
1

APiE Assignments – Introduction

Each of the Assignments is about equivalent to 0.5 EC, except for ODE (which is very much
overlapping with PiE so that it is worth less if you have done PiE already, and should be seen as
a warm-up exercise), and FEM and SPH, which are both worth 1 EC. Voluntary and optional
excersises (inside assignments and as solitary blocks) can be used to improve the grade or earn
additional EC-points.

List of modular Assignments:
ODE
MD1D and MD2D for solids
FEM for solids (2x)
MD for Fluids
Random Numbers
SPH Methods (2x)
Finite Volume (FV) Methods
Debugging (Voluntary)

2

Guideline for APiE

0) The Exercises Report should be submitted in pdf! (Word causes problems regularly due to
different versions and operating systems) - so you dont have to send the WORD.

please send in the matlab code(s) and other things as one archived (zipped, tgz, rar, ...) direc-
tory.

FORMAT (grading 10 possible points/grade per sheet)

1) Feel free to copy questions, however, that is not necessary - its matter of taste. Actually it
would be nicer if the answer(s) (in words) would reflect the question(s). Thus: answers should
have some words (sentences) - not only formulas. (required for grade 8 or higher)

2) Figures should have (grade 9 or higher) axis labels (both), a legend if there are more
lines/symbols, and a caption - i.e. the short text (again words) below the figure that de-
scribes it briefly. Assume you see the figure for the first time - what do you want to know
about it?

3) For each figure (in a good text - grade 10), you have the following issues: a) what is plotted
(and why)? b) what do we see (observation)? c) what does it mean? ... d) if you have multiple
lines on top of each other - think about how you can improve the plot to make them visible ...

CODING

4) Use indent-s within loops and if-s etc. and Add comments - sensible/important ones a) about
the block/module b) for the non-trivial commands c) additional explanations, traps, warnings,
etc. (required for grade 7 or higher)

5) Avoid identical pieces of code (duplications) ... If you decided to work with matlab: Use
vectors/matrices/structures, whenever possible, to do so. ... You can use functions to do so
too. (required if asked for - and required anyway for grade 9 or higher)

6) Read the warnings Matlab gives you a) Avoid growing vectors inside loops! declare outside!
b) group declarations and definitions such that one can easily change things - dont repeat
(change) parameters-changes - those are hard to locate. (required for grade 9 or higher)

... Think about that someone else might want to understand the code.

3

APiE Exercise – ordinary differential equations (ODE)

Exercise 1 (Ex.1–5 account for 2 points each; total 10 pts.)

The motion of a harmonic oscillator is described by the differential equation:

m
d2x(t)

dt2
= mẍ = −kx(t) (1)

where m is the mass, k is the spring-constant, x(t) is the position and d2x/dt2 is the second
time-derivative of x(t).
a) Get analytically the solution of Eq. (3) for initial conditions x0 = x(0) and v0 = ẋ(0) = v(0)
and plot it as function of time for x0 = 0m and v0 = 0.1m/s. What is the period T and the
frequency ω? For the plot use m = 1kg and k = 0.1N/m.
b) Now compute analytically the trajectory x(t) and then plot the kinetic, the potential, and
the total energy of the harmonic oscillator as function of time (together).
c) Modify mass m and/or spring-constant k and describe how T changes.

Exercise 2.

a) Solve Eq. (3) numerically using the Euler algorithm (as introduced in the course). Plot
solution and energies together with the analytical solution of the previous Exercise 1. Compare
them for different time-steps. Which time-step do you find satisfactory?
b) Solve Eq. (3) numerically using the Euler-Cromer algorithm as introduced in the course.
Plot solution and energies together with the analytical solution of the previous exercises 1. and
2.a) (use different colors). Compare them for different time-steps. Which time-step do you find
satisfactory for Euler-Cromer? in comparison to Euler?

Exercise 3.

In order to solve this differential equation numerically, you can use the so-called Verlet inte-
gration algorithm. It was derived in class, but we also show the steps here - repeat them for
yourself!

1. Write down the Taylor-series for x(t+∆t) and x(t−∆t) up to second order in time (terms
higher than ∆t2 are ignored).

2. Add x(t−∆t) to x(t +∆t) and rewrite the equation such that you have x(t +∆t) on the
left-hand side of the equation.

3. This scheme can now be used to compute the trajectory of the mass (with given x(t),
x(t − ∆t), and acceleration d2x/dt2 = f(t)/m, with force f(t) = −kx(t)).
For the old position use the estimate: x(t − ∆t) ≈ x(t) − v(t)∆t.

