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APiE Exercise – ordinary differential equations (ODE)

Exercise 1 (Ex.1–5 account for 2 points each; total 10 pts.)

The motion of a harmonic oscillator is described by the differential equation:

m
d2x(t)

dt2
= mẍ = −kx(t) (1)

where m is the mass, k is the spring-constant, x(t) is the position and d2x/dt2 is the second
time-derivative of x(t).
a) Get analytically the solution of Eq. (1) for initial conditions x0 = x(0) and v0 = ẋ(0) = v(0)
and plot it as function of time for x0 = 0m and v0 = 0.1m/s. What is the period T and the
frequency ω? For the plot use m = 1kg and k = 0.1N/m.
b) Now compute analytically the trajectory x(t) and then plot the kinetic, the potential, and
the total energy of the harmonic oscillator as function of time (together).
c) Modify mass m and/or spring-constant k and describe how T changes.

Exercise 2.

a) Solve Eq. (1) numerically using the Euler algorithm (as introduced in the course). Plot
solution and energies together with the analytical solution of the previous Exercise 1. Compare
them for different time-steps. Which time-step do you find satisfactory?
b) Solve Eq. (1) numerically using the Euler-Cromer algorithm as introduced in the course.
Plot solution and energies together with the analytical solution of the previous exercises 1. and
2.a) (use different colors). Compare them for different time-steps. Which time-step do you find
satisfactory for Euler-Cromer? in comparison to Euler?

Exercise 3.

In order to solve this differential equation numerically, you can use the so-called Verlet inte-
gration algorithm. It was derived in class, but we also show the steps here - repeat them for
yourself!

1. Write down the Taylor-series for x(t+∆t) and x(t−∆t) up to second order in time (terms
higher than ∆t2 are ignored).

2. Add x(t−∆t) to x(t+∆t) and rewrite the equation such that you have x(t+∆t) on the
left-hand side of the equation.

3. This scheme can now be used to compute the trajectory of the mass (with given x(t),
x(t−∆t), and acceleration d2x/dt2 = f(t)/m, with force f(t) = −kx(t)).
For the old position use the estimate: x(t−∆t) ≈ x(t)− v(t)∆t.
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4. Plot the old time-x-series and the new results, using the same amplitude, phase-angle =
0, m = 1, k = 0.1, ∆t = 0.1, and tmax = 200, x(0) = 0 and v(0) = 0.1.

5. How big is the error of the calculation? How do you quantify it? Or, with other words,
which time-step would you use to have a reasonably small error here? (define reasonable)

Plot also the total energy of the numeric harmonic oscillator as function of time. Plot separately
kinetic and potential energy. Describe the differences to the analytical solution.

Exercise 4

Add a damping force fd = −γv(t) to the spring-force and plot the new results for a γ such that
the motion is damped completely at t = 200. Which γ-value did you use?

Solve the new corresponding differential equation analytically first - and then compare it to
one of your numerical solution algorithms. How did the period change when you added the
damping force? Modify γ and describe how T changes with γ. Implement the damping force
in your Verlet numerical solution from exercise 3. Discuss the problems that occur.

Exercise 5

Solve the differential equation (1) with a built-in Matlab function of your choice and compare
to the previous examples/solutions – and answer the questions also for this integrator.

Which (power) class of error e have the different methods? (Definition: The error increases
with power α for time-step h such that e ∝ hα.)

Exercise 6 (Voluntary +3 points)

Generalize the spring-mass system by adding a driving force fd sin(ωdt) to the right hand side
of equation (1). Plot a ”Poincare-cut” for three different ωd (smaller, similar and larger than
ω) and fd (very small, small, and large) and describe your observations.

Derive the differential equation for a pendulum with a mass-less rigid rod that can swing around
a fixed point with a mass m at the other end. Show the same plots as for the driven harmonic
oscillator and describe the differences.

Exercise 7 (Voluntary +2 points)

Generalize the spring-mass system to a linear chain of N masses as will be detailed in the
Lecture on Debugging and Efficient Programming.


