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Summary 

Fiber is the main load bearer for engineering structures such as composites and rope. 

With characteristics such as superior mechanical strength, lightweight and flexible, 

synthetic fibers have replaced metals in many engineering applications. Due to its 

cylindrical body, contact between adjacent fibers can be subjected to various contact 

conditions, depending on the skew angle between the fibers. Fibers have large surface 

area-to-volume ratio, hence fiber contacts can be influenced by the surface forces such as 

adhesion. Adhesion in fiber contacts is governed by various factors such as surface 

roughness, intermolecular distance and the environment.   

There are various contact models available that can describe adhesive contacts. 

However, none of these models can describe adhesive elliptical contacts that are 

influenced by the angle between the contacting bodies and occur between materials that 

are neither rigid nor highly elastic. Hence, the development of an adhesive contact model 

for elliptical contacts is essential. 

In this thesis, the adhesive contact mechanics between fibers are investigated in 

the following aspects: 

1. A contact model to describe the elliptical contact between cylindrical bodies with 

adhesion has been developed, for a range of skew angles. Realistic geometry 

assumptions on the load-dependent adhesive region have also been developed 

numerically. 

2. An adhesion map for elliptical contacts has been constructed to guide the selection 

of suitable contact models. The construction is based on the aforementioned 

adhesive contact model. 

3. The presence of adhesion has been shown to be significant in the contact between 

fibers in hierarchical structures. 

 

 

 

 

 

 

 

 

 

 



 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

 

Samenvatting 

De vezel is de belangrijkste lastdrager voor technische constructies zoals composieten en 

touw. Met eigenschappen zoals betere mechanische sterkte, lichtgewicht en flexibiliteit, 

hebben  synthetische vezels metalen vervangen in vele technische toepassingen. 

Vanwege het feit dat vezels een cilindervormig lichaam hebben, kan het contact met  

naburige vezels worden onderworpen aan verschillende contactomstandigheden, 

afhankelijk van de hoek waaronder de vezels contact maken, in het vervolg hoek van 

scheefstand genoemd. Vezels hebben een grote oppervlakte / volumeverhouding. 

Adhesie, als oppervlakteverschijnsel, speelt daarom geen grote rol in het contactgedrag. 

Adhesie in vezelcontacten wordt in het algemeen  bepaald door verschillende factoren 

zoals oppervlakteruwheid, intermoleculaire afstand en de omgeving. 

Er zijn verschillende contactmodellen beschikbaar in de literatuur die de adhesie in 

dergelijke contacten kunnen beschrijven. Echter kan geen van de modellen beschrijven 

hoe de adhesie in de elliptische contacten wordt beïnvloed door de hoek van scheefstand 

tussen de vezels,  waarvan de materialen noch stijf noch zeer elastisch zijn. Daarom is de 

ontwikkeling van een contactmodel voor elliptische contacten, inclusief de invloed van 

adhesie, van essentieel belang. 

In dit proefschrift worden de volgende aspecten onderzocht: 

1. Er is een model ontwikkeld dat een adhesief contact tussen twee cilindrische 

lichamen akn beschrijven voor verschillende hoeken van scheefstand. De 

geometrie van het contactgebied en de adhesieve zone zijn bepaald middels 

numerieke berekeningen. 

2. Een adhesiemap voor elliptische contacten is geconstrueerd om de selectie van 

geschikte contactmodellen te begeleiden. De constructie is gebaseerd op het 

hiervoor genoemde adhesie-contactmodel. 

3. Naast dat er aandacht besteed wordt aan contacten tussen enkele vezels, worden 

ook enkele  hiërarchische structuren bestaande uit vezels onderzocht om te zien of 

adhesie inderdaad van belang is in een dergelijk contact. 
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Nomenclature 

*Nomenclature is divided into chapters to correlate with papers. 