4

4. Plot the old time-x-series and the new results, using the same amplitude, phase-angle =
0, m = 1, k = 0.1, ∆t = 0.1, and tmax = 200, x(0) = 0 and v(0) = 0.1.

5. How big is the error of the calculation? How do you quantify it? Or, with other words,
which time-step would you use to have a reasonably small error here? (define reasonable)

Plot also the total energy of the numeric harmonic oscillator as function of time. Plot separately
kinetic and potential energy. Describe the differences to the analytical solution.

Exercise 4

Add a damping force fd = −γv(t) to the spring-force and plot the new results for a γ such that
the motion is damped completely at t = 200. Which γ-value did you use?

Solve the new corresponding differential equation analytically first - and then compare it to
one of your numerical solution algorithms. How did the period change when you added the
damping force? Modify γ and describe how T changes with γ. Implement the damping force
in your Verlet numerical solution from exercise 3. Discuss the problems that occur.

Exercise 5

Solve the differential equation (3) with a built-in Matlab function of your choice and compare
to the previous examples/solutions – and answer the questions also for this integrator.

Which (power) class of error e have the different methods? (Definition: The error increases
with power α for time-step h such that e ∝ hα.)

Exercise 6 (Voluntary +3 points)

Generalize the spring-mass system by adding a driving force fd sin(ωdt) to the right hand side
of equation (3). Plot a ”Poincare-cut” for three different ωd (smaller, similar and larger than
ω) and fd (very small, small, and large) and describe your observations.

Derive the differential equation for a pendulum with a mass-less rigid rod that can swing around
a fixed point with a mass m at the other end. Show the same plots as for the driven harmonic
oscillator and describe the differences.

Exercise 7 (Voluntary +2 points)

Generalize the spring-mass system to a linear chain of N masses as will be detailed in the
Lecture on Debugging and Efficient Programming.

5

APiE Exercise – Molecular Dynamics (MD) for Solids 1D

Exercise 1

Goal is to set up a linear 1D (one-dimensional) chain. First, generalize your linear spring
ODE-program to 2 “particles” or atoms connected by one spring (see APiE-script).

Recommendation: Preparation for future programming in 2D:
Using the linear spring model, implement in your solver the interaction force using the normal
vector n̂ = (~xi − ~xj)/|~xi − ~xj |, and the departure from the equilibrium position length δ =
|~xi − ~xj | − xe. Take care that the sign is correct.

Implement the force calculation in a function that receives the two particles and returns the
force (scalar in 1D, vector in 2D). Then establish for each particle a loop over all particles it
has a spring-connection with (this will be relevant below for the linear chain and later for 2D)
and sum up all forces acting on a particle. For each particle pairi (i,j), the forces acting on i
by j and reverse are related by fi←j = −fj←i.

Note: Make sure that you program modular. Separate variable definition, input, output, force-
calculation and integration clearly as different modules – or functions.

Display the motion of the pair of particles for some time and also display the total energy and
the kinetic and potential fractions.

Exercise 2

Generalize the program to N particles and implement:

(a) a linear chain with 11 particles, see Fig. 1

Figure 1: Linear Chain

The first and the last particle are connected to a fixed wall. The distance between the particles
is xe and this is equal to the equilibrium length of the springs. The central particle gets an
initial velocity v0, all the other particles have initial velocity equal to zero.

Display the motion of the particles (in a graph).

6

(b) Write a function for the force-calculation using the method from above, such that the force
calculation appears only once per particler-pair in the program. For this implement a loop over
particle pairs.

Exercise 3

Visualize the movement of the particles in a movie. Let the color of each particle give a measure
of the velocity of the particle.

Exercise 4 (Voluntary now – 2D is subject of the exercise MDSolids2D)

Generalize the pair of particles to a 2D (voluntary – 2 extra points are given for generalization
to 3D) a square-system with N=10x10 particles, see Fig. 2. Advice: Implement the number of
particles as a variable!

Assign to the top particle on the right side an initial vertical and horizontal velocity v0, as
shown in Fig. 2. All the other particles have initial velocity equal to zero, while their pair-wise
separations are all equal to xe. Set different spring stiffnesses for the vertical, horizontal, and
diagonal springs.

Figure 2: Square Lattice, where the bottom row is restricted to horizontal motion only y =
const. and the left-most particle is also fixed in horizontal direction x = const..

