Signal Propagation in Granular Matter – Order and Disorder

Brian Lawney and Stefan Luding

Multi-scale Mechanics Universiteit Twente Enschede, Nederland

VICI Progress Report 2012

Introduction

How might small disturbances propagate through such a medium?

- Challenges:
 - Dense
 - Discrete
 - Inhomogeneous

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─ 臣 ─

- Anisotropic
- Frictional
- Dissipative

Overview

One–dimensional chains

- Model system and equations
- Introduction of mass-disorder
 - Disorder magnitude
 - System excitation
- Linear vs. nonlinear
- Role of contact disorder
- Three–dimensional crystalline packings

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Anisotropy
- Disorder effects

- Convenient model
 - Analytically accessible
 - Isolation of mass–disorder
- Significant attention in literature
 - Nonlinear oscillators
 - Soliton–like waves

Force–displacement model:

$$\begin{split} \tilde{F}_{(i,j)} &= \tilde{\kappa}_{(i,j)} \tilde{\delta}^{1+\beta} \\ & \clubsuit \\ \tilde{m}^{(i)} \frac{d^2 \tilde{x}^{(i)}}{d \tilde{t}^2} &= \tilde{F}_{(i,i-1)} + \tilde{F}_{(i,i+1)} \end{split}$$

Scaling:

Mass:
$$\tilde{m}_o$$
 (1)
Length: $\tilde{\ell}$
Time: $\tilde{t}_c = \frac{1}{\tilde{\ell}^{\beta/2}} \sqrt{\frac{\tilde{m}_o}{\tilde{\kappa}_o}}$

General equation of motion:

$$b^{(i)} \frac{d^2 u^{(i)}}{d\tau^2} = \kappa_{(i-1,i)} \left[\Delta_{(i-1,i)} - u^{(i)} + u^{(i-1)} \right]^{1+\beta}$$
$$-\kappa_{(i+1,i)} \left[\Delta_{(i+1,i)} + u^{(i)} - u^{(i+1)} \right]^{1+\beta}$$
$$b \equiv \tilde{m}^{(i)} / \tilde{m}_o$$
$$\tau \equiv \tilde{t} / \tilde{t}_c$$
$$\kappa_{(i,j)} \equiv \tilde{\kappa}_{(i,j)} / \tilde{\kappa}_o$$

General (nonlinear) equation of motion:

$$b^{(i)} \frac{d^2 u^{(i)}}{d\tau^2} = \kappa_{(i-1,i)} \left[\Delta_{(i-1,i)} - u^{(i)} + u^{(i-1)} \right]^{1+\beta} -\kappa_{(i+1,i)} \left[\Delta_{(i+1,i)} + u^{(i)} - u^{(i+1)} \right]^{1+\beta}$$

Linearized model:

$$\mathbf{M}\frac{\mathrm{d}^2\mathbf{u}}{\mathrm{d}\tau^2} = \mathbf{K}\mathbf{u}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

$$u^{(p)}(\tau) = \sum_{j=1}^{N} \frac{S_{pj} S_{1j}}{\left(\omega_j^2 - \omega_o^2\right)} \left(\sin \omega_o \tau - \frac{\omega_o}{\omega_j} \sin \omega_j \tau\right)$$

Harmonically driven:

Mass-disorder: Normal (Gaussian) distribution

- Mean mass $\rightarrow b = 1$
- Standard deviation $\rightarrow \sigma = \xi$

• Pre-stress \rightarrow equilibrium overlap \rightarrow NOT sonic vacuum

How do signals propagate in such systems?

- Disorder ξ
- Input frequency ω_o
- Mass distribution
- Contact order/disorder
- Linear vs. nonlinear

Base case– perfect chain

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Linear
- Uniform stiffness $\kappa_{(i,j)} = k_n$
- ► $\xi = 0.0$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Linear
- Uniform stiffness $\kappa_{(i,j)} = k_n$
- $\blacktriangleright \omega_o = 3.0$
- ► $\xi = 0.5$

• Consider an ensemble of chains, fix $\omega_o = 3.0$, and vary ξ :

◆□ > ◆□ > ◆豆 > ◆豆 > ̄豆 = のへで

Fix ξ , vary ω_o :

- Compare mass distributions:
 - \blacktriangleright Match moments $M_n^{(q)} = \int_{-\infty}^\infty b^n f^{(q)}(b) \; \mathrm{d} b$

- Linear
- Uniform stiffness $\kappa_{(i,j)} = k_n$
- $\omega_o = 3.0$
- $\xi = 0.3$

Contact disorder

No contact disorder

WITH contact disorder

◆□▶ ◆□▶ ★ 三▶ ★ 三▶ 三三 - のへぐ

Linear vs. Nonlinear (Hertzian)

Linear, contact disorder

Nonlinear, contact disorder

▲ロ > ▲母 > ▲目 > ▲目 > ▲目 > ④ < ④ >

Linear vs. Nonlinear (Hertzian)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Linear vs. Nonlinear (Hertzian)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ ─臣 ─のへで

Conclusions:

- \uparrow disorder ξ , \downarrow transmission bandwidth.
 - Threshold value of ξ
- Lower input ω_o , improved transmission
 - Low frequencies less sensitive to mass arrangements

- Mass-distribution: only moments
- \blacktriangleright Nonlinear coupling \rightarrow more power in lowest frequencies
 - Small $\epsilon \rightarrow$ recovery of linear behavior

Overview

One–dimensional chains

- Model system and equations
- Introduction of mass-disorder
 - Disorder magnitude
 - System excitation
- Linear vs. nonlinear
- Role of contact disorder

Three–dimensional crystalline packings

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

- Anisotropy
- Disorder effects

Long-short-short (LSS) geometry

Unit cell

Top view

Ordered LSS system

(loading...)

Disordered LSS system

(loading)

<□ > < @ > < E > < E > E のQ @

· = nar

SQC

5 AAA

Future work

- Relate anisotropy to particle motion
 - Energy transfer
 - Mode conversion, coupling, micro parameters
- Statistical descriptions of disorder
 - Incorporating anisotropy into these

