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Project aim

The gap between discrete (micro) and continuum (macro) concepts for the mod-
elling and understanding of particulate systems is bridged by micro-macro tran-
sition methods. Modern discrete particle-based models describe the particles
in detail, but are of limited value for studying industrial processes and nat-
ural phenomena since too many particles are involved. Continuum methods,
on the other hand, are readily applied in engineering applications. However,
continuum methods rely on empirical constitutive laws with phenomenological
parameters that disregard both the discrete nature of particles and the micro-
structure. Micro-macro transition methods are being developed to combine the
advantages of discrete and continuum models.

Progress

A novel local constitutive model based on observations from discrete element
simulations has been developed for small-scale deformations of a quasi steady
bi-axial geometry. The model consists of non-linear evolution equations for
both shear stress and anisotropy, where the anisotropy is used to model the
history dependence of the material. The main advantage of the model is that it
only consists of 5 material parameters, where comparable constitutive usually
require many more. Several discrete particle simulations were performed to test
the model’s accuracy for various deformation modes. In the attached paper
this has been done for small cyclic pure shear, where it has been shown that the
model is able qualitatively model the transient as well as the limit cycles. Future
work will include extending the model to generic three-dimensional cases and
implementing it in a finite element method. The objective is to predict stresses
and strains in macro scale applications, taking into account the evolution of the
microscopic material structure.
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2D cyclic pure shear of granular materials, DPM and model
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Abstract. DPM simulations of granular materials under 2D, isochoric,cyclic pure shear have been performed and are
compared to a recently developed constitutive model involving a yield stress, dilatant stresses and structural anisotropy. The
original model shows the cyclic response qualitatively, but suffers from an artificial drift of pressure. With a small modification
in the definition of the stress anisotropy and an additional limit-pressure term in the evolution equation for the pressure, it is
able to show the transient stage as well as the limit cycles. The overall goal – beyond the scope of the present study – is to
develop a local constitutive model that is able to predict real life, large scale granular systems.
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INTRODUCTION

Dense granular materials are widely encountered in in-
dustrial processes, such as hopper discharge, chute flow
and fluidized beds. Grains in these materials interact
with multiple neighbours for finite durations and stress is
largely transmitted through force chains. Due to the dis-
ordered behaviour of these particles, the materials show
peculiar mechanical properties quite different from clas-
sical fluids or solids, like dilatancy, yield stress, history
dependence and anisotropy. The DPM method, in which
the forces on each particle are calculated and integrated
over a finite time, is able to capture all of these properties,
however has the major drawback that it is computation-
ally too expensive for realistic, large scale systems.

Constitutive models are an option to simulate real
problems instead of just laboratory scale experiments
with widely available methods like FEM or CFD. Many
of such models have been developed in literature [1, 2,
3, 4], which all have their own advantages and disadvan-
tages. In this work a further look is given to the model
proposed and applied to cycling loading by Magnanimo
and Luding [5, 6]. Besides equations for the stresses,
the model also incorporates an evolution equation for the
anisotropy, which allows it to predict dilatancy, cope with
the history dependent nature of the material, and provide
anisotropic material properties, including a yield stress.

Simulations are performed by the DPM package Mer-
cury [7] and used to calibrated to the model, both to the
original and the modified version.

CONSTITUTIVE MODEL

In this section a short overview of the used constitutive
model is given. For more information the reader is re-

ferred to the original work [5, 6]. The local model starts
from the incremental Hooke’s Law:

δσi j =Ci jklδεkl (1)

From there it assumes that in the bi-axial box system, the
stress and strain tensors only have diagonal components,
such that they can be split into volumetric and deviatoric
parts, leading to:

[

δσh

δτ

]

=

[

2B A
A 2G

][

δεv

δγ

]

(2)

now it is the goal to find expressions for the bulk mod-
ulesB, the shear modulusG and the anisotropy modu-
lus A. Two modifications of the elastic model with con-
stant moduli are in, a non-linear stress evolution (with
yield stress) and a varying anisotropy, while initiallyB
andG are assumed constant. In this paper a third addi-
tional modification is proposed called the pressure stabi-
lization.