7

Hints:

Make sure that you split the force-calculation and the integration (Verlet or Runge-Kutta)
loops. Make sure that you set forces to zero at each new time.

Here an example algorithm (but better also see the script):

Loop 1: integration loop over time (ti = ti−1 + dt)

• reset ALL forces (fx[.] = 0)

• Loop 2: over all particles (i<Nmax)

– Loop 3: over all contact partners (j<i)

∗ distance dist=sqrt((x[i]-x[j])*(x[i]-x[j]))

∗ normal nx=(x[i]-x[j])/dist

∗ overlap delta=rad[i]+rad[j]-(x[i]-x[j])*nx

∗ contact: if delta>0

· relative velocity (vrel=-(vx[i]-vx[j])*nx)

· interaction force (fx[i]=(k*delta+v*vrel)*nx)

· partner interaction (fx[j]=-(k*delta+v*vrel)*nx)

– end Loop 3

• temporary store position (xtmp=x[i])

• integrate (x[i]=2*xtmp-sx[i]+fx[i]/m[i]*dt*dt)

• save old position (sx[i]=xtmp)

• end Loop 2

• increase time (t=t+dt)

end Loop 1

end program

8

APiE Exercise - MDSolids2D

Consider the 2D spring network as shown in APiE Exercise MDSolids1D and below in Figure
3. (Each spring with masses is equivalent to a truss, as introduced later in the finite element
part of the APiE-course.)

Figure 3: Square Lattice with nearest neighbor bonds and with additional diagonal bonds. The
lowermost row of springs is connected to the wall, which can be represented by particles that
do not move vertically - they are free to move horizontally. Only the lowermost left particle is
fixed (constrained) in both directions!

We will now simulate a truss-network, i.e., a mass-spring network, which represents a 2D-solid,
by a Molecular Dynamics (MD) simulation. Particles/atoms all have equal mass, here, and
are connected by linear springs, which can be different (vertical/horizontal vs. diagonal). This
system will also be solved in the FEM part of the APiE course.

• Choose the mass of the particles such that the mass of the total system is equal to the total
mass of the truss-elements (springs) in the (square+diagonal-network) FEM simulation.

The parameters used in the FEM exercise are given here: Each truss/spring has a cross-
sectional area A = 0.0031m2, density ρ = 7800 kg/m2, and length 1 m (horizontal and
vertical) resp.

√
2 m (diagonal). Then the total mass is

[(2 · 9 · 10) · L0 + 2 · 92 ·
√

2L0] · A · ρ = 9892.1 kg

Thus, each particle weighs m = 98.921 kg. Verify this calculation.

• Choose the spring constant k such that the spring retains its Young’s modulus of E =
F/A

∆L/L
= 210 GPa. Note: The diagonal springs have different constants than the vertical

and horizontal springs.

The Young’s modulus satisfies E = FL
A∆L

. A linear spring satisfies F = k∆L. Thus,
k = EA

L
= 6.5100 108 N/m for horizontal and vertical springs, k = 4.6033 108 N/m for

diagonal springs. Verify this calculation.

9

• In some cases, the MD result has to be relaxed, i.e., the kinetic energy has to be dis-
sipated. Then, choose a uniform damping coefficients γ = 65020 kg/s such that the
horizontal/vertical springs have a restitution coefficient of ǫ = 0.5, where the restitution
coefficient is defined as the velocity after a half-period of the damped harmonic oscillator,
divided by the initial velocity. Give the analytical solution for a mass-spring system from
the ODE exercise, and for a two particle system from the MDSolids1D exercise.

The oscillation frequency of the springs is now ω =
√

2k/m − (ν/m)2, the collision time
is tc = π/ω. You should use a time step of ∆t = tc/50.

Exercise 1 (Implementation 5 pts. + animation 2 pts.)

When the structures are implemented in the 2D MD code, give an initial velocity to the upper
right particle and animate the motion in a movie. Explain the differences/similarities in the
reaction of the two structures.

Exercise 2 (Moduli and sound-speed measurement 3 pts.)

This question is equal to the FEM exercise, only here we use MD. After you have done both MD
and FEM, comment on the agreement/disagreement between the two methods.

Using MD simulations, obtain the results for the Young’s modulus Estruc, the shear modulus
Gstruc, the Poisson ratio νstruc and sound speed Vs of the bulk structure – and compare them to
the finite element simulation results (when they are available later). For more details see the
script.

