Stochastic approach to non-affine deformations in jammed granular packing

K. Saitoh, V. Magnanimo, and S. Luding UT

Aim

"Bridging the gap between particulate systems and continuum theory" - Vici project, No. 10828

Non-affine responses of granular assemblies to global deformations

Background

Jamming - analogy with critical phenomena

the 1st order like

the 2nd order like

Ф

Granular particles are out of equilibrium due to the dissipation of energy and absence of temperature

[O'Hern, L. E. Silbert, A. J. Liu, and S. R. Nagel, PRE 68 (2003) 011306]

Statistical mechanics

Edward's ensembles, force ensembles, etc.

[Edwards & Oakeshott (1989), Henkes & Chakraborty (2009), Tighe, Snoeijer, et. al. (2010)]

Statistical weight, i.e. probability distribution functions (PDFs) of forces

We take a different approach to the "granular statistical mechanics" to describe the PDFs under global deformations.

Method

Molecular dynamics simulations

Binary mixtures of 2D frictionless particles (50:50) filled in a square periodic box

Contact force Global damping $\mathbf{f}_i = -\eta \mathbf{v}_i$

 $f_{ij} = -kx_{ij} - \eta \dot{x}_{ij}$

System size & samples

N=512, 2048, and 8192 (10 samples), and N=32768 (2 samples)

Static packings

We adjust the diameters by controlling the mean overlap over all particles $x_{\rm m}$ *unjammed* $x_{\rm m} = 0$ jammed $x_{\rm m} > 0$

Non-affine response

Isotropic compression

Rescaling every radius

$$R_i \rightarrow \sqrt{1 + \frac{\delta \phi}{\phi}} R_i$$
$$\phi \rightarrow \phi + \delta \phi$$

Affine response (immediately after compression)

 $x^{\text{affine}}(\phi + \delta\phi) = x(\phi) + (d/2\phi)\delta\phi$

Non-affine response (after relaxation)

 $x(\phi + \delta \phi) \neq x^{\text{affine}}(\phi + \delta \phi)$

PDFs of overlaps

Microscopic insights

Before compression

After relaxation

Power law scaling

Mean

Excess slope

Offsets

 $\overline{\psi}_{1}(\xi) = (a_{1}+1)\xi + b_{1}$ $a_{1} = A_{1}\gamma$ $b_{1}, \quad b_{2} \sim \gamma$

 $v_1, v_2 \sim \gamma$

Standard deviations

Degree of non-affinity increases with γ

Stochastic approach

Affine response => **deterministic**

Non-affine response => stochastic

Conditional probability distribution

$$P_{\phi+\delta\phi}(\psi) = \int_{-\infty}^{\infty} W(\psi \mid \xi) P_{\phi}(\xi) d\xi$$

Transition rate $T(\psi \mid \xi) = W(\psi \mid \xi) / \delta \phi$

Master equation

$$\frac{\partial}{\partial \phi} P_{\phi}(\psi) = \int_{-\infty}^{\infty} \left[T(\psi \mid \xi) P_{\phi}(\xi) - T(\xi \mid \psi) P_{\phi}(\psi) \right] d\xi$$

Conditional probability distributions

Master equation

Moments

The n-th "moment"

$$M_n = \int_0^\infty x^n P_\phi(x) \, dx$$

coordination number

 $z \propto M_0$

mean overlap

$$x_{\rm m} \propto M_1$$

static pressure $p \propto \sigma M_1 - M_2$

Applications

Stochastic model

The distribution of the noise is a Gaussian, i.e. white noise, with the width $V_1 \delta \phi$

The Fokker-Planck equation

$$\frac{\partial}{\partial \phi} P_{\phi}(x) = \frac{\left(A_{\rm m}V_{\rm 1}\right)^2}{2} \frac{\partial^2}{\partial x^2} P_{\phi}(x) - \frac{\partial}{\partial x} \left[\alpha(x)P_{\phi}(x)\right]$$
$$\alpha(x) \equiv \frac{A_{\rm 1}}{\phi - \phi_J} x + (1 - A_{\rm 1})A_{\rm m}$$

Fokker-Planck equation

Numerical solutions

Boundary condition

10⁶ 1.5 10 10⁵ 10⁴ 0.1 $P_{\phi}(0)$ PDF10³ 0.01 $P_{\phi}(0) = \frac{\mu e^{-(\phi - \phi_J)/\nu}}{\mu}$ 10² 0.001 0.5 15 20 5 10 10¹ $\phi - \phi_I$ 10⁰ 0 10⁻⁵ 10⁻³ 10⁻² 10⁻¹ 10⁻⁶ 10⁻⁴ 2 0 6 8 10 - ϕ_c scaled overlap Φ

Initial conditionthe PDF with $\phi_0 - \phi_J = 4.0 \times 10^{-3}$ Increment of area fraction $\delta \phi = 10^{-5}$

Summary

- ✓ We take a *stochastic approach* to the non-affine responses of overlaps.
- ✓ The degree of *non-affinity* is linearly scaled by the ratio $\gamma = \frac{\delta \phi}{\phi \phi_T}$
- ✓ *Conditional probability distributions* of overlaps are measured.
- ✓ The master equation well describes the PDFs under (de)compressions.
- ✓ We propose a *stochastic model* for a single overlap.
- ✓ The Fokker-Planck equation also works well.

