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Abstract Granular materials in a biaxial box setup are sim-
ulated using the Discrete Particle Method. Both isotropic
compression and pure shear experiments are performed to
obtain the material parameters required for the simple local
constitutive model proposed by Luding et al. With these pa-
rameters the model is capable of quantitatively reproducing
the results obtained from simulations.
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1 Introduction

Introduction is not yet written, plan is to combine exper-
iments, simulations and theory (references to for example
Behringer and Radjai)

2 Molecular Dynamics

2.1 Discrete Particle Model

Granular materials are modeled as grains which deform un-
der stress. However realistic modeling of the deformations
of the particles is usually much too complicated. Therefore
particle deformation is modeled as a normal interaction force,
where the magnitude of the force is proportional to the over-
lap ∆ of two circular particles. When all forcesf p

i acting
on particlep, either from other particles, from boundaries or
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from external sources are known, the modeling of granular
material is reduced to the integrations of Newton’s equations
of motion for all particles:

mpẍp
i = f p

i (1)

wheremp is the mass of particlep andxp
i the location of

particlep. In this paper two types of forces are introduced,
interaction forces between particles and background damp-
ing. So Newton’s law is extended to:

mpẍp
i = ∑

q∈P
f pq
i − γbẋp

i (2)

with P the collection of all particles,f pq
i the force due to the

interaction between particlep andq andγb the background
friction. The background damping is added to prevent the
system from reaching a steady state, where all particles have
a velocity, but there is no change in the interaction forces.

2.2 Interaction Model

Consider two particles at locationsxp
i andxq

i respectively.
The vector connecting the two particles is called the branch
vector: (see Fig 1)

lpq
i = xq

i − xp
i (3)

The two particlesp andq interact only if they are in contact,
so that their overlap:

∆ pq = (rp + rq)−|lpq| (4)
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Fig. 1 Two particles in contact

(a) Isotropic compression (b) Pure Shear

Fig. 2 The two deformation modes

is positive. In this case the Particles exert a force on each
other. This force consist of the terms. The first term is pro-
portional to the overlap and is used to model particle defor-
mation. The second term is proportional to the relative ve-
locity and is used to model the loss of energy due to particle
deformations.

f pq
i =

{

−
(

k∆ pq + γp∆̇ pq
)

npq
i if ∆ pq > 0

0 otherwise
(5)

with k the spring constant,γp the particle-particle friction
andnpq

i the unit normal pointing from particlep to particle
q. Also the contact pair is added to the list of all contactsC.

2.3 Model system

The experiment used in this research is the biaxial box set-
up. All boundary conditions are periodic to avoid boundary
effects. In a typical simulation the distance between the pe-
riodic boundaries is changed to simulate compression or ex-
pansion. This deformation is performed slowly according to
a half cosine function, in order to avoid shocks and inertia
effects. Moreover two main deformation modes are used, the
isotropic compression (Fig 2(a)), where all boundaries have
the same relative motion (εxx = εyy) and the pure shear (Fig
2(b)), where the volume of the sample is kept constant, while
the boundaries are moved in opposite direction (εxx =−εyy).

Table 1 Simulation parameters

Parameter Value Explanation

k 10000 Nm−1 Contact stiffness
γb 0.0294 Nsm−1 Background friction
γw 10.0 Nsm−1 Wall friction
γp 0.2938 Nsm−1 Inter particle friction
p0 100 Nm−1 Initial pressure
ρ 20 kgm−2 Particle density

2.4 Parameters

The parameters used in this study are shown in table 1. Ini-
tial conditions are generated using 1000 particles with radii
rp randomly drawn from a homogeneous distribution be-
tweenrmin = 3.7·10−3 m andrmax =7.4·10−3 m. Resulting
in a two-particle eigenfrequency of 4.8 s−1 for the smallest
particles. The time step used in the Verlet algorithm is cho-
sen as a fiftieth of the half period vibration time:

∆ t =
π

50
√

k
m

≈ 1.3 ·10−5 s (6)

The inter particle friction is chosen such that the coefficient
of restitution for the smallest particles equals 0.8. The back-
ground damping is chosen to be an order of magnitude smaller
then the inter particle friction to achieve rapid equilibration,
without have to much influence on the stresses.