(a) The Young’s modulus is defined as the ratio of longitudinal stress and strain, Estruc =
Fy/d/Lx

∆Ly/Ly

, where Fy is the total vertical force on all top-row particles (nodes), and d is the depth

of the system (for trusses (see FEM exercise) the thickness has to be explicitly computed from
the given data, i.e. from the area A = πd2/4). The vertical longitudinal strain is the ratio
of change of length to initial vertical length. Apply 10 kN vertical load in the positive (up)
direction to all nodes (particles) in the uppermost row of the structures.

(b) From the same simulation, the Poisson-ratio can be measured as the ratio of (changes of)
horizontal to vertical lengths νstruct = ∆Lx

∆Ly

.

(c) The shear modulus is defined as the ratio of shear-stress and -strain, Gstruc = Fx/d/Lx

∆Lx/Ly

, where

Fx is the total horiontal force on all top-row particles (nodes). The shear-strain is the ratio of
change of horizontal position to the vertical height. For this, apply 10 kN horizontal load in
the positive (right) direction to all nodes (particles) in the uppermost row of the structures.

(d) Estimate the speed of sound (roughly) in the structure by observing the time ts it takes for
the applied force at the top (or the applied initial velocity from Ex.1) to become visible at the
bottom. The speed can then be computed as Vs = L/ts.

10

For the tests, plot the kinetic to potential energy ratio as a function of time. How long does is
it take until the kinetic energy is dissipated? Which criterion did you use? How does it change
for different damping coefficients?

How does this change if you add so-called “global” background-damping, i.e., a damping force
that is ~fi = −γ~vi negative proportional to the velocity of each particle relative to the back-
ground.

After each relaxation, check that the displacement at the left and right is “homogeneous”, i.e.,
the left and right nodes are aligned on a line. Discuss your observations.

Exercise 3 (Voluntary extra: 4 pts.)

Make the packing anisotropic. Either cut one of the diagonal springs, or make, e.g., the vertical
springs stiffer. Note that for anisotropic systems, one has to measure the Young- and Shear-
moduli in all directions, since they are not equal anymore.

Perform the same operations and calculations as above. Report and describe the differences.

Hint: look again at the hint of MDSolids1D

11

APiE Excercise – 1D FEM code for bar

(Note: You are NOT required to hand in solutions to this exercise.)

Goal:
Understand the various parts of the 1D Matlab code demonstrated in the lecture and carry out
the following tasks:

1. Determine the analytical solution of the PDE below and compute the error between
analytical solution and the Finite Element solution, plot the curve of this error w.r.t
number of element in FEM.

d

dx

(

E(x)
du

dx

)

= f, x ∈ [0, 1]

and u = 0 at x = 0 and f = x and assume E(x) = E0 = 1.

2. Modify the 1D Matlab code provided during the lecture to accomodate a spatially varying
Young’s modulus of the bar such that,

E(x) = E0(2 − x)

Where E0 is a constant value.

3. Check the Eigen values/shapes of the global stiffness matrix, How does it differ from the
case with constant E0?

4. Now modify the code provided such that Young’s modulus is spatially constant but de-
pends on the displacement ’u’ itself, i.e. system is nonlinear,

E(u) = E0(1 − du/dx)

(Hint: To solve Non-linear problems you need iterative methods like Newton-Raphson)

Success!

12

APiE Excercise – FEM for 2D Trusses

Consider a 2D truss as shown in Fig.1. The horizontal and vertical truss elements have an
initial length L0= 1m and the diagonal elements have an initial length of

√
2L0. All members

have E = 210GPa, A = 0.0031m2 and ρ = 7800kg/m3 . Constrain all the bottom nodes in
vertical direction only (free along X) and constrain all the left side nodes in horizontal direction
(free along Y),

Figure 4: 2D truss model system (see text for details)

1. Apply a load 100 KN to the top right node +Y direction and use a finite element method to
compute the displacement of this node. Compute the lowest 6 eigenpairs (eigenvalues and
eigenvectors (also called mode shapes) of the stiffness matrix, check Matlab eig function
for this). Plot the mode shapes and discuss your plots.

2. Considering the system as a solid structure, compute the Young’s Modulus (Estruc), Shear
Modulus (Gstruc) and Poisson ratio (νstruc) of the bulk structure using the following for-
mula’s ,

(a) Apply a 10 KN vertical load (+Y direction) on all the top nodes of the structure
measure the elongation (∆L).

