 3.2.3 we vary the contact
stiffnesses along with the particle masses.
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Fix ωo, vary ξ: Here we set the driving frequency ωo = 3.0 to a constant value
and vary the disorder parameter ξ as shown in Figure 4. In this manner we may
examine the effect of disorder on the transmitted frequencies. We note that
the greyscale values for each subplot are the same, with the absolute Fourier
component of magnitude 0 corresonding to white and 0.2 or greater appearing
black.

(a) ξ = 0.1 (b) ξ = 0.2 (c) ξ = 0.35

(d) ξ = 0.45 (e) ξ = 0.5 (f) ξ = 0.55

Figure 4: Variation of the disorder parameter ξ. The source frequency ωo = 3.0
and the other parameters are the same as in Figure 2.

From Figure 4 we note that as the disorder parameter increases (from subfig-
ures 4a to 4f) there is an associated decrease in the transmission of the relatively
higher frequency components. For select disorder values, we plot the ensemble–
averaged spectrum of particle p = 200, 〈U (200)(ω)〉, in Figure 5.
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Figure 5: Ensemble–averaged spectrum at the 200th particle for various levels
of disorder, from the data in Figure 4. For clarity, we omit data from several
disorder magnitudes.

From Figure 5 we see that increased disorder leads to decreased magnitude of
the higher frequency components, as observed in Figure 4. Note that the perfect
(monodisperse) chain excited at ωo = 3.0 would have a profile that is flat for
0 ≤ ω ≤ 2 followed by a sharp cutoff to zero for ω > 2. As the disorder increases
towards ξ = 0.55, the profiles of the transmitted frequency spectrums begin to
converge. Increase of ξ beyond 1/

√
3 (although not permitted for comparison

of the mass distributions as explained in Section 3.1) reveals little difference in
the profile of transmitted frequencies. This suggests that the system disorder
may be saturated and a further increase of the disorder parameter does not
significantly affect the ensemble–averaged signal transmission properties.

In Figure 6 we plot the density of states for various values of the disordered
parameter. The eigenvalues for 2000 states of a 500 particle chain are numer-
ically calculated and the density of states is normalized such that the sum of
values (for each ξ) is unity. The numerical results are plotted with the analytical
result for a perfect chain as given by Sheng [37],

ρ(ω) ∼ 1√
4− ω2

(32)
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Figure 6: Density of states for mass–disordered chains. The curve ρ(ω) is the
analytical result (32) for the density of states in a monodisperse chain.

In Figure 6 the density of states generally increases as we approach the
cutoff frequency ω = 2.0 of the ordered chain. As the disorder increases, the
introduction of more smaller masses permits higher frequency oscillations and
the density of states accordingly increases for the greater frequencies. From
Figure 2 we see some limited transmission of frequencies ω > 2.0, which is not
observed in the perfect chain with zero density of states for ω > 2.0.
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Fix ξ, vary ωo: Here we set the disorder parameter at a constant ξ = 0.3
and vary the source frequency ωo. For each driving frequency we employ the
same ensemble of 200 normally–distributed random mass chains. Greyscale is
individually adjusted for visualization of each subplot. Results for six input
frequencies are shown in Figure 7.

(a) ωo = 3.2 (b) ωo = 3.0 (c) ωo = 2.4

(d) ωo = 2.0 (e) ωo = 1.6 (f) ωo = 1.2

Figure 7: Variation of the source frequency ωo, for disorder parameter ξ = 0.3
and other parameters as in Figure 2.

