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Objective: Micro-macro transition for shallow granular flow

Experiment and DEM simulation of glass particles flowing through
a contraction d = 1mm, N ≈ 400 000, dt = 5µs.

Experiments: Vreman et al., J. Fluid Mech. 578 (2007) 233-269



The continuum model for shallow granular chute flow

Depth- and width-averaging mass- & momentum balance yields
the lithostatic balance, σzz (z) ≈ ρgcosθ(h − z), and
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where closure relations are required for velocity shape factor α= u2
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normal stress ratio K = σ̄xx
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, and bed friction µ = |tt |
|tn| at z = b.



Objective

Find closure relations µ(h, ū), α(h, ū) and K (h, ū) using small
DEM simulations of steady uniform flow.
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DPM of steady uniform chute flow, periodic in x- and y -direction,
fixed-particle layer at the base, unrestrained surface, inclination θ.
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Parameters of the DPM

• scaled s.t. diameter d = 1, mass m = 1, gravity g = 1.

• linear elastic, dissipative and frictional contact forces:

~fij = f n
ij ~n + f t

ij
~t,

f n
ij = −knδij − γnv

n
ij ,

f t
ij = −min(|kt

~δt
ij + γt~v

t
ij |, µc f

n
ij ),

• collision time tc = 5 · 10−3
√
d/g , restitution r = 0.88,

friction µc = 0.5 (kn = 2 · 105, γn = 25, kt = 2/7kn, γt = γn)

• integration with velocity verlet, dt = tc/50 until t = 2000.



Statistics by coarse-graining
We define the macrosc. density using a coarse-graining function φ,

ρ(~r) =
∑n

i=1
miφ(~r −~ri ).

We define the velocity field ~V , s.t. it satisfies mass balance exactly,

~V = ~p/ρ, where ~p =
∑n

i=1
mi~viφ(~r −~ri ).
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Density ρ of a static system of 5 fixed and 5 free particles for a
Gaussian coarse-graining function of width w = d/8.



Statistics by coarse-graining
We define the stress tensor s.t. it satisfies momentum balance
exactly. Then ~σ = ~σc + ~σk , with contact and kinetic stress
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′
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∑
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−
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0
φ(~r − (~ri + s~aik)) ds,

with branch vector ~aik and fluctuation velocity ~v ′i = ~vi − ~V .
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Stress norm |σc |2 , w = d/8.



Three regimes: arresting •, steady ◦, accellerating ∗
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Demarkation line hstop(θ) between arrested and steady flow, fitted

to hstop(θ) = Ad
tan(θ2)− tan(θ)

tan(θ)− tan(θ1)
(fit from Pouliquen, Forterre, 2003).



Closure for the friction µ = |tt |
|tn| = tan θ

h/hstop(θ)

F
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Steady flows fitted to F = β
h

hstop(θ)
− γ, where F = ū√

g cos θh
.

Substituting µ = tan(θ) yields

µ(h, ū) = tan(θ1) + (tan(θ2)− tan(θ1))

(
β

Ad
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F + γ
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)−1

.



Closure for the velocity shape factor α = u2

ū2
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Left: We see Bagnold velocity profile in bulk, quadratic near base
(z < b hstop(θ)), linear near surface (z > h − 5).

Right: Shape factor α(h, θ) from simulations (markers)
and fit (lines).



Closure for the normal stress ratio K = σ̄xx

σ̄zz
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The normal stress ratio K ≈ 1.



Dependence of the basal smoothness

Figure: We change the base roughness by varying the base particle
diameter 0 < λ ≤ 2. Figure shows λ = 2.



Dependence of the basal smoothness

h/hstop(θ, λ = 1)
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Figure: Fit of steady disordered flows to F = β h
hstop(θ;λ=1) − γ.

Froude number increases for smoother base.
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Conclusions:
• Density, velocity and stress definition satisfies mass and

momentum balance exactly, even at external boundaries.
- W, Thornton, Luding, Bokhove, From discrete particles to continuum

fields near a boundary, Granular Matter

• Discrete particle simulations were used to obtain closure rules

µ(h, ū), α(h, ū), K ≈ 1.

Micro-macro transition: Closure depends on the particle and
contact properties, f.e. bed roughness λ, bed friction µb:

- W, Thornton, Luding, Bokhove, Closure Relations for Shallow Granular
Flows from Particle Simulations, Granular Matter, submitted,

- Thornton, W, Luding, Bokhove, Frictional dependence of shallow granular
flows from discrete particle simulations, EPL, submitted.

Future work:

• Apply the new stress definition to bi-dispersed flows
(segregation effects).

• Validate the closures for nonuniform flow (contraction, obstacles)
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