Estruc =
Longitudinal Stress

Longitudinal Strain
=

TotalLoad/(d W)

∆L/L

Where, TotalLoad is sum of all the loads on the top nodes, and d is the cross-sectional
diameter of the truss members (Compute using A = πd2/4).

(b) Also measure the change in width (∆W) of the structure and compute Poisson ratio
as,

ν =
Change in transverse length

Change in longitudinal length
=

∆W

∆L

13

(c) To measure shear modulus first remove all the constraints on side nodes and fix all
the bottom nodes in Y-direction, also fix just one corner(bottom) node in both X
and Y directions. Now, apply a shear load (+X direction) of 10 KN on all the top
nodes and compute Gstruc as follows,

Gstruc =
Shear Stress

Shear Strain
=

Total Load/(d W)

∆W/L

here, ∆W is the displacement of the top left node.

3. {Optional: For extra points only} Solve the dynamic/transient case of this problem by
the finite element method. To do this formulate mass-matrix of the structure and solve
[Mglobal]{Ü} + [Kglobal]{U} = {f}. Assign to the top node on the right side an initial
horizontal velocity V0 = 0.02m/sec Hint: This implies {f} is zero, only initial condition
drives the system. Visualize the motion of the truss in a movie. Use Newmark scheme and
lumped mass matrix approach. Compute the lowest 6 eigenpairs (Solve the generalized
eigenvalue problem). Plot the mode shapes and discuss your plots.

(a) Estimate the speed of sound (roughly) in the structure by observing the time ts it
takes for the top-displacement to become visible at the bottom. The speed can then
be computed as Vs = L/ts.

14

APiE Excercise – FEM for 2D Trusses (Hint)

This is a quick overview of the steps for solving the Exercise FEM for 2D Trusses. As usual, there
are different ways to implement the code - some more and some less efficient. For extremely
large networks (1000 x 1000 or more) efficient solution techniques also matter and involve
using sparse matrices, preconditioners and iterative solvers such as conjugate gradient etc. (see
script/lecture for more details).

General Instructions:

• A mass-spring network is given, which is similar to a network of bars in compression/ten-
sion only i.e. a truss. Each node in the truss can move in both x,y directions (except
nodes that are fixed at the bottom).

• As shown in the script (and lecture) you can write the FEM stiffness matrix for each
bar/spring in the network. Given case is simple since there are only two orientations (0,
90) in the network. We STRONGLY encourage you to write a -function- which returns
an element stiffness matrix (and force vector) and not compute matrix for each member
individually. Thus, in Matlab you can have a function as follows,
function [Ke, Fe]= esf 2d(E,theta)

—compute element stiffness matrix—
—compute element force vector—

return Ke, Fe;

end

You may want to code it for arbitrary orientation (θ) and stiffness E or keep matters
simple for now.

• Call the above function from the main program and assemble the element matrices in a
global (big) matrix and apply boundary conditions and solve.

Algorithm

Step 1: Create a global numbering for each node in the network, store node locations (x, y) in
a matrix.
Step 2: Create a connectivity array for all the elements in the network for e.g,
Elem(1,1) = 1;
Elem(1,2) = 7; %Element no. 1 is connected to global node number 1 and 7%
etc. ...

Step 3: Initialize element stiffness matrix([Ke]) and element force vector ({Fe}) to zero.
Step 4: Initialize a global stiffness matrix ([K]) and global force vector ({F}). Determine the
size based on total number of nodes × 2 .
Step 5: Loop over all the elements and compute element stiffness matrix ([Ke, Fe]=esf 2d(200,90)
etc.) and add [Ke] and {Fe} to [K] and {F} based on connectivity array.
Step 6: Apply boundary conditions i.e. remove rows and columns corresponding to the nodes
which are fixed, this will reduce the size of your global stiffness matrix.
Step 7: Solve, {U}= [K]\{F} .

Succes!

15

APiE Exercise – Random Numbers

Exercise 1 – RNG (2pts.)

Implement a small Random Number Generator (RNG) yourself.

xi+1 = (c ∗ xi)modp (2)

with start “Seed” x0 6= 0.

Advice: Define a function rng init(seed) that initializes the RNG and a second function
rng irand() that returns the integer random number, and another function rng rand() that
returns the random real number between 0 and 1.

While doing this, check for the smallest and the largest (integer) number the RNG returns and
also check the period for:
a) p = 215 − 1 and c = 171, and 65539
b) p = 231 − 1 and c = 171, and 65539
What are the values?