Non-linear stress evolution
From DEM simulations it has been widely observed
that for increasing shear strains, the stress increments
decrease until the stress saturates in the critical state
regime. This is modelled by multiplying the incremental
shear strain with the stress anisotropyS:

[

δσh

δτ

]

=

[

2B A
A 2G

][

δεv

Sδγ

]

(3)

with

S = 1−
τ

σh

sign(δγ)
sd

max
(4)

wheresd
max =

(

τ
σ h

)

max
is the absolute maximum allow-

able deviatoric stress ratio in the material after long shear
deformation.



Varying anisotropy
The second modification is to prescribe the anisotropy
modulus as an evolution equation dependent on the shear
strain:

dA
dγ

= βA (Amax − sign(δγ)A) (5)

with Amax the absolute maximum allowable anisotropy
in the material andβA a parameter that determines how
fast the anisotropy changes and thus how fast saturation
is approached. Ifδγ does not change sign, equation (5)
can be solved analytically:

A = sign(δγ)Amax

(

1− e−βA|γ|
)

+ e−βA|γ|A0 (6)

with A0 the initial anisotropy atγ = 0.

Pressure stabilization
On top of these two features a new pressure stabilization
term is proposed. The goal of this term is to stabilize
the model for shear cycles (otherwise the pressure would
continuously in/decrease), as well as to provide a better
model for the initial transient stage leading to the limit
cycles. The term is a simple addition to the differential
pressure equation in the form of:

βp

(

σh
steady (φ)−σh

)

|δγ| (7)

whereβp is a rate parameter andσh
steady (φ) is the ex-

pected steady state pressure dependent on the packing
fraction. In this paper, however, only one packing frac-
tion is studied, so the dependence on the packing fraction
is omitted throughout this paper.

SIMULATIONS

The results from the model are compared with DPM sim-
ulation. These simulations are performed by the DPM
package Mercury [7], which integrates Newtons equa-
tions of motion for a large number of particles a ve-
locity Verlet algorithm. The forces are due to interac-
tion between particles (modelled as a visco-elastic nor-
mal force) and a much smaller background friction:

m~̈xi = ~fi = γb~̇xi +∑
i6= j

(

kδi j + γpδ̇i j

)

~ni j (8)

whereγb is the background friction,~xi the location of
particlei, k the contact stiffness,δi j the overlap between
particlesi and j, γp the inter particle viscosity and~ni j the
normal vector pointing from particlej to i. The param-
eters used in this study are shown in table 1. To remove
the effect of walls on the simulation, both boundaries are
modelled as periodic walls.

TABLE 1. Simulation parameters

Parameter Value Explanation

k 10000 Nm−1 Contact stiffness
γp 0.2938 Nsm−1 Inter particle viscosity
γb 0.0294 Nsm−1 Background friction
ρ 20 kgm−3 Particle density
∆t 1.3·10−5 s Simulation time step
tc 6.5−13·10−4 s Collision time
rn 0.80−0.89 Coefficient of restitution

(a) Initially (δγ > 0) (b) Going back(δγ < 0)

FIGURE 1. Deformation mode

Initial conditions
The initial packing is prepared by inserting 10 000 parti-
cles with a homogeneous size distribution (rmin = 3.7 ·
10−3 m and rmax = 7.4 · 10−3 m) at random positions
(with small random velocities) in a large square initial
domain. Then the system is slowly compressed to the
desired packing fraction,φ = 0.85, where it equilibrates
until the kinetic energy has decayed to very small values.

Simulation details
During the simulation the particles are subjected to pure
shear cycles (see figure 1). Pure shear is induced by mov-
ing the two periodic walls while conserving the volume.
The walls move slowly according to a sinus (half) pro-
file, until a maximum shear strain ofγ = 0.001. After
it has reached its maximum strain amplitude, the shear
direction is reversed and the simulation continues un-
til the original shape of the box is retained at the end
of each cycle. One complete cycle takes 4· 106 time
steps and the ratio of kinetic to potential energy is al-
ways small (Ek/Ep < 0.002). Therefore, it is assumed
that the systems is in the quasi-static, shear rate indepen-
dent regime. Note that, even though size and shape of the
box, at the start and at the end, are the same, the stress
and anisotropy states change dramatically.

RESULTS

In the DPM simulations an initial transient stage is
clearly visible until after about 100 cycles. From there



on the system is in a state where limit cycles are present
(see the pressure variation in figure 3). First the limit cy-
cles are discussed and later the transient stage.

