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Title of the project Bridging the gap between particulate systems and
continuum theory

Project aim
The gap between discrete (micro) and continuum (macro) concepts for the mod-
elling and understanding of particulate systems is bridged by micro-macro tran-
sition methods. Modern discrete particle-based models describe the particles
in detail, but are of limited value for studying industrial processes and nat-
ural phenomena since too many particles are involved. Continuum methods,
on the other hand, are readily applied in engineering applications. However,
continuum methods rely on empirical constitutive laws with phenomenological
parameters that disregard both the discrete nature of particles and the micro-
structure. Micro-macro transition methods are being developed to combine the
advantages of discrete and continuum models.

Progress
A novel local constitutive model based on observations from discrete element
simulations has been developed for small-scale deformations of a quasi steady
bi-axial geometry. The model consists of non-linear evolution equations for
both shear stress and anisotropy, where the anisotropy is used to model the
history dependence of the material. The main advantage of the model is that it
only consists of 5 material parameters, where comparable constitutive usually
require many more. Several discrete particle simulations were performed to test
the model’s accuracy for various deformation modes. In the attached paper
this has been done for small cyclic pure shear, where it has been shown that the
model is able qualitatively model the transient as well as the limit cycles. Future
work will include extending the model to generic three-dimensional cases and
implementing it in a finite element method. The objective is to predict stresses
and strains in macro scale applications, taking into account the evolution of the
microscopic material structure.
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Abstract. DPM simulations of granular materials under 2D, isochociglic pure shear have been performed and are
compared to a recently developed constitutive model inugha yield stress, dilatant stresses and structural anptThe
original model shows the cyclic response qualitatively,duffers from an artificial drift of pressure. With a small difecation

in the definition of the stress anisotropy and an additionait{pressure term in the evolution equation for the pressitis

able to show the transient stage as well as the limit cyclhe. dverall goal — beyond the scope of the present study — is to
develop a local constitutive model that is able to prediat liée, large scale granular systems.
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INTRODUCTION ferred to the original work [5, 6]. The local model starts
from the incremental Hooke’s Law:

Dense granular materials are widely encountered in in- 50— G
dustrial processes, such as hopper discharge, chute flow 0ij = Giju 0« @
and fluidized beds. Grains in these materials interacFrom there it assumes that in the bi-axial box system, the
with multiple neighbours for finite durations and stress isstress and strain tensors only have diagonal components,
largely transmitted through force chains. Due to the dis-such that they can be split into volumetric and deviatoric
ordered behaviour of these particles, the materials shoarts, leading to:
peculiar mechanical properties quite different from clas- h v
sical fluids or solids, like dilatancy, yield stress, higtor { J } - { 2B A ] { o¢ ] 2)
dependence and anisotropy. The DPM method, in which ot A 26 oy

the forces on each particle are calculated and integrategloy it is the goal to find expressions for the bulk mod-
over afinite time, is able to capture all of these propertiesy|es B, the shear modulu§ and the anisotropy modu-
however has the major drawback that it is computation{ys A, Two modifications of the elastic model with con-
ally too expensive for realistic, large scale systems.  stant moduli are in, a non-linear stress evolution (with
Constitutive models are an option to simulate realyie|d stress) and a varying anisotropy, while initiaBy
problems instead of just laboratory scale experimentgngG are assumed constant. In this paper a third addi-

with widely available methods like FEM or CFD. Many tjonal modification is proposed called the pressure stabi-
of such models have been developed in literature [1, 2}ization.

3, 4], which all have their own advantages and disadvan; . :
. S Non-linear stressevolution
tages. In this work a further look is given to the model

. . . .~ From DEM simulations it has been widely observed
proposed and applied to cycling loading by Magnanimo . . . )
X ; . that for increasing shear strains, the stress increments
and Luding [5, 6]. Besides equations for the stresses ; . .
. : . decrease until the stress saturates in the critical state
the model also incorporates an evolution equation for the

anisotropy, which allows it to predict dilatancy, cope with ;igelges'tgi‘:fvlvsit? %iegﬁgsiyan;ggﬁléng the incremental
the history dependent nature of the material, and providé y

anisotropic material properties, including a yield stress dg"] [2B A ogY 3
Simulations are performed by the DPM package Mer- or | | A 2G SOy )
cury [7] and used to calibrated to the model, both to the .
original and the modified version. with
_ . T sign(dy)
S=1 - (4)

CONSTITUTIVE MODEL
wheresd | = (%)max is the absolute maximum allow-

In this section a short overview of the used constitutiveaple deviatoric stress ratio in the material after long shea
model is given. For more information the reader is re-deformation.