From now on, in all following exercises, use your simple RNG and a matlab built-in. For some
exercises also use a “bad” RNG in order to see and understand what is going wrong. Comment
for all exercises on the results/performance of either.

Exercise 2 – Tests (3pts.)

Choose a seed number.

Perform the square test with your RNG – and with the built-in MATLAB random number
generator (which one did you choose?). Perform the following tests for your RNG and the
MATLAB RNG.

Compute the average of the random numbers for M = 1, 10, 107.

Compute the standard-deviaton of the random numbers for M = 1, 10, 107 and scale them
by the mean.

(Voluntary) Compute the χ2 average of the random numbers for M = 1, 10, 107, e.g. using
the matlab function, and evaluate the shape and quality of the RNG.

Use the MATLAB Fourier-transform in order to analyse a series of 1024 random numbers.
Explain, discuss the result.

16

Exercise 3 – Random Walk (3pts.)

Implement a simple 1-dimensional random walk starting at x0 = 0, with ∆t = 1 and ∆x = 1
and compute 〈x〉 and 〈x2〉. Plot both as function of time for the two RNGs used for 220 (time)
steps.

What is the diffusion coefficient of this simple random walk expressed in ∆t and ∆x?

Plot the probability distribution of positions after 220 steps and compare it (fit it) with a
Gaussian function. Discuss the relation between the width of the Gaussian and the distribution.

(Voluntary 2pts.) Write down (find) the differential equation that is solved by this Gaussian
function. Solve the differential equation with another numerical method and with the random
walk and compare the models, parameters, performance.

Exercise 4 – Integration (2pts.)

Compute π using your RNG and the MATLAB RNG. (From integration of a quarter circle, by
choosing random points and counting them if they are inside the circle-section.)

How many random numbers do you need to get π with 2,3,4,5,6 digits accurate?

Do the same using a threee-dimensional integral of a sphere.

Exercise 5 – Fractal (Voluntary 4pts.)

Implement the Random Midpoint Displacement Fractal, based on a square-lattice and iterate
until level 8. Display the result with the MATLAB surface function and choose a nice color-
scale.

17

APiE Exercise – MDFluids

Exercise 1 (2 pt)

The motion of the damped harmonic oscillator is described by the differential equation:

m
d2x(t)

dt2
= mẍ = −kx(t) − γ

d

dt
x (3)

where m is the mass, k is the spring-constant, x(t) is the position and d2x/dt2 is the second
time-derivative of x(t).
Get analytically the solution of Eq. (3) for initial conditions x0 = x(0) and v0 = ẋ = v(0) and
plot it as function of time.

The equation is dimensionless with the parameters k = 0.1, γ = 10−4, m = 1, and initial
conditions: x0 = 0, v0 = 0.1. What is the period T and the frequency ω? The unit of length is
σ0 = 0.1mm, the unit of density is ρ = 2000 kg/m3 and the unit of velocity is v0 = 0.001ms.
What is the period T and the frequency ω in these dimensions?

That was the simple question.
Now make a table with 5 columns:
First column: name of quantity ... all of them ...
Second column: quantity as used in the simulation (dimensionless)
Third column: quantity with dimensions
Fourth column: quantity with dimensions (use SI-units!)
Fifth column: different new units - see next Ex.2.
Plot the kinetic and potential and total energy of the harmonic oscillator as function of time
(together) in dimensionless units. Now translate the dimensionless units to SI-units and plot
the same quantities again with units.

Exercise 2. (1 pt.)

Make the equation dimensionless using different units and report the results in column 5 of
the table in SI-units. Now, the unit of time is t0 = 2.161 × 10−12 s, the unit of length is
σ0 = 0.34 nm. (This corresponds to Argon.) Choose the unit of energy that the initial kinetic
energy corresponds to T0 = E0/kB = 273Kelvin.
Insert the results in the table above and plot the corresponding energies in the new units as
function of time.

As you will see the numbers are very ugly. This would change if you would simulate argon
atoms and non-dimensionalize those.

Exercise 3. (2pt.)

Use your old MD program with the square-system connected by springs. Run it to see if it still
produces the same results.

18

Change the initial conditions that all particles are at rest and only particle (1, 1) (at bottom-
left) gets velocity [1, 1], moving inside the system. Run again.
(i) Change the interaction force (linear spring) such that there is f = 0 when the particles

are further away than rc and ~fij = k(rij − req)~nij otherwise, with rc the cutoff length, req the
equilibrium length, k the spring stiffness, and ~n the unit-direction vector ~niij = (~rj−~ri)/|~rj−~ri|.
Use rc = req = l0, where l0 is the spacing of the lattice.
(ii) Change the boundary conditions such that the particles at the outside are NOT moving.
Only the particles inside are moving.
(iii) Run the simulation again - and enjoy.