As suggested by the plots of Figure 4, lower frequency signal components are
not as affected by the presence of mass–disorder. This is clearly shown in Figure
7 where the frequency components corresponding to the excitation are shown
to propagate further into the system for decreasing ωo. As evidenced by Figure
6 low frequency (long wavelength) oscillations of disordered arrangements cap-
ture the dispersion behavior of ordered systems and thus low frequency inputs
propagate as in perfect chains. Qualitatively similar results are obtained for
other values of the disorder parameter ξ.
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3.2.2 Frequency–filtering of the linear chain: comparison of mass
distributions

Here we compare the results for different mass distributions. As detailed in
Section 3.1 we employ normal, uniform, and binary distributions such that the
moments are matched for a given disorder parameter ξ. In each row of Figure
8 we plot the results for a given distribution. By looking at individual columns,
we may compare the results for the various distributions. Aside from small
discrepancies close to the source (subfigures 8c, 8f, 8i) we note that the spectrum
of transmitted frequencies are the same for the three mass distributions studied
at all disorder measures. Plotting the frequency spectrum at p = 200 reveals no
significant difference between the three mass distributions.

(a) ξ = 0.1 (b) ξ = 0.3 (c) ξ = 0.5

(d) ξ = 0.1 (e) ξ = 0.3 (f) ξ = 0.5

(g) ξ = 0.1 (h) ξ = 0.3 (i) ξ = 0.5

Figure 8: Comparison of normal [(a), (b), (c)], uniform [(d), (e), (f)], and binary
mass distributions [(g), (h), (i)] for ξ = 0.1, 0.3, 0.5
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The quantitative similarity of the transmission profiles for the binary mass
system (as compared to the normal and uniformly distributed systems) suggests
that the intermediate mass particles do not have a significant effect on the bulk
filtering properties of the disordered systems. The relevant measure of disorder
is indeed related to the moments of the mass distribution.

Equation (4) with β = 0 shows that the characteristic (dimensional) time
scale is t̃c =

√
m̃o/κ̃o. For a monodisperse linear (harmonic) system with

masses m̃o and spring stiffness κ̃o = k̃n, we may identify the natural frequency

ω̃n = 1/t̃c =
√
k̃n/m̃o. From Section 2.2 we recall that monodisperse chains

transmit frequencies in the passband ω = ω̃/ω̃n ≤ 2.0. Thus, monodisperse
chains of relatively larger masses will accordingly transmit lower frequencies.
Although we are concerned with disordered systems, one may argue that it is
the largest masses present in the disordered chains that inhibit the propagation
of relatively high frequencies. The inclusion of a small amount of relatively large
masses in monodisperse chains of small masses shows a similar low–pass filter
behavior.
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3.2.3 Frequency–filtering of the mass– and contact–disordered linear
chain

Here we present results for the linearized approximation to the general nonlinear
governing equations (equation (13) with β = 0). This is equivalent to a linear
chain where the mass and contact stiffness are both disordered. The non–
dimensional contact stiffness is related to the sizes of the contacting particles
as given in (15). Comparison of Figures 9a–9c with the corresponding plots

(a) ξ = 0.3, ωo = 3.0 (b) ξ = 0.3, ωo = 2.0 (c) ξ = 0.3, ωo = 1.2

Figure 9: Mass– and contact–disordered chain for ξ = 0.3 and ω = 3.0, 2.0, 1.2

of Figure 7 reveals that the addition of contact disorder leads to a more rapid
spatial decay of the input frequency ωo. We also note that the bandwith of
transmitted frequencies is marginally reduced for the contact–disordered chains,
as evidenced by plotting the profiles at various downstream locations (plots not
shown). However, the shape of the profiles are qualitatively comparable.
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3.3 Disorder and localization

From Section 2.2 we recall that the displacement history of particle p is given
by (25):

u(p)(τ) = ε

N∑
j=1

SpjS1j(
ω2
(j) − ω2

o

) (sinωoτ −
ωo
ω(j)

sinω(j)τ

)
. (33)

We examine the SpjS1j term present in the numerator of expression (33). Recall
that the matrix S is constructed such that the jth column is the scaled jth

eigenvector, sorted in increasing order of the associated eigenvalues. Thus, each
column represents a mode shape and the entry Spj is the (scaled) displacement
of particle p in mode j. SpjS1j is then the product of the displacements of
particles p and 1 in mode j.