2.5 Initial configuration

Initially, the particles are randomly distributed in a huge
box. Then the box is compressed where the movement of
the two walls is dependent on the stress in the domain.

mwL̈x =−γwL̇x +
(

σxx − p0)Ly (7)

mwL̈y =−γwL̇y +
(

σyy − p0)Lx (8)

Because of the three different methods of damping available
in the system (particle-particle damping, background damp-
ing and wall damping), the system will relax to a steady
isotropic situation.

3 Constitutive Model

In this section a short overview of the used constitutive model
is given. For more information the reader is referred to the
work of Magnanimo and Luding [1, 2]. The model starts
from the incremental Hooke’s Law:

δσi j =Ci jklδεkl (9)
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Whenever the major and minor symmetries of the stiffness
tensorC are considered, the system can be rewritten into (for
2D systems):




δσ11

δσ22

δσ12



=





C1111 C1122 C1112

C1122 C2222 C1222

C1112 C1222 C1212









δε11

δε22

δε12



 (10)

However in the bi-axial geometry with periodic boundary
conditions, the stress and strain tensor only have diagonal
components:
[

δσ11

δσ22

]

=

[

C1111 C1122

C1122 C2222

][

δε11

δε22

]

(11)

Now the stresses and strains can be decomposed into an
(isotropic) volumetric and a (pure shear) deviatoric part (¯̄ε =
¯̄εV + ¯̄εD and ¯̄σ = ¯̄σV + ¯̄σD), with:

¯̄εV =
(

εxx+εyy
2

)

[

1 0
0 1

]

= εv

[

1 0
0 1

]

¯̄σV =
(

σxx+σyy
2

)

[

1 0
0 1

]

= σ v

[

1 0
0 1

] (12)

¯̄εD = ¯̄ε − ¯̄εV = γ
[

1 0
0 −1

]

=
(

εxx−εyy
2

)

[

1 0
0 −1

]

¯̄σD = ¯̄σ − ¯̄σV = τ
[

1 0
0 −1

]

=
(

σxx−σyy
2

)

[

1 0
0 −1

] (13)

Leading to:
[

δσ v

δτ

]

=

[

2B A
A 2G

][

δεv

δγ

]

(14)

Where the bulk modulesB, the shear modulusG and the
anisotropyA are defined as:

B =
C1111+C2222+2C1122

4
(15)

A =
C1111−C2222

2
(16)

G =
C1111+C2222−2C1122

4
(17)

Two small modifications to the standard model are made, a
non-linear stress evolution and a varying anisotropy, which
are both explained in the following sections.

3.1 Non-linear stress evolution

The first modification is a non-linear stress evolution. From
DEM simulations it is observed that for increasing shear
strains, the stress increments decrease until the stress sat-
urates in the critical state regime. This is modeled by multi-
plying the incremental shear strain with the stress anisotropy
S:
[

δσh

δτ

]

=

[

2B A
A 2G

][

δεv

Sδγ

]

(18)

Where the stress anisotropy is defined as:

S = 1−
τ

σh

sign(δγ)
sd

max
(19)

Wheresd
max =

(

τ
σ h

)

max
is the absolute maximum allowable

deviatoric stress ratio in the material.

3.2 Varying anisotropy

The second modification is to assume a non constant anisotropy
A, but one who is described by an evolution equation depen-
dent on the shear stress:

dA
dγ

=−βAΦ (Amax + sign(δγ)A) (20)

With Amax the absolute maximum allowable anisotropy in
the material andβs a parameter that determines how fast
the anisotropy changes and thus how fast saturation is ap-
proached. The importance of the parameterΦ is still an
ongoing investigation, several arguments exist for setting it
equal toS as well as for leaving it to 1. In this paper is is
set to 1 everywhere. Ifδγ does not change sign, equation 20
can be solved analytically:

A =−sign(δγ)Amax

(

1− e−βA|γ|
)

+ e−βA|γ|A0 (21)

With A0 the initial anisotropy.

4 Results

From the simulation data fabric, stresses and stiffnesses are
calculated using:

σi j =
k

LxLy
∑
c∈C

∆ c
i lc

j (22)

Ci jkl =
k

LxLy
∑
c∈C

(

rcp1
+ rcp2

)

lc
i nc

jn
c
knc

l (23)

WhereC is the collection of all contacts andp1 andp2 are
the two interaction particles.

