UNIVERSITY OF TWENTE.

From micro to macro in granular matter

Thomas Weinhart, A.R. Thornton, O. Bokhove, S. Luding University of Twente April 2, 2013

Grains in nature and industry

Rotating blast-furnace chute

D Tunuguntla, O Bokhove (Chorus)

Vending machine canister K Imole (PARDEM)

- The Discrete Particle Method (DPM)
- 2 The coarse graining method

3 Micro-Macro transition for free surface flows

4 Conclusions and future work

- Particles have position r
 _i, velocity v
 _i, angular velocity w
 _i, diameter d_i, mass m_i
- Governed by Newtonian mechanics:

$$m_i \frac{d^2 \vec{r}_i}{dt^2} = \vec{f}_i, \quad I_i \frac{d \vec{\omega}_i}{dt} = \vec{t}_i$$

Contact forces and body forces:

$$\vec{f}_i = \sum_j \vec{f}_{ij} + m_i \vec{g}_i, \ \ \vec{t}_i = \sum_j \vec{b}_{ij} \times \vec{f}_{ij}$$

Objective

Define macroscopic fields such as mass density ρ , velocity \vec{V} , stress σ , ... based on particle data (\vec{r}_i , \vec{v}_i , m_i , \vec{f}_i , ...).

The fields should satisfy mass and momentum balance exactly.

Example: A static system of 5 fixed and 5 free particles.

A) We define the macro-density using a coarse-graining function ϕ ,

$$\rho(\vec{r}) = \sum_{i=1}^{n} m_i \phi(\vec{r} - \vec{r}_i).$$

A) We define the macro-density using a coarse-graining function ϕ ,

$$\rho(\vec{r}) = \sum_{i=1}^{n} m_i \phi(\vec{r} - \vec{r}_i).$$

B) We define the velocity s.t. mass balance,

$$\frac{\partial \rho}{\partial t} + \nabla \cdot (\rho \vec{V}) = 0,$$

is satisfied:

$$ec{V}=rac{ec{p}}{
ho}, ext{ where } ec{p}=\sum_{i=1}^n m_iec{v}_i \varphi(ec{r}-ec{r}_i).$$

Coarse graining: momentum balance

C) We define the stress s.t. momentum balance,

$$ho rac{D \, ec{V}}{D t} = -
abla \cdot oldsymbol{\sigma} + ec{t} +
ho ec{g},$$

is satisfied:

$$\begin{split} \sigma^{k} &= -\sum_{i=1}^{n} m_{i} \vec{v}_{i}' \vec{v}_{i}' \varphi(\vec{r} - \vec{r}_{i}), \\ \sigma^{c} &= -\sum_{\text{contacts } \{i,j\}} \vec{f}_{ij} \vec{r}_{ij} \int_{0}^{1} \varphi(\vec{r} - (\vec{r}_{i} + s \vec{r}_{ij})) \, ds \\ &- \sum_{\text{wall contacts } \{i,k\}} \vec{f}_{ik} \vec{b}_{ik} \int_{0}^{1} \varphi(\vec{r} - (\vec{r}_{i} + s \vec{b}_{ik})) \, ds, \\ \vec{t} &= -\sum_{\text{wall contacts } \{i,k\}} \vec{f}_{ik} \varphi(\vec{r} - \vec{c}_{ik}), \end{split}$$

with boundary interaction force density \vec{t} .

Weinhart, Thornton, Luding, Bokhove, GranMat (2012) 14:289

A static system of 5 fixed and 5 free particles.

Density ρ for 2D-Gaussian CG function of width w = d/8.

Magnitude of stress $|\sigma|_2$ and boundary interaction force $|\vec{t}|_2$.

Satisfying mass and momentum balance.

- Mass balance in a static system is trivial.
- Satisfying the momentum balance in a static system requires

$$\nabla \cdot \boldsymbol{\sigma} = \vec{t} + \rho \vec{g}.$$

Magnitudes of stress divergence $|\nabla \cdot \sigma|_2$ (left), boundary interaction force density $|\vec{t}|_2$ (centre), and weight density $|\rho \vec{g}|$ (right).

