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The Discrete Particle Method

I Particles have position ri , velocity vi , angular velocity ωi ,
diameter di , mass mi

I Governed by Newtonian mechanics:

mi
d2ri

dt2
= f i ,

Ii
dωi

dt
= ti

I Contact forces and body forces:

f i =
∑

j
f ij +migi ,

ti =
∑

j
bij × f ij

rj

ri

f ji

f ij

bij

vj

vi

ωj

ωi



Coarse graining

Objective

Define continuous macroscopic fields such as mass density ρ,
velocity V, stress σ, based on particle data {ri , vi , mi , f i , . . . }

N
i=1.

The fields should satisfy mass and momentum balance exactly.

Example: A static system of 5 fixed and 5 free particles.



Coarse graining: density ρ and mass balance

A) We define the macro-density using a coarse-graining function φ,

ρ(r) =
∑n

i=1
miφ(r− ri ).

B) We define the velocity s.t. mass balance,

∂ρ

∂t
+∇ · (ρv) = 0,

is satisfied:

v =
p

ρ
, where p =

n∑
i=1

miviφ(r− ri ).
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Coarse graining: momentum balance

C) We define stress σ and boundary interaction force density t
such that momentum balance,

∂ρu

∂t
+∇ · (ρuu) = −∇ · σ+ ρg + t,

is satisfied (t can be modelled as a boundary condition):

σk = −
∑n

i=1
miv

′
iv

′
iφ(r− ri ),

σc = −
∑

contacts {i ,j}
f ijrij

∫1
0
φ(r− (ri + srij)) ds

−
∑

wall contacts {i ,k}
f ikbik

∫1
0
φ(r− (ri + sbik)) ds,

t = −
∑

wall contacts {i ,k}
f ikφ(r− cik),

6
branch vector bik = ri − cik

Weinhart, Thornton, Luding, Bokhove, GranMat (2012) 14:289



A static system of 5 fixed and 5 free particles.
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Density ρ for Gaussian coarse-graining function of width w = d/8.
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Magnitude of stress |σ|2 and boundary interaction force |t|2.



Satisfying mass and momentum balance

I Mass balance in a static system is trivial.

I Satisfying the momentum balance in a static system requires

∇ · σ = t+ ρg.
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Magnitudes of stress divergence |∇·σ|2 (left), boundary interaction
force density |t|2 (centre), and weight density |ρg| (right).

Important result

Mass/mom. bal. is satisfied locally for any coarse-graining function.



How do we define stress and interspecies drag in
mixtures?

bidisperse mixture of small and large particles
from Marks, Einav, Rognon, Geomat. Proc., (2011)



Coarse graining in mixtures

For both species ν = s, l , we define

I partial densities ρν=
∑

i∈Fν

miφ(r− ri ), so ρ = ρl + ρs .

I partial momenta ρνvν=
∑

i∈Fν

miviφ(r− ri ), so ρv=ρlvl + ρsvs,

I partial stresses σc,ν=
∑

i∈Fν

∑
j∈F

f ijbij

∫1
0

φ(r− ri + sbij) ds, so

σ = σl + σs ,

I interspecies drag βl = −βs=
∑
i∈F l

∑
j∈F s

f ijφ(r− cij).

Then mass and momentum equations are satisfied:

∂ρν

∂t
+∇ · (ρνvν) = 0,

ρν
Dvν

Dt
= −∇σν + ρνg + βν, ν = s, l .
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A static system of 10 small and 5 large particles.

|σs|2 |σl|2 |βl|2

3

Magnitude of small and large phase stress |σs |, |σl | (left, centre)
and interspecies drag |βl | (right), w = ds/8.



Kinetic Sieving

Figure from Marks, Einav, Rognon, Geomat. Proc., (2011)

I Discrete Description: small particles fall easier through holes

I Continuum description: Large particle phase supports more
downward stress than small particles phase (“overstress”):

f l =
σl

zz

σzz
> φl =

ρl

ρ

.



Segregation equation

We define
I large particle volume fraction φl = ρl

ρ and

I large particle stress fraction f l = σl
zz
σzz

,

and describe the overstress by

f l = φl + Bφsφl , B > 0.