. . TABLE 1. Simulation parameters
Varying anisotr opy

The second modification is to prescribe the anisotropy Parameter Value Explanation
modulus as an evolution equation dependent on the shear
strain: k 10000 Nnr1 Contact stiffness
dA Yo 0.2938 NsnTi Inter particle viscosity
g o Yo 0.0294 Nsn1 Background friction
dy Ba (Arax —sign(oy) A) ©) P 20 kgni 3 Particle density
_ _ ) At 13-10°s Simulation time step
with Amax the absolute maximum allowable anisotropy 65—13-10%s Collision time
in the material angBs a parameter that determines how r, 0.80—0.89 Coefficient of restitution

fast the anisotropy changes and thus how fast saturation
is approached. 16y does not change sign, equation (5)
can be solved analytically:

1111 I 1T 1T 1T 1
A = sign(dy) A (1 _ e*BAM) +e PV, (6) — — “—
with Ag the initial anisotropy ay = 0. ] = R N L o
Pressure stabilization | R N o
On top of these two features a new pressure stabilization 1 1 1.1 1 T T T 1 1

term is proposed. The goal of this term is to stabilize
the model for shear cycles (otherwise the pressure would
continuously in/decrease), as well as to provide a better FIGURE 1. Deformation mode
model for the initial transient stage leading to the limit

cycles. The term is a simple addition to the differential

(a) Initially (dy > 0) (b) Going back(dy < 0)

pressure equation in the form of: Initial conditions
The initial packing is prepared by inserting 10 000 parti-
Bo (Ugeady(q’) - ah) |0y (7)  cles with a homogeneous size distributiof'{ = 3.7 -

103 m andr™ = 7.4.10 3 m) at random positions
wheref,, is a rate parameter am,jgeady((p) is the ex-  (with §mal| random veIocitigs) in a large square initial
pected steady state pressure dependent on the packif§main. Then the system is slowly compressed to the
fraction. In this paper, however, only one packing frac-d€sired packing fractiop = 0.85, where it equilibrates
tion is studied, so the dependence on the packing fractioHNtil the kinetic energy has decayed to very small values.
is omitted throughout this paper. Simulation details

During the simulation the particles are subjected to pure

shear cycles (see figure 1). Pure shear is induced by mov-

SIMULATIONS ing the two periodic walls while conserving the volume.

The walls move slowly according to a sinus (half) pro-
The results from the model are compared with DPM sim-file, until a maximum shear strain gf= 0.001. After
ulation. These simulations are performed by the DPMit has reached its maximum strain amplitude, the shear
package Mercury [7], which integrates Newtons equa-direction is reversed and the simulation continues un-
tions of motion for a large number of particles a ve- til the original shape of the box is retained at the end
locity Verlet algorithm. The forces are due to interac- of each cycle. One complete cycle takes14P time
tion between particles (modelled as a visco-elastic norsteps and the ratio of kinetic to potential energy is al-

mal force) and a much smaller background friction: ways small Ex/Ep < 0.002). Therefore, it is assumed
that the systems is in the quasi-static, shear rate indepen-
My = fi = X + ; (k(jj + Vpaj) i (8)  dentregime. Note that, even though size and shape of the
iZ] box, at the start and at the end, are the same, the stress

) o _ and anisotropy states change dramatically.
where y, is the background friction¥; the location of

particlei, k the contact stiffnessy; the overlap between

particles andj, yp the inter particle viscosity andl; the RESULTS

normal vector pointing from particl¢ to i. The param-

eters used in this study are shown in table 1. To remov§, the DPM simulations an initial transient stage is

the effect of walls on the simulation, both boundaries are;|early visible until after about 100 cycles. From there
modelled as periodic walls.



on the system is in a state where limit cycles are preser
(see the pressure variation in figure 3). First the limit cy-
cles are discussed and later the transient stage.

Limit cycles

The evolution of the pressure and the shear stress ow
pressure ratio, during a shear cycle in the limit cycle
state, are shown in figure 2. Here the stress curves forr
closed loops, meaning that the stress state at the start a
at the end of a cycle are equal. At the start of each cycle
more of the contacts between particles will be aligned
in the compressive direction of the previous half-cycle,
giving rise to the structural anisotropy and the corre-
sponding anisotropy modulu& (data not shown). At