In the case of the monodisperse linear chain, the eigenvectors are sinusoids
subject to the condition that the end particles remain fixed. This imposes
the requirement that the eigenmode wavelengths are scalar multiples of π/L,
where L is the chain length. For the disordered chain, we note that eigenmodes
of increasing frequency exhibit mode localization. This so–called “Anderson”
localization has been observed in many physical contexts including mechanical
systems of vibrating masses [20,33]. In Figure 10 we plot selected mode shapes
of three random chains. The low frequency modes (e.g., Figures 10a and 10b)
are similarly shaped for the different chains and are “extended” in nature– the
displacements are not localized about a portion of the chain as seen in the
higher frequency modes (10c to 10f). In addition to the increased localization of
higher frequency modes, we note that the displacements are located at different
positions in the chain, indicating sensitivity to the particular mass arrangement.
The highest frequency modes approach Dirac–delta functions where only a single
particle has a significant displacement (Figure 10f). Physically, the highest
frequency modes correspond to smaller mass particles oscillating between two
large neighbors.

To quantify the effect of the random mass arrangements on the eigenmodes,
we generate a Ne–member ensemble of chains (N + 2 particles) and calculate
a correlation measure for the set of associated eigenvectors. For each chain we

construct the N×N matrix S(k) as described prior, with the jth eigenvector s
(k)
(j)

located in the jth column. The index k = 1, . . . , Ne denotes which microstate

of the ensemble is in consideration. We compare two eigenvectors s
(k)
(j) and s

(q)
(j)

through the use of a signed correlation coefficient [18],

corr
(
s
(k)
(j) , s

(q)
(j)

)
=

N∑
i=1

(
S
(k)
ij − s̄

(k)
(j)

)(
S
(q)
ji − s̄

(q)
(j)

)
(N − 1)σkσq

, (34)

where the overbar denotes a mean and σr is the standard deviation of the com-
ponents of s

(r)
(j). Absolute values of the correlation coefficient range from zero to

one, with values close to unity signifying eigenvectors that are highly correlated
(such as those of Figure 10a or 10b). Comparing each of the eigenvectors in
the Ne–member set leads to Ne(Ne−1)/2 correlation coefficients. The absolute
values of these coefficients are averaged to obtain a mode correlation for the
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(a) j = 3 (b) j = 30

(c) j = 100 (d) j = 200

(e) j = 300 (f) j = 500

Figure 10: Eigenmode shapes for modes j = 3, 30, 100, 200, 300, 500. Each sub-
figure displays the mode shape for three different random chain arrangements
with disorder parameter ξ = 0.5.
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entire ensemble. We plot this ensemble average correlation 〈|corr(s
(k)
j , s

(q)
j )|〉

against j in Figure 11:

Figure 11: 〈|corr(s
(k)
j , s

(q)
j )|〉 plotted against the mode number (j). Higher mode

number means higher frequency. Results are presented for a 500 particle chain
arranged in 200 states. Three disorder values ξ = 0.1, 0.3, 0.55 are used.

Further increase of the disorder parameter ξ reveals negligible difference
from the case of ξ = 0.55, as noted in Section 3.2.1. Since the low–frequency
modes remain similar for the various disordered system configurations, we expect
similar signal transmission properties for the low–frequency components of an
input signal. As shown previously, driving inputs ωo at relatively low frequencies
are less sensitive to the disorder and the input frequency propagates down the
chain. Conversely, the uncorrelated nature of the high–frequency modes implies
that high–frequency inputs will behave differently in each case, depending on
the particular arrangement of masses.