Limit cycles
The evolution of the pressure and the shear stress over
pressure ratio, during a shear cycle in the limit cycle
state, are shown in figure 2. Here the stress curves form
closed loops, meaning that the stress state at the start and
at the end of a cycle are equal. At the start of each cycle
more of the contacts between particles will be aligned
in the compressive direction of the previous half-cycle,
giving rise to the structural anisotropy and the corre-
sponding anisotropy modulusA (data not shown). At
each strain reversal, the contacts in the previously dom-
inant direction will become weaker or even open, re-
sulting in a drop of anisotropy and pressure and an in-
crease in shear stress. As the simulation continues, the
smaller fraction of contacts in the shear compression di-
rection will become stronger and new contacts can form.
Halfway trough the first half of the cycle, loosening and
strengthening of contacts are in equilibrium, resulting
in a roughly constant pressure, whereas the shear stress
continues to increase. Near the end of first half-cycle, the
slope of the shear stress curve starts to decrease, meaning
that the system is starting to saturate. If one would con-
tinue to shear in the same direction, finally the pressure
would also saturate. In the second half-cycle the system
will experience a similar opening and closing of contacts,
but with exchanged directions, until it returns to its initial
state.

To fit the simulation data of a single cycle with the
model, it has been numerically integrated over the shear
cycle and at 80 points compared to the simulations, re-
sulting in an error. A weighted non-linear least squares
fitting procedure is used to reduce the error and obtain an
optimal fit.

The model is qualitatively able to reproduce the simu-
lations. All of the three phases discussed before show the
correct behaviour. However, two distinct differences are
visible: First, the locations of the minima in the pressure;
In the simulations the minimum of pressure is almost in
the symmetry (centre) point, whereas the model shows
two minima, closer to the shear reversals. Secondly, the
model suffers from a tiny but significant drift in pres-
sure. To be able to produce limit cycles (i.e. the variables
having the same value at the start end at the end of each
cycle) the model has to be symmetric around the average
deformation, which is achieved by the correction term in
equation (7).

Isotropic stress saturation
The need for an additional term also shows up if one does
not only look at the last (stable) cycles, but also on the
approach to this state. In figure 3 the evolution of the
pressure is shown as a function of the number of cycles
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FIGURE 2. Evolution of pressure, and the shear stress over
pressure ratio during a cycle after 200 cycles. Arrows indicate
the direction of shear; for a more clear picture averages are
taken over the last 50 cycles. Black lines are averages of the
simulation results and the red lines are a fit using the model
(both the improved as the original model show the same be-
haviour)

for 4 different simulations. Due to the isotropic prepara-
tion phase the initial packings have a high pressure. Dur-
ing the shear cycles the particles wiggle around and find
more efficient packings, resulting into less overlap and a
significantly reduced pressure. As more cycles are sim-
ulated the pressure at the start of each cycle saturates at
roughly 6.5 Nm−2.

To search for the instability of the model and to be able
to obtain stable limit cycles, the model is analytically
examined in the limit of small pressure variations around
an average pressure (note that this is not the case in
the simulation results). In this limiting case the same
pressure is used as in the pressure stabilization term
(σh

steady), so that equation (4) simplifies to:

S = 1−
τ

σh
steady

sign(δγ)
sd

max
(9)

which makes the whole set of equations analytically
solvable, resulting in:

σh =C1+Amax

(

4
ξ +βA

e−(ξ+βA)γ −
2
ξ

e−ξ γ
)

(10)

τ = σh
0 sd

max

(

1−C2e−γξ
)

(11)

with ξ = 2G/σh
steadysd

max. To obtain limit cycles the pres-
sure at the start and the end of the cycle have be be equal,



TABLE 2. Parameter values used for the fit with the two model versions and three
initial conditions. The original model predicts the behaviour only in the limit cycle
regime and requires other initial conditions. The initial conditions of the improved model
are the same as used in the simulations, starting from an isotropic initial state.