Satisfying mass and momentum balance.

- Mass balance in a static system is trivial.
- Satisfying the momentum balance in a static system requires

$$\nabla \cdot \boldsymbol{\sigma} = \vec{t} + \rho \vec{g}.$$

Magnitudes of stress divergence $|\nabla \cdot \sigma|_2$ (left), boundary interaction force density $|\vec{t}|_2$ (centre), and weight density $|\rho \vec{g}|$ (right).

Important result

Mass/mom. bal. is satisfied locally for any coarse-graining function.

- open source: www2.msm.ctw.utwente.nl/athornton/MD/
- ► svn repository: allows shared development and easy upgrading

- open source: www2.msm.ctw.utwente.nl/athornton/MD/
- ► svn repository: allows shared development and easy upgrading
- live statistics for simulations in MercuryDPM
- ► post-processed statistics for MercuryDPM and other codes
- easy loading into MATLAB data structure for post-processing

- open source: www2.msm.ctw.utwente.nl/athornton/MD/
- ► svn repository: allows shared development and easy upgrading
- live statistics for simulations in MercuryDPM
- ► post-processed statistics for MercuryDPM and other codes
- easy loading into MATLAB data structure for post-processing
- exact mass and momentum conservation, even at boundaries
- exact spatial and temporal averaging, radial averaging

- open source: www2.msm.ctw.utwente.nl/athornton/MD/
- ► svn repository: allows shared development and easy upgrading
- live statistics for simulations in MercuryDPM
- ► post-processed statistics for MercuryDPM and other codes
- easy loading into MATLAB data structure for post-processing
- exact mass and momentum conservation, even at boundaries
- exact spatial and temporal averaging, radial averaging
- ▶ many CG-functions: Gaussian, Heaviside, Polynomials (Lucy)
- many fields: temperature, displacement, fabric tensor, mixture drag, rotational dof, ...
- * Grey items will be available in the next release

Glass particles flowing through a contraction

from: Vreman et al., J. Fluid Mech. 578 (2007) 233-269

Free-surface flows: B) impingement on inclined plane

Sand particles impacting an inclined plane

from: Johnson, Gray, JFM 675 (2011) 87

The granular shallow-layer equations

Depth- and width-averaged mass/mom. balance for shallow flow:

$$\frac{\partial h}{\partial t} + \frac{\partial h \bar{u}}{\partial x} = 0,$$
$$\frac{\partial}{\partial t} (h\bar{u}) + \frac{\partial}{\partial x} \left(h\alpha \bar{u}^2 + \frac{\kappa}{2} gh^2 \cos \theta \right) = gh(\sin \theta - \mu \frac{\bar{u}}{|\bar{u}|} \cos \theta),$$

Closure relations are required for velocity shape factor $\alpha = \frac{u^2}{\bar{u}^2}$, normal stress ratio $\mathcal{K} = \frac{\bar{\sigma}_{xx}}{\bar{\sigma}_{zz}}$, and bed friction $\mu = \frac{|t_t|}{|t_n|}$ at z = b.

Objective

Find closure relations $\mu(h, \bar{u})$, $\alpha(h, \bar{u})$ and $K(h, \bar{u})$ using small DPM simulations of steady uniform flow.

DPM of steady uniform chute flow over fixed-particle base, periodic in x- and y-direction, varying inclination θ and particle number N.

Parameters of the DPM

- ▶ Scaled s.t. diameter d = 1, mass m = 1, gravity g = 1.
- ► Linear elastic, dissipative and frictional contact forces:

$$\vec{f}_{ij} = f_{ij}^{n}\vec{n} + f_{ij}^{t}\vec{t},$$

$$f_{ij}^{n} = -k_{n}\delta_{ij} - \gamma_{n}v_{ij}^{n},$$

$$f_{ij}^{t} = -min(|k_{t}\vec{\delta}_{ij}^{t} + \gamma_{t}\vec{v}_{ij}^{t}|, \mu_{c}f_{ij}^{n}),$$

- Collision time $t_c = 0.005\sqrt{d/g}$, restitution r = 0.88, friction $\mu_c = 0.5$.
- Integration (Velocity-Verlet) until $t = 2000\sqrt{d/g}$.