We further assume a drag law, with drag coefficient c ,

βν = σ∇f ν − ρνc(uν − u),

Then momentum balance for shallow flow yields

(w l − w) = qφs , (w s − w) = −qφl ,

with segregation velocity

q =
B

c
g cos θ.

Gray Thornton, Proc Royal Soc A (2005)
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Segregating flow in a periodic box
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Simulation snapshot at t = 100 s for θ = 24◦, φl = 0.5, dl/ds = 1.5.
Colors indicate fixed (black), large (green) and small (red) particles.



Time (s)

C
O

M
sm

a
ll
/C

O
M

la
rg

e

K
in

et
ic

E
n
er

gy
(J

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0.3

0.35

0.4

0.45

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

11000

12000

13000

14000

Figure 3.3: Developing segregation and kinetic energy profiles

In figure 3.3 both the kinetic energy and the ratio between the centre-of-mass of the large
and small phases are graphed for the first 4000 seconds of a developing flow. Note that the ratio
COMsmall

COMlarge
= 1/3 for perfectly, inversely segregated flow, which is approximately the case for

t = 0. As time progresses the mixing (diffusion) continues as the ratio of the centre of masses
increases (small particles going up, large particles going down). We also note that the kinetic
energy converges to the steady regime much faster than the segregation, which raises the question
whether we actually need to wait for the segregation profile to become steady. This will be further
assessed in section 4.1.1.

Another important timescale effect can be seen in figure 3.4. In this figure we see the total
kinetic energy of a flow with 4,000 large particles (so 12,000 particles in total) which was initially
flowing at a 20-degree chute angle. At t=0 the chute-angle is decreased to θ = 19◦, and we can see
the flow slowing down and going into another steady flowing state. However, the flow suddenly
arrests at t=650s.
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Figure 3.4: Flow approaching metastable state suddenly arrests

This tells us that we have to pick our simulation timescales carefully, seemingly steady flow
might arrest when simulated long enough. Due to the nature of the hstop -algorithm however this
is not likely to be a problem, since the simulation is always continued from the last flowing state.

3.1.4 Mixed contact properties

In 2.5.2 we derived relations for the contact properties for contacts between particles of the two
different species. As stated however the definition of these mixed properties is not unique, and
based on a (natural but arbitrary) geometrical argument. Therefore we would like to investigate
the sensitivity of the obtained results to this mixed contact properties. In this section we will
set-up simulations to compare the influence of this contact properties to the influence of the initial
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Kin. energy and COM over time (initially inversely segregated)

Observation

Segregation kinetics are much slower than equilibration.
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Figure : Stress fraction f ν = σνzz/σzz in steady state as a function of
volume fraction φν = ρν/ρ, for each constituent ν = s, l and fit f l,fit for
B = 0.02, w = ds .

Observation

f l > φl , as required for gravity-driven segregation.
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Figure : Stress fraction f ν = σνzz/σzz in steady state as a function of
volume fraction φν = ρν/ρ, for each constituent ν = s, l and fit f l,fit for
B = 0.02, w = ds .

Observation

f l > φl , as required for gravity-driven segregation.



Overstress B
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Figure : Magnitude of overstress, B, over time t.
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over time t.
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Observation

Segregation kinetics can be measured accurately.
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Figure : Kinetic stress fraction f ν = σk,ν
zz /σ

k
zz in steady state as a

function of volume fraction φν = ρν/ρ, for each constituent ν = s, l and
fit f l,fit for B = −0.38.

Observation

f l ,kin < φl , as required for shear-induced segreg. (Fan Hill 2011).



Conclusions

1 Coarse-graining formulation for mixtures allows measuring the
species’ stress fraction and the interspecies drag.

2 Segregation kinetics are much slower than equilibration.

3 Large particles support a stress fraction (slightly) higher than
their volume fraction, as postulated for gravity-driven
segregation. Segregation velocity roughly follows the drag law
used in (Gray Thornton 2005).

4 Large particles support a fraction of the kinetic stress much
smaller than their volume fraction, as postulated in the
shear-induced segregation theory of (Fan Hill 2011).
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