inant direction will become weaker or even open, re-
sulting in a drop of anisotropy and pressure and an in-
crease in shear stress. As the simulation continues, tt 0.1
smaller fraction of contacts in the shear compression di vl -3
rection will become stronger and new contacts can form
Halfway trough the first half of the cycle, loosening and FIGURE 2. Evolution of pressure, and the shear stress over
strengthening of contacts are in equilibrium, resultingpressure ratio during a cycle after 200 cycles. Arrows iaidic
in a roughly constant pressure, whereas the shear strethe direction of shear; for a more clgar picture averages are
continues to increase. Near the end of first half-cycle, thd@ken over the last 50 cycles. Black lines are averages of the
simulation results and the red lines are a fit using the model
slope of the shear stress curve starts to decrease, MeaNi otk the improved as the original model show the same be-
that the system is starting to saturate. If one would conayioyr)
tinue to shear in the same direction, finally the pressurt
would also saturate. In the second half-cycle the syster
will experience a similar opening and closing of contacts tor 4 different simulations. Due to the isotropic prepara-
but with exchanged directions, untilit returnstoits ialti  tjon phase the initial packings have a high pressure. Dur-
state. _ _ _ _ ing the shear cycles the particles wiggle around and find
To fit the simulation data of a single cycle with the more efficient packings, resulting into less overlap and a
model, it has been numerically integrated over the sheagjgnificantly reduced pressure. As more cycles are sim-
cycle and at 80 points compared to the simulations, reyjated the pressure at the start of each cycle saturates at
sulting in an error. A weighted non-linear least squaresoughly 65 Nm~2.
fitting procedure is used to reduce the error and obtain an T search for the instability of the model and to be able
optimal fit. to obtain stable limit cycles, the model is analytically

The modelis qualitatively able to reproduce the simu-examined in the limit of small pressure variations around

correct behaviour. However, two distinct differences arehe simulation results). In this limiting case the same
visible: First, the locations of the minima in the pressure;yressure is used as in the pressure stabilization term
In the simulations the minimum of pressure is almostin(gh ' so that equation (4) simplifies to:

. steady/* '
the symmetry (centre) point, whereas the model shows
two minima, closer to the shear reversals. Secondly, the T sign(dy)

i iqnifi e ] S=1- — 9

model suffers from a tiny but significant drift in pres oh s
sure. To be able to produce limit cycles (i.e. the variables steady
having the same value at the start end at the end of eaghhich makes the whole set of equations analytically
cycle) the model has to be symmetric around the averaggolvable, resulting in:
deformation, which is achieved by the correction term in

equation (7). oM =Cp + Armax < 4 e E+Ba)y _ Eefv> (10)
| sotropic stress saturation $+Ba ¢

The need for an additional term also shows up if one does T — Ugﬂm (1_ Czefyé) (11)
not only look at the last (stable) cycles, but also on the

approach_ to this state. In flg_ure 3 the evolution of theWith - 2G/a§ ; 0 . To obtain limit cycles the pres-
pressure is shown as a function of the number of cycles eady
Sure at the start and the end of the cycle have be be equal,



TABLE 2. Parameter values used for the fit with the two model versiomksthree
initial conditions. The original model predicts the betwawi only in the limit cycle

regime and requires other initial conditions.

The initiahditions of the improved model

are the same as used in the simulations, starting from am@@otnitial state.

Parameter Original Model Improved model Explanation
G 5-02Nm?2 5-02Nm?2 Shear modulus
S 0.097 Q097 Maximal deviatoric stress ratio
Anrex 593 NnT2 593 NnT2 Maximum anisotropy
Ba 159 n.a. Anisotropy growth factor
Bp n.a. 25 Pressure growth factor
Oshteady n.a. 63 Nm—2 Steady state pressure
ay 6.93 Nm2 25 Nm2 Initial pressure
To —0.227 Nmt2 0 Nm2 Initial deviatoric stress
Ao 403 Nn2 0 Nm2 Initial anisotropy
model is able to show the limit cycles qualitatively, but
25 .
was unable to model the transient stage and suffered from
a drift in pressure. With a small modification in the def-
20 inition of the stress anisotropy and an additional term
in the evolution equation for the pressure it predicts the
— transient stage as well as the limit cycles.
§ 15) Further research will be performed on the influence of
>: the magnitude of the shear strain, the packing fraction
and the initial preparation procedure. Present research
1ot [8] also suggests that the symmetry of the shear cycles
is relevant for the stress state, especially during the first
few cycles, an issue to be studied in more detail.
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Video

Quasi steady Discrete Particle Method
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Simulations details Wall movement
» Cyclic pure shear (max shear is Ymax = 1%) ot
» 2D soft cylinders (10* Particles) X=X (1 T Ymax <1 o8 <NtAt>>> s € [0, NeAt]
» Polydisperse (fjarge = 2rsman, uniform size distribution) dx  TXOYmax . Tt
> Bi-axial box dt ~ Nar U\ NAt

> Periodic walls The big question, how large thus N have to be?