UNIVERSITY OF TWENTE.

Demarkation line $h_{stop}(\theta)$ between arrested and steady flow, fit to $h_{stop}(\theta) = Ad \frac{\tan(\theta_2) - \tan(\theta)}{\tan(\theta) - \tan(\theta_1)}$.

fit according to Pouliquen, Forterre, JFM, 2002

Choosing the right coarse-graining scale

- \Rightarrow the larger w, the less fluctuations
- \Rightarrow the larger w, the more artificial smoothing.

Weinhart, Hartkamp, Thornton, Luding, Phys. Fl. (2012), submitted

Choosing the right time-interval

⇒ the larger *T*, the less fluctuations ⇒ we choose T = 500.

Choosing the right coarse-graining scale

Volume fraction $\nu=\rho/\rho_{\text{p}}$ for varying w.

Two scale-independent ranges exist:

- sub-particle scale 0.005d < w < 0.1d (shows oscillations)
- particle scale 0.6d < w < d (only valid in bulk)

Here, we choose w = 0.1d.

Kinetic stress σ_{xx}^k and granular temp. T_g

▶ Kinetic stress is scale-dependent on the particle scale [1],

$$\sigma_{xx}^{k} = \sum_{i=1}^{N} m v_{ix}' v_{ix}' \mathcal{W}_{i} \text{ with } \vec{v}_{i}' = \vec{v}_{i} - \vec{V}(\vec{r})$$

The kinetic-theory definition is scale-independent,

$$\sigma_{xx}^{k\star} = \sum_{i=1}^{N} m v_{ix}^{\star} v_{ix}^{\star} \mathcal{W}_i \text{ with } \vec{v}_i^{\star} = \vec{v}_i - \vec{V}(\vec{r}_i).$$

• One can show $\sigma_{xx}^k - \rho \dot{\gamma}^2 \frac{w^2}{3} \approx \sigma_{xx}^{k\star}$.

[1] Glasser, Goldhirsch, Phys Fl. 13, 407 (2001)

Bagnold velocity profile in bulk, quadratic near base $(z < b h_{stop}(\theta)/h)$, linear near surface (z > h - 5).

Shape factor $\alpha(h, \theta) = \alpha(h, \tan^{-1}(\mu))$ from simulations (markers) and fit (lines).

Closure for the normal stress ratio and bed friction

- Normal stress ratio $K = \frac{\bar{\sigma}_{xx}}{\bar{\sigma}_{zz}} \approx 1.$
- Friction $\mu = -\frac{\sigma_{xz}}{\sigma_{zz}} = \tan \theta$.

Closure for the normal stress ratio and bed friction

- Normal stress ratio $K = \frac{\bar{\sigma}_{xx}}{\bar{\sigma}_{zz}} \approx 1.$
- Friction $\mu = -\frac{\sigma_{xz}}{\sigma_{zz}} = \tan \theta$.
- But note: Stress is slightly asymmetric, oscillating at the boundary, and anisotropic.*

^{*}see W, Hartkamp, Thornton, Luding, Phys. Fl. (2012) submitted

Closure for the bed friction $\mu = -\frac{\sigma_{xz}}{\sigma_{zz}}$

$$\mu(h,\bar{u}) = \tan(\theta_1) + (\tan(\theta_2) - \tan(\theta_1)) \left(1 + \frac{\beta}{Ad} \frac{h}{F + \gamma}\right)^{-1}.$$

We closed the granular shallow-layer equations,

$$\begin{split} \frac{\partial h}{\partial t} &= -\frac{\partial h \bar{u}}{\partial x},\\ \frac{\partial h \bar{u}}{\partial t} &= -\frac{\partial}{\partial x} \left(h \, \alpha(h, \bar{u}) \, \bar{u}^2 + \frac{K(h, \bar{u})}{2} g h^2 \cos \theta \right) \\ &+ g h(\sin \theta - \mu(h, \bar{u}) \frac{\bar{u}}{|\bar{u}|} \cos \theta), \end{split}$$

for a given set of microscopic and geometric parameters.