4.1 Isotropic compression

The results of simulations on isotropic compression are dis-
played in Fig. 3. The volumetric stress scales linear with
the volumetric strain, which allows us to calculate the bulk
modulesB used in the model from the slope of the curve
(2B = 10421 N/m). The shear stress remains roughly con-
stant during the compression, indicating an initial isotropic
situation (A = 0 andS = 1). Some small deviations from
zero shear stress are observed due to non-affine motion of
the particles.
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Fig. 3 Volumetric and shear stress as a function of volumetric strain for
the isotropic compression simulations. The red line is a typical single
simulation result, the thick black line the average of 100 realizations,
and the thin black lines the average plus or minus the standard devia-
tion. The volumetric stress (top figure) is in this case a linear function
of the volumetric strain with a slope of 2B = 10421 N/m, whereas the
shear stress (bottom figure) stays almost constant at 0 N/M

4.2 Pure Shear

The results of simulations on pure shear are visible in Fig.
4. A decrease in deviatoric stress is visible, until the system
reaches the critical regime at a deviatoric strain of approx-
imately γ = 0.03 and a stress level ofτ = −8 N/m indi-
cating that the maximum allowable deviatoric stress ratio in
the constitutive model should besd

max = 0.08. A zoom of the
results for small stress is visible in Fig. 5. From this pic-
ture we can obtain the initial slopes of both stresses. For the
volumetric stress this slope is zero, indicating an initially
isotropic material (just as from the isotropic compression
case). For the deviatoric stress this slope is equal to the term
2GS0 = 1193 N/m in the constitutive model, withS0 = 1.

The only two remaining parameters in the model are the
maximum anisotropyAmax and the parameterβA which de-
termines the growth rate of the anisotropy. An estimate of
these parameters can be obtained from looking at the evo-
lution of the stiffness during the shear deformation. This is
done by looking at the normalized anisotropy level:

A
2B

=
C1111−C2222

C1111+C2222+2C1212
(24)

A plot of this anisotropy is shown in Fig. 6. In this graph
the exponential behavior of the anisotropy becomes clear.
The green line shows an exponential fit to equation 21 with
Amax/2B = 0.026 andβA = 72.4.

Now all parameters are determined (see Table 2 for the
values) the model is able to predict the stress quite well as
can be seen in Fig. 7.
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Fig. 4 Volumetric and shear stress as a function of shear strain forthe
pure shear simulations (in this case horizontal compression and vertical
extension) . The red line is a typical single simulation result, the thick
black line the average of 100 realizations, and the thin black lines the
average plus or minus the standard deviation. The volumetric stress
(top figure) is roughly constant during the simulation, while the shear
stress (bottom figure) decreases quite rapidly initially and settles at a
level of−8 N/m. The dotted magenta line indicates the initial slope of
2G = 1193 N/m. (see also Fig. 5)
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Fig. 5 Zoom of figure 4 for small shear strain to show the initial slopes.
For the volumetric stress the slope isA ≈ 0 N/m and for the shear
stress the slope is 2GS = 1193 N/m
.

Table 2 Model parameters

Parameter Explanation Value

B Bulk modulus 5210 N/m
G Shear modulus 597 N/m
βA Anisotropy growth parameter 72.4
A0 Initial anisotropy 0
Amax Maximum anisotropy 271
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Fig. 6 Anisotropy divided by the bulk modulus as a function of shear
strain for the pure shear simulations. The red line is a typical result, the
thick black line the average of 100 realizations, the thin black lines the
average plus or minus the standard deviation and the green line is an
exponential fit to equation 21. The initial slope is indicated by the right
part of the magenta dashed line and equals− AmaxβA

2B = 1.88. The left
part of the line indicates the saturation level ofAmax/2B = 0.026.
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Fig. 7 The same as Fig. 4, only now the green line indicates the model
predictions. Good agreement is achieved for both stresses.

5 Conclusion

In this paper granular materials are simulated using normal
springs as the interaction model. Isotropic compression and
simple shear simulations are performed to obtain the param-
eters required for the constitutive model proposed by Lud-
ing et al. [1]. With these parameters the model is capable
of quantitatively reproducing the results obtained from the
simulations.

References

1. S. Luding and S. Perdahcioglu, A local constitutive modelwith
anisotropy for various homogeneous 2d biaxial deformationmodes,
CIT, , (2011)

2. V. Magnanimo and S. Luding, A local constitutive model with
anisotropy for ratcheting, , , (2011)