» Linear normal forces and dissipation Inertial number:

(data based on small particles)

» Collision time (t. = 6.5-107*5s) Ad v k _3
» Coefficient of restitution (r = 0.8) I'= \/; = 100 XZX Pr <10
» No tangential forces p

» Small background friction (yps = 0.17pp) Ny > 1057 max /PL ~ 20000
T



Simulation energy ratios
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Computational time

Number of time steps | Computational time
10% 1.8 min
10° 14 min
100 155 min ~ 2.5 hour
107 1440 min ~ 1day
108 Not yet finished



DPM

Normal DPM
= 1 = z
= Z k"0 + "0
JjeG
Steady state:
SR N
0= o 2 K"
JjeG

N coupled non-linear equations, equal to minimising (locally)

k L2
Epor = 2 Z Z dij
i jeG;
Gradient descent minimisation
Epot (X +5) & Epot (X) + 8tb + ~5TA5 = £ (3)

» Choose starting point xj
> lterate
» Make quadratic approximation f (5) of Epot (X + 5)
Search direction 7; = —Vf (5) = —b — AX
Pick o = % to minimise f (X; + «;7;)

v

v

v

Search step Xi11 = Xi + ;s
K(A)—1
Kk(A)+1

In general convergence rate

Quadratic approximation

For small s the potential energy can be approximated as:
Epot (X +3) = Epot (X) + X'b + Z5'A5 = £ (3)
With b the forces on all the particles and A the stiffness matrix.

Calculating these variables takes a run of the contact detection
algorithm.

Gradient descent video

12r
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0.2

—0.2}




Gradient descent convergence Newton's method

Gradient descent

100 | A Epot
Norm O E
pot 1
Epot ()? + §) ~ Epot ()?) + gtb + EgtA)?
10° & i Idea, chose 7: = —A~1b the exact solution to the quadratic
problem, however this leads to problems:
» How to calculate A=1h?
» What if A is not positive definite?
107 | » Step size can be so large that approximation no longer holds?
0 200 400 600 800
# Steps
Trust region method Trust region algorithm
» Choose starting point Xy and maximum step size A pax
» Set A = Apax
> lterate
» Make quadratic model f () of Epot (Xk + 5)
1 » Solve trust-region subproblem approximately to obtain §
o R IV T Epor(%) — Epor (%4 +3)
Epot (X +5) & Epot (X) +5Th+ EstAs » Based on gy = = _—spet k) Ep:,(;k)if(.c?k) S

> qg>0.75

Very successful step

Xet1 = X + 5 and A = min (2A, Apax)
» 0.25 < g<0.75

Successful step

Xey1 = Xk +§
> g<0.25

Unsuccessful step

)?k+1 = )?k and A = %A

Idea, minimise ¢ + 5°b + 35°AS, subject to ||3]| < A



Conjugate gradient Trust region subproblem

Task: Minimise
St ]'—»t - .
s'b+ 55 As Task: Solve approximately
L L . min (55 + 25t48)  s.t. I3 < A
> Initialise sp =0, iy = b and pg = —F 2 -
> lterate ) ] ) )
. o= ,3.:%;3- (Obtain step size for quadratic model) Solution: Perform conjugate gradient steps until
e 5 D%+ af (Update 9 > AP <0, return 5, = 5+ apB, such that 5 + apB] = A
> Fiy1 =1+ aAp; (Equivalent to i1 = ASip1 + b) > H§+ O{ﬁ” > A, return 5, = 5+ Oéb[_j, such that ”§+ Oébﬁ” =A
> =t > ||7|| < €||b]|, return 5, =5
> PBir1 = BpP; — ri (Update search direction)
VE(A)-1
In general convergence rate VA1
Kk(A)+1
Trust region video Trust region convergence
12 Gradient descent
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10°} 1
0.4+
0.2
10700 |
ol
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Energy minimisation stresses Computational time

(<2

0 2 4 6 8
vl x10° Number of time steps ‘ Computational time
1 101 89 min ~ 1.5 hour
E - 102 403 min ~ 6.7 hour
% [ 10‘31 1083 min ~ 18 hour
_1 1 1 1 1 s ~
0 5 4 5 5 10 3620 min ~ 2.5 day
y[-] x107°
4
0 405510
§ ——lel Steps
S 4 —— le2 Steps
? —— 1e3 Steps
+H* —
3-95O 5 1 6 —le4 Steps
y([-] x 107
Compare the two Conclusion
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vl » Energy minimisation and standard simulations give

1 comparable output
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Figure: Blue = energy minimisation, red = discrete particle simulation



