Signal Propagation in Granular Matter Order and Disorder

Brian Lawney and Stefan Luding

Multi-scale Mechanics
Universiteit Twente
Enschede, Nederland

VICI Progress Report 2012

Introduction

- Challenges:
- Dense
- Discrete
- Inhomogeneous
- Anisotropic
- Frictional
- Dissipative

How might small disturbances propagate through such a medium?

Overview

- One-dimensional chains
- Model system and equations
- Introduction of mass-disorder
- Disorder magnitude
- System excitation
- Linear vs. nonlinear
- Role of contact disorder
- Three-dimensional crystalline packings
- Anisotropy
- Disorder effects

One-dimensional chains

- Convenient model
- Analytically accessible
- Isolation of mass-disorder
- Significant attention in literature
- Nonlinear oscillators
- Soliton-like waves

One-dimensional chains

- Force-displacement model:

$$
\begin{aligned}
\tilde{F}_{(i, j)} & =\tilde{\kappa}_{(i, j)} \tilde{\delta}^{1+\beta} \\
& \downarrow \\
\tilde{m}^{(i)} \frac{d^{2} \tilde{x}^{(i)}}{d \tilde{t}^{2}}= & \tilde{F}_{(i, i-1)}+\tilde{F}_{(i, i+1)}
\end{aligned}
$$

- Scaling:

Mass: \tilde{m}_{o}
Length: $\tilde{\ell}$

$$
\text { Time: } \tilde{t}_{c}=\frac{1}{\tilde{\ell}^{\beta / 2}} \sqrt{\frac{\tilde{m}_{o}}{\tilde{\kappa}_{o}}}
$$

One-dimensional chains

- General equation of motion:

$$
\begin{gathered}
b^{(i)} \frac{d^{2} u^{(i)}}{d \tau^{2}}=\kappa_{(i-1, i)}\left[\Delta_{(i-1, i)}-u^{(i)}+u^{(i-1)}\right]^{1+\beta} \\
-\kappa_{(i+1, i)}\left[\Delta_{(i+1, i)}+u^{(i)}-u^{(i+1)}\right]^{1+\beta} \\
b \equiv \tilde{m}^{(i)} / \tilde{m}_{o} \\
\tau \equiv \tilde{t} / \tilde{t}_{c} \\
\kappa_{(i, j)} \equiv \tilde{\kappa}_{(i, j)} / \tilde{\kappa}_{o}
\end{gathered}
$$

One-dimensional chains

- General (nonlinear) equation of motion:

$$
\begin{aligned}
b^{(i)} \frac{d^{2} u^{(i)}}{d \tau^{2}}= & \kappa_{(i-1, i)}\left[\Delta_{(i-1, i)}-u^{(i)}+u^{(i-1)}\right]^{1+\beta} \\
& -\kappa_{(i+1, i)}\left[\Delta_{(i+1, i)}+u^{(i)}-u^{(i+1)}\right]^{1+\beta}
\end{aligned}
$$

- Linearized model:

$$
\mathbf{M} \frac{\mathrm{d}^{2} \mathbf{u}}{\mathrm{~d} \tau^{2}}=\mathbf{K} \mathbf{u}
$$

$$
u^{(p)}(\tau)=\sum_{j=1}^{N} \frac{S_{p j} S_{1 j}}{\left(\omega_{j}^{2}-\omega_{o}^{2}\right)}\left(\sin \omega_{o} \tau-\frac{\omega_{o}}{\omega_{j}} \sin \omega_{j} \tau\right)
$$

One-dimensional chains

- Harmonically driven:

- Mass-disorder: Normal (Gaussian) distribution
- Mean mass $\rightarrow b=1$
- Standard deviation $\rightarrow \sigma=\xi$
- Pre-stress \rightarrow equilibrium overlap \rightarrow NOT sonic vacuum

Disordered chains as a frequency filter?

How do signals propagate in such systems?

- Disorder ξ
- Input frequency ω_{o}
- Mass distribution
- Contact order/disorder
- Linear vs. nonlinear

Base case- perfect chain

- Linear
- Uniform stiffness $\kappa_{(i, j)}=k_{n}$
- $\xi=0.0$

Disordered chains as a frequency filter?

- Linear
- Uniform stiffness $\kappa_{(i, j)}=k_{n}$
- $\omega_{o}=3.0$
- $\xi=0.5$

Disordered chains as a frequency filter?

- Consider an ensemble of chains, fix $\omega_{o}=3.0$, and vary ξ :

(a) $\xi=0.1$

(e) $\xi=0.5$

(c) $\xi=0.35$

(f) $\xi=0.55$

Disordered chains as a frequency filter?

Disordered chains as a frequency filter?

Disordered chains as a frequency filter?

- Fix ξ, vary ω_{o} :

Disordered chains as a frequency filter?

- Compare mass distributions:
- Match moments $M_{n}^{(q)}=\int_{-\infty}^{\infty} b^{n} f^{(q)}(b) \mathrm{d} b$

(a) Normal

(b) Uniform

(c) Binary
- Linear
- Uniform stiffness $\kappa_{(i, j)}=k_{n}$
- $\omega_{o}=3.0$
- $\xi=0.3$

Contact disorder

No contact disorder

WITH contact disorder

Linear vs. Nonlinear (Hertzian)

Linear, contact disorder

Nonlinear, contact disorder

Linear vs. Nonlinear (Hertzian)

Linear vs. Nonlinear (Hertzian)

- Conclusions:
- \uparrow disorder ξ, \downarrow transmission bandwidth.
- Threshold value of ξ
- Lower input ω_{o}, improved transmission
- Low frequencies less sensitive to mass arrangements
- Mass-distribution: only moments
- Nonlinear coupling \rightarrow more power in lowest frequencies
- Small $\epsilon \rightarrow$ recovery of linear behavior

Overview

- One-dimensional chains
- Model system and equations
- Introduction of mass-disorder
- Disorder magnitude
- System excitation
- Linear vs. nonlinear
- Role of contact disorder
- Three-dimensional crystalline packings
- Anisotropy
- Disorder effects

Long-short-short (LSS) geometry

Ordered LSS system

Disordered LSS system

Future work

- Relate anisotropy to particle motion
- Energy transfer
- Mode conversion, coupling, micro parameters
- Statistical descriptions of disorder
- Incorporating anisotropy into these

