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Project description

Two general approaches are used to model granular materials: microscopic, where information is taken from
individual particles, and macroscopic, where continuum fields are considered. In this project we apply and
compare both approaches to a driven granular system, consisting in a vertically shaken shallow box filled
with grains. This system presents many distinct inhomogeneous stable states as the energy injection,
geometry, grain properties and grains number are varied. Studying the stability of these states and the
transitions between them, from both a microscopic and macroscopic approach, may lead to a better
understanding of the out-of-equilibrium statistical physics behind complex granular systems. We also focus
on the development and comparison of a set of simulation tools, both microscopic (molecular dynamics) and
macroscopic (granular-hydrodynamics equations solver), to establish the limits and advantages of each
approach in different scenarios.

Recent papers

e Sudden chain energy transfer events in vibrated granular media
N Rivas, S Ponce, B Gallet, D Risso, R Soto, P Cordero, N Mujica
Physical Review Letters 106 (8), 88001

In a mixture of two species of grains of equal size but different mass, placed in a vertically vibrated shallow
box, there is spontaneous segregation. Once the system is at least partly segregated and clusters of the
heavy particles have formed, there are sudden peaks of the horizontal kinetic energy of the heavy particles,
that is otherwise small.

e Segregation in quasi-two-dimensional granular systems
N Rivas, P Cordero, D Risso, R Soto
New Journal of Physics 13, 055018

Segregation for two granular species is studied numerically in a vertically vibrated quasi-two-dimensional
(quasi-2D) box.

Recent talk
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SYSTEM GEOMETRY e e MM, Uniershy of Twons.

N hard spheres ~ Asin(wt)
I { fLY
I_X
Quasi-two-dimensional geometry:
L,=5
L, € (5,100)

Number of particles: F = N/LxLy = 12
Dimensionless speed: S = A?w?/gd e (XXX, XXX)
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L,=L, =5

Column

~ Asin(wt)

OUTLINE

+ Wide geometry: previous research
+ Decrease system length
+ Column geometry: low-frequency oscillations (LFOs)

+ Possible influence on wide system
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N hard spheres ~ Asin(wt)

SIMULATIONS

+ Event-driven simulations.

+ Perfect hard spheres.

+ Collisions given by ps, up, €N, €T
+ Solid boundary conditions.

+ Bi-parabolic sine interpolation.
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N hard spheres ~ Asin(wt)

SIMULATIONS

+ Event-driven simulations.
+ Perfect hard spheres.
+ Collisions given by ps, up, €N, €T

+ Solid boundary conditions.
+ Bi-parabolic sine interpolation. Binary, instantaneous, no overlap collisions.

N




STATE S “Low-frequency oscillations in vertically vibrated granular beds”
N. Rivas, MSM, University of Twente

E UNDULATIONS

* Color corresponds to kinetic energy
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E LEIDENFROST STATE

* Color corresponds to kinetic energy
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A
CONVECTIVE STATE

* Color corresponds to kinetic energy
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-. LEIDENFROST STATE?

* Color corresponds to kinetic energy
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FIELDS
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COLUMN: LFOs
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Solid region

Gaseous region: spring

I Moving bottom: A sin(wt)
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Mass conservation and Cauchy momentum equation:

Dp L
E+Q(V'U)—O

D S

p: Density

u: Velocity vector
o: Stress tensor
B: External forces
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p: Density
u: Velocity vector
o: Stress tensor

Considering a one-dimensional system, g: Gravity accel.
u=uv(zt), p=p(z1), s(t)
o , P
one obtains a simple momentum equation:
b(t)

pow = 0,0, — pg.
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p: Density

u: Velocity vector
o: Stress tensor
g: Gravity accel.

Integrating over the height:

S s(t)

pOyvdz = / 0,0,,dz — pgdz
b b p

S

b
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p: Density

u: Velocity vector

o: Stress tensor
Integrating over the height: g: Gravity accel.

g g g A: Forcing amplitude

w: Forcing frequency

S S S S(t)
pOyvdz = / 0,0,,dz - pgdz
b

b

Stress boundary conditions:

(6-2)._ =0.

Z=S

(G- 3)._, = p,A°w” cos(2wt)
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Using stress boundary conditions: p: Density
u: Velocity vector

o: Stress tensor

g: Gravity accel.

S S N
2 2 ) ; ;
/b porvdz + /b pgdz = pyAw” cos(2wt) 4o Forcing oquenoy
s(t)
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Using stress boundary conditions:

S S >y
/ poyudz + / pgdz = p,A*w” cos(2wt)
b b

We divide the system into two constant density regions:

pgf atvderpS/ Owwdz + g (/ pgdz+/ psdz)
b i b i

To eliminate the z dependency, we depth average:

f—%/bsfdz.

p: Density

u: Velocity vector

o: Stress tensor

g: Gravity accel.

A: Forcing amplitude
w: Forcing frequency
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Then, depth averaging:
pg0:(hy0y) + psOy(hsts) + g (pghy + pshs)

Assuming 0:hs = 0, and noticing that v, = v, = i,
we get:

P04 (i1) + pshst 4 gpgi 4+ gpshs = pyA%w? cos(2wt)

Disregarding non-lineal terms:

2, 2

. A
R I i tlhad cos(2wt) — g

Pshs pshs

p: Density

u: Velocity vector
o: Stress tensor
g: Gravity accel.
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Forced harmonic oscillator: p: Density
u: Velocity vector
42,2 o: Stregs tensor
i gpg i — Pg COS(th) _g g: Gravity accel.

pshs Pshs
Solution given by:
. Fo .
z(t) = Asin(wot) + B cos(wot) + —5—— sin(wyt)

With A and B given by initial conditions, and:

wg = 9P/ pshs Fy = pgA%w?/psh
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A
CONVECTIVE STATE

* Color corresponds to kinetic energy
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LFOs IN TRANSITION oY ORI S, Universiy of Twents

Fields time correlation:
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+ Vertically driven granular matter in density inverted states present

low-frequency oscillations (LFOs).

+ LFOs are inherent to driven continuum systems in density inverted states.

+ LFOs may play a determinant role in the Leidenfrost to convection transition.
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+ Expand the model:
- Scaling should give limit of one-dimensional approximation.
- Include non-lineal terms.
- Consider a coupled oscillators system.

+ Study further the role of LFOs in wider systems.

+ Is it possible to observe LFOs in fluids?

+ Experiments!



