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Experiment and DEM simulation of glass particles flowing through
a contraction d = 1mm, N = 400000, dt = 5 us.

Experiments: Vreman et al., J. Fluid Mech. 578 (2007) 233-269



The continuum model for shallow granular chute flow
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Depth- and width-averaging mass- & momentum balance yields
the lithostatic balance, 0,,(z) = pgcosf(h — z), and
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where closure relations are required for velocity shape factor a= 27,

normal stress ratio K:%, and bed friction u = % at z=b.



Objective

Find closure relations u(h, @), a(h, @) and K(h, T) using small
DEM simulations of steady uniform flow.

DPM of steady uniform chute flow, periodic in x- and y-direction,
fixed-particle layer at the base, unrestrained surface, inclination 6.
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MSM

Parameters of the DPM

scaled s.t. diameter d =1, mass m =1, gravity g = 1.

linear elastic, dissipative and frictional contact forces:
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collision time t. = 5-1073,/d/g, restitution r = 0.88,
friction pc = 0.5 (k, = 2-10%, 7y, = 25, ke = 2/Tkn, ¢ = Vn)
e integration with velocity verlet, dt = t./50 until t = 2000.



Statistics by coarse-graining
We define the macrosc. density using a coarse-graining function ¢,

n
p(7) = Zi:l m;¢(F — 7).
We define the velocity field V, s.t. it satisfies mass balance exactly,

— n
V' = p/p, where p = Zi:l m;Vi¢(F — 7).
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0
Density p of a static system of 5 fixed and 5 free particles for a
Gaussian coarse-graining function of width w = d/8.



Statistics by coarse-graining
We define the stress tensor s.t. it satisfies momentum balance
exactly. Then & = &° + X, with contact and kinetic stress
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with branch vector 3, and fluctuation velocity v/ = v; — V.
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Stress norm |o€|> , w = d/8.




Three regimes: arresting e, steady o, accellerating
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Demarkation line hstop(#) between arrested and steady flow, fitted

. tan(6>) —tan(0)
to hstop(8) = Adtan(e) —tan(f;)

(fit from Pouliquen, Forterre, 2003).



Closure for the friction 4 = % = tan6
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Substituting p = tan(#) yields
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Closure for the velocity shape factor o = Z;
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Left: We see Bagnold velocity profile in bulk, quadratic near base
(z < bhgop(0)), linear near surface (z > h —5).

Right: Shape factor a(h, #) from simulations (markers)
and fit (lines).



Closure for the normal stress ratio K = &
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The normal stress ratio K ~ 1.



Dependence of the basal smoothness

Figure: We change the base roughness by varying the base particle
diameter 0 < A < 2. Figure shows A = 2.



Dependence of the basal smoothness
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Figure: Fit of steady disordered flows to F = Bm - .
Froude number increases for smoother base.
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Conclusions and future work

Conclusions:

e Density, velocity and stress definition satisfies mass and
momentum balance exactly, even at external boundaries.

- W, Thornton, Luding, Bokhove, From discrete particles to continuum
fields near a boundary, Granular Matter

e Discrete particle simulations were used to obtain closure rules
u(h,3), a(h,T), K~ 1.

Micro-macro transition: Closure depends on the particle and

contact properties, f.e. bed roughness A, bed friction pp:
- W, Thornton, Luding, Bokhove, Closure Relations for Shallow Granular
Flows from Particle Simulations, Granular Matter, submitted,
- Thornton, W, Luding, Bokhove, Frictional dependence of shallow granular
flows from discrete particle simulations, EPL, submitted.
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Future work:

e Apply the new stress definition to bi-dispersed flows
(segregation effects).
e Validate the closures for nonuniform flow (contraction, obstacles)
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