3.4 Frequency–filtering of the nonlinear chain

Similar to the linear chain, in Section 3.4.1 we perform a parameter study of ξ
and ωo for a system of normally–distributed masses with Hertzian interaction.
Due to the nonlinearity in the contact law, we also consider the driving ampli-
tude ε. We note that the nonlinear chain is, in general, disordered in both mass
and contact properties. In Section 3.4.2 we investigate nonlinear chains with
uniform contact coupling, isolating the effect of mass–disorder.
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3.4.1 Frequency–filtering of the nonlinear chain: normally distributed
masses

Fix ωo, vary ξ: Here we set the driving frequency ωo = 3.0 and vary the
disorder parameter ξ. Three values of ξ are plotted in Figure 12.

(a) ξ = 0.1 (b) ξ = 0.3 (c) ξ = 0.5

Figure 12: Variation of disorder parameter ξ. Source frequency is ωo = 3.0 and
ε = 0.05.

We may compare this with the results of 3.2.3, where a linear contact model is
employed for the mass– and contact–disordered chain. As observed in the linear
system, increased disorder leads to increased filtering of the high–frequency
components. However, the profiles of transmitted frequencies are qualitatively
different for the nonlinear chain. In Figure 13 we plot the transmission profiles
for particle p = 200 for a general nonlinear (with contact–disorder), a contact–
ordered nonlinear (see Section 3.4.2), and a contact–disordered linear chain
(Section 3.2.3).

We observe that the profiles for the nonlinear chains display a sharp peak at
the low frequencies, while the linear chain exhibits a flat profile. The magnitudes
of the intermediate frequency components are accordingly less in the nonlinear
chain. However, we note that by changing ε the oscillation amplitudes will
decrease such that we approach behavior that is captured by the linearized
model. This is examined in a later section.
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Figure 13: Frequency spectrum at particle p = 200 for contact–disordered non-
linear (i), contact–ordered nonlinear (ii), and contact–disordered linear chain
(iii). Parameters are ξ = 0.5, ωo = 3.0 and ε = 0.05 for the nonlinear chains.

Fix ξ, vary ωo Here we set the disorder parameter to ξ = 0.5 and change the
driving frequency ωo. Results are plotted in Figure 14.

(a) ωo = 3.0 (b) ωo = 2.0 (c) ωo = 1.0

Figure 14: Variation of source frequency ωo. Disorder parameter is ξ = 0.3 and
and ε = 0.05.

As in the linear chain we see that lower frequency signals are not as sensitive
to the disorder of the chain and the input frequency propagates further into the
system. In Figure 14c we note the appearance of harmonic at ω = 2ωo. This
frequency doubling harmonic (among others not visible due to the greyscale
selection) is a general feature of nonlinear oscillations and is observed in all the
simulations. Again we see that the nonlinear chain with an appropriately large
excitation (ε = 0.05 in this figure) experiences a sharp profile for ω � 1.
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Driving amplitude Here, the value of the non–dimensional driving ampli-
tude ε is varied over several orders of magnitude: ε = 0.1, 0.05, 5×10−3, 5×10−4.
As noted in (9), the non–dimensional value of ε measures the strength of the
agitation provided by the driving with respect to the compressive external force
on the chain. Thus, small values of ε correspond to systems with small driv-
ing and/or large confining stress. The largest driving amplitudes are set by
the requirement that no contacts may open in the chain, giving εmax to be on
the order of the characteristic overlap length scale. Simulations check this con-
tact condition to avoid the nonlinearities associated with transient interactions.
Results are plotted in Figure 15.

(a) ε = 0.1 (b) ε = 0.05

(c) ε = 5× 10−3 (d) ε = 5× 10−4

Figure 15: Variation of driving amplitude ε. Source frequency is ωo = 3.0 and
ξ = 0.5.

Plotting the frequency spectrum at particle p = 200 in Figure 16 we note that
by decreasing the driving amplitude ε we decrease the magnitude of the lowest
frequency components. The profiles appear more like that of the linear chain
(curve (iii) in Figure 13), consistent with the linearization performed about the
equilibrium positions. The approach of a compressed granular system to linear
acoustic behavior was noted experimentally by Sinkovits et al. [38].