Parameter Original Model Improved model Explanation

G 5−0.2 Nm−2 5−0.2 Nm−2 Shear modulus
sd
max 0.097 0.097 Maximal deviatoric stress ratio

Amax 593 Nm−2 593 Nm−2 Maximum anisotropy
βA 159 n.a. Anisotropy growth factor
βP n.a. 2.5 Pressure growth factor
σh

steady n.a. 6.3 Nm−2 Steady state pressure

σh
0 6.93 Nm−2 25 Nm−2 Initial pressure

τ0 −0.227 Nm−2 0 Nm−2 Initial deviatoric stress
A0 403 Nm−2 0 Nm−2 Initial anisotropy
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FIGURE 3. Evolution of the pressure at the start of a each
cycle (γ = 0). Green, blue red and cyan curves show result for
4 different simulations, the black curve shows results of the
improved model.

while the shear stress should have changed sign. For sim-
plicity we assume infinite long shear.

σh (0) = σh (∞) ξ = βA

τ (0) =−τ (∞) C2 = 2 (12)

How to incorporate equations (12) exactly is still an
ongoing research, but in this paperβA has been removed
as a free variable. The results of the improved model can
be seen in figures 2 and 3.

CONCLUSION

In this paper DPM simulations of granular materials un-
der 2D, isochoric, cyclic pure shear have been compared
to a recently proposed constitutive model. Originally the

model is able to show the limit cycles qualitatively, but
was unable to model the transient stage and suffered from
a drift in pressure. With a small modification in the def-
inition of the stress anisotropy and an additional term
in the evolution equation for the pressure it predicts the
transient stage as well as the limit cycles.

Further research will be performed on the influence of
the magnitude of the shear strain, the packing fraction
and the initial preparation procedure. Present research
[8] also suggests that the symmetry of the shear cycles
is relevant for the stress state, especially during the first
few cycles, an issue to be studied in more detail.
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Quasi steady Discrete Particle Method
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Video

Simulations details

◮ Cyclic pure shear (max shear is γmax = 1%)

◮ 2D soft cylinders (104 Particles)

◮ Polydisperse (rlarge = 2rsmall , uniform size distribution)

◮ Bi-axial box

◮ Periodic walls

◮ Linear normal forces and dissipation
(data based on small particles)

◮ Collision time (tc = 6.5 · 10−4 s)
◮ Coefficient of restitution (r = 0.8)

◮ No tangential forces

◮ Small background friction (γbg = 0.1γpp)

Wall movement

x = x0

(

1 + γmax

(

1− cos

(

πt

Nt∆t

)))

s ∈ [0,Nt∆t]

dx

dt
=

πx0γmax

Nt∆t
sin

(

πt

Nt∆t

)

The big question, how large thus N have to be?
Inertial number:

I =
γ̇d
√

P
ρ

= 100
γmax

Nt

√

k

Pπ
≤ 10−3

Nt ≥ 105γmax

√

k

Pπ
≈ 20000



Simulation energy ratios

0 0.002 0.004 0.006 0.008 0.01
10

−10

10
−8

10
−6

10
−4

10
−2

10
0

γ [−]

E
ki

n/E
po

t

 

 

1e4 Steps
1e5 Steps
1e6 Steps
1e7 Steps
1e8 Steps

Simulation stresses

0 0.002 0.004 0.006 0.008 0.01
6

8

10

γ [−]

σv  [N
/m

2 ]

0 0.002 0.004 0.006 0.008 0.01
−1

0

1

γ [−]

τ 
[N

/m
2 ]

0 0.002 0.004 0.006 0.008 0.01
3.5

4

4.5
x 10

4

γ [−]

#−
co

nt
ac

ts

 

 

1e4 Steps
1e5 Steps
1e6 Steps
1e7 Steps
1e8 Steps

Simulation stresses

0 0.002 0.004 0.006 0.008 0.01
6

7

8

γ [−]

σv  [N
/m

2 ]

0 0.002 0.004 0.006 0.008 0.01
−1

0

1

γ [−]

τ 
[N

/m
2 ]

0 0.002 0.004 0.006 0.008 0.01
3.8

4

4.2
x 10

4

γ [−]

#−
co

nt
ac

ts

 

 

1e5 Steps
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1e8 Steps

Computational time

Number of time steps Computational time

104 1.8min

105 14min

106 155min ≈ 2.5hour
107 1440min ≈ 1day
108 Not yet finished



DPM

Normal DPM

~̈xi =
1

mi

∑

j∈Ci

kn~δij + γn
~̇
δij

Steady state:

0 =
1

mi

∑

j∈Ci

kn~δij

N coupled non-linear equations, equal to minimising (locally)

Epot =
k

4

∑

i

∑

j∈Ci

∣

∣

∣

~δij

∣

∣

∣

2

Quadratic approximation

For small ~s the potential energy can be approximated as:

Epot (~x +~s) ≈ Epot (~x) + ~x t~b +
1

2
~stA~s = f (~s)

With ~b the forces on all the particles and A the stiffness matrix.
Calculating these variables takes a run of the contact detection
algorithm.