Objective

Study the dependence of the closure laws on the parameters M (the micro-macro transition).

Increasing basal roughness by increasing base particle diameter λ .

Dependence of the basal roughness

Friction increases with increasing base particle diameter λ .

Steady disordered flows fitted to $F = \beta \frac{h}{h_{stop}(\theta; \lambda = 1)} - \gamma$.

Conclusions 1/2

- Coarse-grained fields are defined s.t. mass and momentum balance holds exactly, even at external boundaries.
 - W, Thornton, Luding, Bokhove, From discrete particles to continuum fields near a boundary, Granular Matter (2012) 14:289

Conclusions 1/2

- Coarse-grained fields are defined s.t. mass and momentum balance holds exactly, even at external boundaries.
 - W, Thornton, Luding, Bokhove, *From discrete particles to continuum fields near a boundary*, Granular Matter (2012) 14:289
- Coarse-grained fields should be independent of CG width.
 For chute flows, two scales (sub-particle/particle) exist.
 Fluctuation velocity requires correction on particle scale.
 Objective description of stress tensor.
 - W, Hartkamp, Thornton, Luding, Coarse-grained local and objective continuum description of 3D granular flows, Phys. FI. (2012) submitted

Conclusions 1/2

- Coarse-grained fields are defined s.t. mass and momentum balance holds exactly, even at external boundaries.
 - W, Thornton, Luding, Bokhove, *From discrete particles to continuum fields near a boundary*, Granular Matter (2012) 14:289
- Coarse-grained fields should be independent of CG width.
 For chute flows, two scales (sub-particle/particle) exist.
 Fluctuation velocity requires correction on particle scale.
 Objective description of stress tensor.
 - W, Hartkamp, Thornton, Luding, Coarse-grained local and objective continuum description of 3D granular flows, Phys. FI. (2012) submitted
- Micro-macro transition: Closure relations extracted from DEM. Closure depends on particle/ contact properties.
 - W, Thornton, Luding, Bokhove, *Closure Relations for Shallow Granular Flows from Particle Simulations*, Granular Matter (2012) 14:531
 - Thornton, W, Luding, Bokhove, Frictional dependence of shallow granular flows from discrete particle simulations, EPJ (2012).

- CG applied to mixtures (bidispersed flows):
 - Thornton, A.R., W, Luding, S., Bokhove, O., Modeling of particle size segregation: Calibration using the discrete particle method, Int. J. Mod. Phys. C 23, 1240014 (2012)
 - W, Luding, S., Thornton, A.R., From discrete particles to continuum fields in mixtures, Powders & Grains 2013, Conference Proceedings (2013), submitted

CG applied to mixtures (bidispersed flows):

- Thornton, A.R., W, Luding, S., Bokhove, O., Modeling of particle size segregation: Calibration using the discrete particle method, Int. J. Mod. Phys. C 23, 1240014 (2012)
- W, Luding, S., Thornton, A.R., From discrete particles to continuum fields in mixtures, Powders & Grains 2013, Conference Proceedings (2013), submitted
- CG applied to molecular flows
 - R. Hartkamp, A. Ghosh, T. Weinhart and S. Luding, A study of the anisotropy of stress in a fluid confined in a nanochannel", J. Chem. Phys. 137, 044711 (2012) Download

Future Work

Validate contact model by comparing DPM to lab-scale experiments
 Validate closure laws by comparing FEM and DPM simulations

Where no closure rules are known (transient/boundary effects), a two-way multi-scale coupling is desired.