Plot the total energy of the system as function of time. Plot also kinetic and potential energy.
Describe and explain what is happening.

Exercise 4 (2pt.)

Change the interaction force to the Lennard-Jones force with rc = l0 and ǫ = 1 such that the
cut-off happens in the minimum of the potential. (This leads to a purely repulsive LJ-potential
and -force). Plot the total energy of the system as function of time. Plot also kinetic and po-
tential energy. Describe and explain what is happening. Compare to the previous simulations
above. Set the energy unit such that they become comparable in energy.

Exercise 5 (1pt. + 3pt.)

ALTERNATIVE (collaboration is encouraged! 2pt. extra):
(i) Keep the system as is and jump to the next task.
(ii) Implement flat walls outside your system – l0 away from the outermost particles.
(iii) Implement periodic boundaries.
Then: Compute the pressure in the system according to the force on the walls – not for (iii) –
or using the Virial theorem.
Compute (and plot) the pressure for different densities and/or different temperatures.

Exercise 6 (1pt. + 3pt.)

ALTERNATIVE (collaboration is encouraged! 2pt. extra):
(i) Compute the velocity distribution function – first in each direction, f(vα), with α = x, y, z
and then the f(|v|). Plot the functions and fit them with either Gaussian or Maxwell distribu-
tion. Compare the fit-factors with temperature - are the results consistent?
(ii) Compute the pair correlation function – of particles away from the wall. For this the
system has to have a certain minmal size. Compare the pair-correlation functions for different
densities/temperatures.
(iii) Compute the 〈r2〉 and from that the diffusion coefficient.

19

APiE Exercise – SPH

Exercise: Sod Shock (1D) using SPH (20 pt. total)

The Sod Shock is a common test case for CFD codes. It involves the simulation of a 1D Riemann
problem for an ideal gas. To the left of a discontinuity at x = 0 the parameters of the gas are
(vl, ρl, Pl) = (0.0, 1.0, 1.0). To the right the parameters are (vr, ρr, Pr) = (0.0, 0.125, 0.1).

Use SPH to calculate the evolution of a Sod Shock over the spatial domain −0.5 < x < 0.5.
Write a report on your solution at t = 0.2s. Include plots of the density and the thermal
energy and discuss the solution near the front of the rarefaction wave (see label ’A’ in Figure
1), the contact discontinuity (label ’B’) and the shock (label ’C’). As a guide, Figure 1 shows
the analytical solution for the density at t = 0.2s. Compare your solution against this plot.

Figure 5: Plot of density at t = 0.2s for the given Sod Shock parameters

Use the following equation of state for an ideal gas in terms of the density ρ and thermal energy
u

P = (γ − 1)uρ, (4)

20

with an adiabatic index of γ = 1.4. This parameter choice is due to the test case specifications.
For a more detailed explanation of the Sod Shock parameters and the equation of state used,
please see the paper by Sod [G. A. Sod, A survey of several finite difference methods for systems
of nonlinear hyperbolic conservation laws, J. Comp. Phys. 27(1):131, 1978].

Implement the following SPH equations for density, acceleration and rate of change of thermal
energy for particle a:

ρa =
∑

b

mbWab (5)

dva

dt
= −

∑

b

mb

(

Pa

ρ2
a

+
Pb

ρ2
b

+ Φab

)

∇aWab (6)

dua

dt
=

Pa

ρ2
a

∑

b

mbvab · ∇aWab (7)

where vab = va − vb.

Use the following form for the artificial viscosity in order to stabilise the shock

Φab = −Kvsig(vab · xab)

ρab|xab|
(8)

with K = 1.0 and signal velocity vsig = 0.5(ca + cb − 4vab · x̂ab). Only apply the viscosity for
particle pairs that are approaching each other (vab · xab < 0).

Integrate the particle variables using the following timestep

∆t = 0.3 min

(

ha

vsig

)

(9)

where the function ’min’ calculates the minimum value over all the SPH particles.

Use the following kernel function

W (r, h) =
2

3h

1 − 3

2
(r/h)2 + 3

4
(r/h)3 for 0 ≤ r/h < 1

1

4
[2 − (r/h)]3 for 1 ≤ r/h < 2

0 for r/h ≥ 2
(10)

and use a symmetric kernel between particle pairs (e.g. Wab = W (xa − xb, 0.5(ha + hb))).

