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The Discrete Particle Method

» Particles have position r;, velocity v;, angular velocity wj,
diameter d;, mass m;

» Governed by Newtonian mechanics:

d?r;
ml dt2’ = fI)
dw;
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dt
» Contact forces and body forces:
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Coarse graining

Objective
Define continuous macroscopic fields such as mass density p,
velocity V, stress o, based on particle data {r;, v;, m;, f;, ... ,’-V:l.

The fields should satisfy mass and momentum balance exactly.

Example: A static system of 5 fixed and 5 free particles.




Coarse graining: density p and mass balance

A) We define the macro-density using a coarse-graining function ¢,

p(r) =Y " mid(r—r,).



Coarse graining: density p and mass balance

A) We define the macro-density using a coarse-graining function ¢,

p(r) =Y " mid(r—r,).

B) We define the velocity s.t. mass balance,

0p
a—i—V'(pV):O,

is satisfied:

n
v = %, where p = Z mivib(r —r;).
i=1



Coarse graining: momentum balance

C) We define stress o and boundary interaction force density t
such that momentum balance,

0
%+V~(puu):—V~o+pg+t,

is satisfied (t can be modelled as a boundary condition):
n
o =— Z,-Zl mivivid(r —r;),
1
o= Zcontacts {ij} fUrUJO (I)(I‘ (I', + SI'U)) ds

1
N Zwall contacts {i,k} fikbik JO d)(r - (I‘,‘ + Sbik)) dS,

P Z fad(r—cy), branch vector bjx = r; — cj
wall contacts {i,k}

Weinhart, Thornton, Luding, Bokhove, GranMat (2012) 14:289



A static system of 5 fixed and 5 free particles.
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Density p for Gaussian coarse-graining function of width w = d/8.

4

“.Q

0

=

-

Y

11

» % %

Magnitude of stress |o|, and boundary interaction force |t|s.



Satisfying mass and momentum balance

» Mass balance in a static system is trivial.



Satisfying mass and momentum balance

» Mass balance in a static system is trivial.
» Satisfying the momentum balance in a static system requires

V-o=t+pg.
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Magnitudes of stress divergence |V - oy (left), boundary interaction
force density |t|o (centre), and weight density |pg| (right).

Important result

Mass/mom. bal. is satisfied locally for any coarse-graining function.



How do we define stress and interspecies drag in
mixtures?
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bidisperse mixture of small and large particles
from Marks, Einav, Rognon, Geomat. Proc., (2011)



Coarse graining in mixtures

For both species v = s, /, we define

> partial densities p¥= > mp(r —

ieFv

» partial momenta pYv" Zm vid
ieFY

r;), so p=p' + p°.

5o pv=p'v!/ + psvS



Coarse graining in mixtures

For both species v = s, /, we define
» partial densities p¥= Z mib(r—1,), so p=p +p°.
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» partial momenta pYv" Zm vid(r . so pv=p/v! + p°v?
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> partial stresses 0©V= Z ZfUI)UJ (r —r;+ sbj) ds, so
ieFY jeF
— ! s
=0 +07,

» interspecies drag p/ = —B°— Z Z fid(r—cj)

ieF! jeF?



Coarse graining in mixtures

For both species v = s, /, we define
» partial densities p¥= Z mib(r—1,), so p=p +p°.
ieFYy
» partial momenta pYv" Zm vid(r . so pv=p/v! + p°v?
ieFY

> partial stresses oV Z Zf,JbUJ b(r —r; + sbj) ds, so
i€eFY jeF
o =o'+ o,
> interspecies drag ' = —p°= Z Z fid(r—cy)
ieF!jeF*
Then mass and momentum equations are satisfied:

op”
_— :0
S+ V- (V) =0,
DvY
vV Vo' tp'g+pBY, v=s,l.

Dt



A static system of 10 small and 5 large particles.
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Magnitude of small and large phase stress |c°|, |&’| (left, centre)
and interspecies drag |B'| (right), w = ds/8.



Kinetic Sieving
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Figure from Marks, Einav, Rognon, Geomat. Proc., (2011)

» Discrete Description: small particles fall easier through holes

» Continuum description: Large particle phase supports more
downward stress than small particles phase (“overstress”):



Segregation equation

We define
. . 1
» large particle volume fraction ¢/ = % and
ol

» large particle stress fraction f/ = &
zz

and describe the overstress by

fl'=¢'+Bp°dp!', B>0.

Gray Thornton, Proc Royal Soc A (2005)



Segregation equation

We define
. . 1
» large particle volume fraction ¢/ = % and

!
> large particle stress fraction f' = =,
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We further assume a drag law, with drag coefficient c,
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Segregation equation

We define
. . 1
» large particle volume fraction ¢/ = % and

. . /
> large particle stress fraction f/ = 2=,
zz

and describe the overstress by
fl=¢'+Bo°¢', B>0.
We further assume a drag law, with drag coefficient c,
BY =0V —p'c(u¥ —u),
Then momentum balance for shallow flow yields
(W —w) =q¢°,  (w*—w) =—qd/,

with segregation velocity

B
qg = —gcosb.
c

Gray Thornton, Proc Royal Soc A (2005)



Segregating flow in a periodic box

Simulation snapshot at t = 100s for 8 = 24°, ¢! = 0.5, d;/ds = 1.5.
Colors indicate fixed (black), large (green) and small (red) particles.
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Observation

Segregation kinetics are much slower than equilibration.



fl/

Figure : Stress fraction f¥ = 0),/0,, in steady state as a function of
volume fraction ¢¥ = p"/p, for each constituent v = s, / and fit £/t for
B =0.02, w = d;.

Observation

f/' > &', as required for gravity-driven segregation.
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Figure : Stress fraction f¥ = 0),/0,, in steady state as a function of

volume fraction ¢¥ = p"/p, for each constituent v = s, / and fit £/t for
B =0.02, w = d;.

Observation

f/' > &', as required for gravity-driven segregation.



Overstress B
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Figure : Magnitude of overstress, B, over time t.
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Observation

Segregation velocity
(from  stress and
drag), g = (B/c)g:,
over time t.

Mean relative veloc-
ity of large phase,
w! — w, over time t.

Segregation kinetics can be measured accurately.
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Figure : Kinetic stress fraction f¥ = 0%V /0% in steady state as a
function of volume fraction ¢ = p“/p, for each constituent v =s,/ and
fit F1ft for B = —0.38.

Observation
fhkin < ¢! as required for shear-induced segreg. (Fan Hill 2011).



Conclusions

@ Coarse-graining formulation for mixtures allows measuring the
species’ stress fraction and the interspecies drag.

@ Segregation kinetics are much slower than equilibration.

© Large particles support a stress fraction (slightly) higher than
their volume fraction, as postulated for gravity-driven

segregation. Segregation velocity roughly follows the drag law
used in (Gray Thornton 2005).

@ Large particles support a fraction of the kinetic stress much
smaller than their volume fraction, as postulated in the
shear-induced segregation theory of (Fan Hill 2011).
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