Gradient descent minimisation

Epot (~x +~s) ≈ Epot (~x) +~st~b +
1

2
~stA~s = f (~s)

◮ Choose starting point ~x0
◮ Iterate

◮ Make quadratic approximation f (~s) of Epot (~x +~s)
◮ Search direction ~ri = −~∇f (~s) = −b − A~x

◮ Pick αi =
~r ti ~ri
~r t
i
A~ri

, to minimise f (~xi + αi~ri )

◮ Search step ~xi+1 = ~xi + αi~ri

In general convergence rate κ(A)−1
κ(A)+1

Gradient descent video

−0.2 0 0.2 0.4 0.6 0.8 1 1.2

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22 23

24

25

26

27

28

29

30

31

32

33

34

35
36

37

38

39

40

41

42

43

44

45

46

47

48
49

50



Gradient descent convergence
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Newton’s method

Epot (~x +~s) ≈ Epot (~x) +~st~b +
1

2
~stA~x

Idea, chose ~ri = −A−1~b the exact solution to the quadratic
problem, however this leads to problems:

◮ How to calculate A−1~b?

◮ What if A is not positive definite?

◮ Step size can be so large that approximation no longer holds?

Trust region method

Epot (~x +~s) ≈ Epot (~x) +~st~b +
1

2
~stA~s

Idea, minimise c +~st~b + 1
2~s

tA~s, subject to ‖~s‖ ≤ ∆

Trust region algorithm

◮ Choose starting point ~x0 and maximum step size ∆max

◮ Set ∆ = ∆max

◮ Iterate
◮ Make quadratic model f (~s) of Epot (~xk +~s)
◮ Solve trust-region subproblem approximately to obtain ~s
◮ Based on qk =

Epot(~xk )−Epot(~xk+~s)
Epot(~xk )−f (~s)

◮ q ≥ 0.75
Very successful step
~xk+1 = ~xk +~s and ∆ = min (2∆,∆max)

◮ 0.25 ≤ q < 0.75
Successful step
~xk+1 = ~xk +~s

◮ q < 0.25
Unsuccessful step
~xk+1 = ~xk and ∆ = 1

2
∆



Conjugate gradient

Task: Minimise

~st~b +
1

2
~stA~s

◮ Initialise ~s0 = 0, ~r0 = ~b and ~p0 = −~r
◮ Iterate

◮ α =
~r ti ~ri
~pt
i
A~pi

(Obtain step size for quadratic model)

◮ ~si+1 = ~si + α~pi (Update ~s)
◮ ~ri+1 = ~ri + αA~pi (Equivalent to ~ri+1 = A~si+1 + ~b)

◮ β =
~r ti+1~ri+1

~r t
i
~ri

◮ ~pi+1 = β~pi − ri (Update search direction)

In general convergence rate

√
κ(A)−1√
κ(A)+1

Trust region subproblem

Task: Solve approximately

min

(

~st~b +
1

2
~stA~s

)

s.t. ‖~s‖ ≤ ∆

Solution: Perform conjugate gradient steps until

◮ ~ptA~p < 0, return ~s∗ = ~s + αb~p, such that ‖~s + αb~p‖ = ∆

◮ ‖~s +α~p‖ > ∆, return ~s∗ = ~s +αb~p, such that ‖~s +αb~p‖ = ∆

◮ ‖~r‖ < ǫ‖~b‖, return ~s∗ = ~s

Trust region video
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Energy minimisation stresses
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Number of time steps Computational time

101 89min ≈ 1.5hour
102 403min ≈ 6.7hour
103 1083min ≈ 18hour
104 3620min ≈ 2.5day

Compare the two
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Figure: Blue = energy minimisation, red = discrete particle simulation

Conclusion

◮ Energy minimisation and standard simulations give
comparable output

◮ Required computational times are comparable

◮ Both processes can be optimised

◮ Not clear how the scaling of computational time on number of
particles and packing fraction works