Use a smoothing length that varies with the density so that

ha = 1.3
ma

ρa

(11)

21

It might be easier to modify one of your old MD codes to an SPH code rather than write it
from scratch. Compute the SPH-hydrodynamic acceleration using Eq. (6) and use it instead of
fi/mi in the MD program for integration. Integrate the thermal energy u in the same manner
as the particle velocity using Eq. (7). At the beginning of each acceleration computation make
sure to update the density using Eq. (5) and the pressure P using the given equation of state
in Eq. (4).

Hint: In order to model the initial density discontinuity, use different particle spacings to the
left and right of x = 0. Aim to use approximately 450 particles, but feel free to experiment.

Hint: Do not evolve the variables for the first and last 4 particles in the line. These particles
will model the boundary condition.

Hint: For radially symmetric kernels the following applies:

∇aWab =
rab

|rab|
∂Wab

∂ra
. (12)

22

APiE Exercise - Finite Volume Methods (Scalar Eqn’s)

Part (i) is compulsory and is required to pass the assignment. The other parts are all optional
and are only required for the higher grades. It should be noted that part (ii) − (iv) are
independent i.e. it is possible to complete (i) and (iii) or (i) and (iv) only etc...

(i) Write a simple finite volume code to solve the one dimensional linear advection equation
(without limiters)

∂ρ

∂t
+

∂ρ

∂x
= 0.

Implement inflow on the left and outflow conditions on the right. Choose a numerical flux.
Consider both

(a) square wave initial conditions

ρ(x) =

0 0 ≤ x ≤ 1
1 1 < x ≤ 3
0 3 < x ≤ 10

and (b) triangular wave initial conditions

ρ(x) =

x 0 ≤ x ≤ 1
(2 − x) 1 < x ≤ 2

0 2 < x ≤ 10

In the report please show the time evolution of the solution and explain how you implemented
the boundary conditions.

(ii) Optional: Repeat question(i) for the one dimensional inviscid Burgers equation

∂ρ

∂t
+

1

2

∂ρ2

∂x
= 0.

(iii) Optional: Investigate the effect of adding a limiter, try minmod, superbee and Woodward.
Comment on which gives the best results for each problem.

(iv) Voluntary +1 points: For the problem in (i) find the exact solution. For different
grid resolutions consider the difference between the exact solution and your numerical solution.
Hence comment on the error in your numerical method as a function of the grid size.

23

APiE Exercise - Finite Volume (System of Equations)

Exercise 1

Part (i) and (ii) is compulsory and is required to pass the assignment. The other parts are all
optional and are only required for the higher grades.

Extend your finite volume code to solve the isothermal Euler equations, which are of the form

∂~ω

∂t
+

∂ ~f (~ω)

∂x
= 0,

with

~ω =

(

ρ
ρu

)

and ~f =

(

ρu
ρu2 + a2ρ

)

(i) Initially solve the equations in a unit domain with inflow on the left and outflow on right
side, with uniform density ρ = 1 and velocity u = 1. Prescribe as inflow ρ = 0.5 and u = 1.
Plot the evolution of the solution until it reaches steady state.

(ii) Place a partition wall at x = 1 and give the fluid a uniform density and zero velocity to
the left of this wall, place no material to the right of the wall (you may need to place a small
density to the right). Start you code at t = 0 with the wall already removed. Plot the evolution
of the density profile with time. You should see a sharp front (shock) propagating into the
empty space.

(iii) Optional: Change to solid walls at x = 0 and x = 2.

(iv) Optional: Investigate the effect of implementation a limited for case (ii).

(v) Optional: Add a Hancock predictor step, i.e. change the scheme into a Modified Total
Variation Diminishing Scheme (MTVDLF). Comment of the effect of adding this step. You
may want to also use the problem from the previous examples sheet, were you could write down
the exact time-dependent solution (Note: The wave speeds for the Euler equation are u±|a|).

Exercise 2 (Voluntary +3 points)

ADVANCED : Use dimensional splitting to extend your code to two dimensions. Consider a
square domain with all solid walls and the initial conditions

ρ(x, y) =

{

0.1 0.5 > (x2 + y2)
1 0.5 ≤ (x2 + y2)

and u = 0 and v = 0 everywhere.

This problem is a circular explosion trapped in a square room.