By examining individual chain arrangements, we note that when chains are
subjected to large driving amplitudes at relatively high frequencies, the particles
oscillate about positions displaced from their static equilibrium configuration.
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Figure 16: Frequency spectrum at particle p = 200 for varied driving amplitude
ε. Source frequency is ωo = 3.0 and ξ = 0.5.

The input signal induces an additional compression on the chain, displacing
all particles from their equilibrium positions (in the positive, “downstream”
direction). In the absence of disorder, the particles will then oscillate about the
new positions at the driving frequency. Decreasing the frequency of the driver
removes this effect and the particles oscillate about their original equilibria.

3.4.2 Removal of contact disorder

In a numerical realization of the monodisperse, mass–disordered setup proposed
in Section 2.1.3 we remove the contact disorder in the Hertzian chain by setting
all interaction stiffnesses to κij = 1. In Figure 17 we plot the results for the
same ensemble of chains with and without contact disorder.

The frequency spectrums of Figures 17a and 17b for p = 200 were previously
plotted in Figure 13 and inspection of the curves (i) and (ii) reveals no difference
due to the removal of contact disorder. Recall that in the linear system, the
addition of contact disorder reduced the bandwith of transmitted frequencies
by a small amount.
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(a) with contact disorder (b) without contact disorder

Figure 17: Comparison for contact disorder. ξ = 0.5, ωo = 3.0, and ε = 0.05.

4 Conclusions

In this study we examined the frequency transmission properties of driven one–
dimensional systems of disordered masses. Beginning from a general power law
force–displacement relation, we investigated the behavior of pre–compressed
chains where particles interact through linear and nonlinear (Hertzian) con-
tacts. It is shown that disordered chains behave like a low–pass frequency filter,
permitting the propagation of low frequency signals while the higher frequency
components decay with distance from the source. The rate of decay is stud-
ied as a function of the input frequency, disorder magnitude, and the choice
of contact model. As more disorder is included in the system we observe that
the higher relative frequencies are filtered closer to the source/driver and only
low–frequencies propagate in the chain. However, the results also suggest that
there exists a threshold disorder after which only small changes in the ensemble–
averaged properties are noted. By driving systems at various frequencies we ob-
serve that lower–frequency signals are less sensitive to the chain arrangements
and the input signal propagates further. In the context of the linear chain, we
relate the filtering behavior to the localization of eigenmodes in the presence of
disorder.

Comparisons are made for random, linear, contact–ordered chains composed
of masses sampled from normal, uniform, and binary distributions. The simi-
larity of the ensemble–averaged results suggest that the moments of the mass
distribution are the important parameters for quantifying the disorder and the
resulting frequency filtering.

Comparison of the nonlinear and linear systems reveals that both systems
filter high frequencies in a similar manner with a decaying envelope of transmit-
ted frequencies. However, the nonlinear chains have frequency spectrums that
contain larger relative contributions from the lowest frequency components, in-
dicated by the dramatic difference in the spectrums at locations downstream
from the driver. By changing the non–dimensional driving amplitude ε we were
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able to affect the strength of the nonlinearities present; with a sufficiently small
value (corresponding to small driving amplitude and/or large external compres-
sion, we recover the linear system behavior.

We examined the effect of isolated mass–disorder and the combination of
mass– and contact–disorder in both linear and nonlinear chains. In the linear
chain the inclusion of contact disorder was relatively small, leading to a slightly
reduced range of transmitted frequencies. Results were qualitatively similar to
systems with only mass–disorder. The effect of contact disorder on the Hertzian
system is less pronounced; the resulting spectrums do not exhibit noticeable
differences.

In comparing the high–frequency filtering properties of the random one–
dimensional systems to the three–dimensional packings of Mouraille et al. [29]
we note the importance of the contact geometry in the resulting behavior.
The study performed by Mouraille et al. concerned random packings obtained
through the introduction of very small perturbations of the particle sizes. Be-
ginning from a from perfect crystalline geometry, the variations in particle size
created significant disorder effects in the system. The disorder (as quantified
here by the distribution of particle masses) was indeed very small (ξ ≈ 0.007)
and our simulations on one–dimensional systems at this disorder reveal no differ-
ence from a perfect, monodisperse system. In our consideration of compressed
chains, we have avoided geometry induced disorder. However, if the chain were
subject to very little pre–compression (approaching Nesterenko’s sonic vacuum),
the length scale of the particle–size perturbation and the contact overlap length
scale would be of the same order and strong nonlinearities could be introduced.
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A Appendix 1: Orthogonality proof

In direct notation, for eigenvalue/eigenvector j the statement of the dimension-
less eigenvalue problem is,

As(j) = ω2
j s(j). (35)

With A = −M−1K we have

M−1Ks(j) = −ω2
j s(j) (36)

or,
Ks(j) = −ω2

jMs(j) (37)

Similarly for eigenvector k, we have

Ks(k) = −ω2
kMs(k) (38)

Taking the transpose of (38),

sT(k)K
T = −ω2

ks
T
(k)M

T (39)

Since both K and M are symmetric drop the transpose and then right multiply
by s(j),

sT(k)Ks(j) = −ω2
ks
T
(k)Ms(j) (40)
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Similarly, left multiply (37) by sT(k)

sT(k)Ks(j) = −ω2
j s
T
(k)Ms(j) (41)

Subtract (41) from (40), (
ω2
j − ω2

k

)
sT(k)Ms(j) = 0 (42)

If ω2
k 6= ω2

j we are left with the orthogonality statement,

sT(k)Ms(j) = 0 (j 6= k) (43)

If j = k, the quantity sT(j)Ms(j) = d(j) 6= 0. Scaling each eigenvector s(j) by√
d(j), we generate an orthonormal set.

B Appendix 2: Hertz contact model

With β = 1/2 we obtain the Hertz contact model and the interparticle forces
are dependent on the size and material properties of the constituent particles
in the following way [19]:

κ̃(i,j) = Ỹ(i,j)

[
r̃ir̃j
r̃i + r̃j

]1/2
, (44)

where

Ỹ −1(i.j) =
3

4

(
1− ν2i
Ẽi

+
1− ν2j
Ẽj

)
. (45)

Ẽi and νi are the elastic modulus and Poisson’s ratio, respectively, of the ma-
terial composing particle i. The formulation was presented for spheres but is
noted to be appropriate for non–spheres as well [19]. In what follows we choose
the same material for all particles and Ỹ(i,j) = Ỹ is independent of the contact
in consideration,

Ỹ −1 =
3

2

(
1− ν2

Ẽ

)
. (46)

We have previously defined the characteristic length ˜̀ = ∆̃o to be the equilib-
rium contact overlap of two particles of the mean mass m̃o. We first find the
characteristic stiffness of this contact,

κ̃o =
Ẽ

1− ν2

[
2m̃o

243πρ̃

]1/6
. (47)

With the initial overlaps defined by (3), we have,

∆̃o =

(
P̃

κ̃o

)2/3

(48)

The characteristic time is,

t̃c =
1

∆̃
1/4
o

√
1− ν2

Ẽ

[
243πρ̃m̃5

o

2

]1/12
. (49)
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The scaled stiffness ratio at contact (i, j) simplifies to,

κ(i,j) =
κ̃(i,j)

κ̃o
=

√
2

b(i)1/3 + b(j)1/3

(
b(i)b(j)

)1/6
. (50)

For a general contact, the equilibrium overlap given by (3) is,

∆̃(i,j) =

(
P̃

κ̃(i,j)

)2/3

. (51)

Dividing by our length scale ∆̃o, the characteristic contact overlap in equilib-
rium,

∆(i,j) = κ
−2/3
(i,j) . (52)
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