 

Chapter 2 

𝑎, 𝑏     Semi-major and semi-minor axes of the contact ellipse 

𝑐, 𝑑      Semi-major and semi-minor axes of the adhesive ellipse 

𝛽0    Ellipticity ratio at initial loading 

𝛽(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)   Ellipticity ratio at pull-off moment 

𝛽𝐽𝐾𝑅(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)   Ellipticity ratio at pull-off moment from the JKR elliptical model 

𝛽    Ellipticity ratio throughout contact 

𝛽𝑎𝑏 = 𝑏 𝑎⁄    Ellipticity ratio of the contact ellipse 

𝛽𝑐𝑑 = 𝑑 𝑐⁄     Ellipticity ratio of the adhesive ellipse 

𝑟     Radial coordinate 

𝜃𝑝     Angular coordinate 

𝑟𝑎𝑏     Radial coordinate of the contact ellipse 

𝑟𝑐𝑑     Radial coordinate of the adhesive ellipse  

𝜃𝑠𝑘𝑒𝑤     Angle between crossing cylinders 

𝐸∗     Reduced Young‟s modulus 

𝐸1, 𝐸2      Young moduli of the contacting materials 

𝑅𝑐      Radius of cylinder 

𝑅′, 𝑅′′     Principal relative radii of curvature 

𝑅 = √𝑅′𝑅′′    Equivalent radius 

𝜗     Poisson‟s ratio 

𝜇    Tabor parameter 

𝑘 = (1 − 𝛽2)1 2⁄   Elliptic modulus (eccentricity)  

𝑘′ = (1 − 𝑘2)1 2⁄    Complementary elliptic modulus 

𝜑 = sin;1(𝑎 √𝑙 + 𝑎2⁄ )  Second argument of the incomplete elliptic integrals 

𝑲(𝑘)     Complete elliptic integral of the first kind  

𝑬(𝑘)     Complete elliptic integral of the second kind  

𝑭(𝜑, 𝑘)   Incomplete elliptic integral of the first kind  

𝑬(𝜑, 𝑘)    Incomplete elliptic integral of the second kind  

𝑣    Scaling factor to keep σ0 and Δγ at a constant value 

𝑊     Applied load of single asperity 

∆𝛾     Work of adhesion 
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𝑃𝑜𝑎𝑏    Maximum pressure of the contact ellipse 

𝑃𝑜𝑐𝑑    Maximum pressure of the adhesive ellipse 

𝜎0    Maximum adhesive stress 

𝜔𝑖𝑛𝑎𝑏
    Surface displacement within the contact ellipse 

𝜔𝑜𝑢𝑡𝑎𝑏
    Surface displacement outside the contact ellipse 

𝜔𝑖𝑛𝑐𝑑
    Surface displacement within the adhesive ellipse 

𝜔0𝑎𝑏    Combined surface displacement for 0 ≤ r ≤ rab 

𝜔𝑎𝑏𝑐𝑑    Combined surface displacement for rab ≤ r ≤ rcd 

𝛿    Approach of distant points 

𝑧    Initial gap in contact area 

ℎ    Separation between surfaces in the adhesive region 

 

Chapter 3 

𝑎, 𝑏  Semi-major and semi-minor axes of the contact ellipse at the 

pull-off moment 

𝑐, 𝑑  Semi-major and semi-minor axes of the adhesive ellipse at the 

pull-off moment 

𝛽𝐻𝑒𝑟𝑡𝑧     Ellipticity ratio of the Hertzian contact  

𝛽0     Ellipticity ratio of the initial contact  

𝛽𝑎𝑏     Ellipticity ratio of the contact ellipse at the pull-off moment 

𝛽𝑐𝑑     Ellipticity ratio of the adhesive ellipse at the pull-off moment 

𝑟     Radial coordinate 

𝜃𝑝     Angular coordinate 

𝑟𝑎𝑏     Radial coordinate of the contact ellipse 

𝑟𝑐𝑑     Radial coordinate of the adhesive ellipse  

𝜃𝑠𝑘𝑒𝑤     Angle between two cylindrical bodies 

𝐸∗     Reduced Young‟s modulus 

𝑅 = √𝑅′𝑅′′    Equivalent radius 

𝜇    Tabor parameter 

𝑘𝑎𝑏 = (1 − 𝛽𝑎𝑏
2)

1 2⁄
  Elliptic modulus of the contact ellipse at the pull-off moment 

𝑘𝑐𝑑 = (1 − 𝛽𝑐𝑑
2)

1 2⁄
  Elliptic modulus of the adhesive ellipse at the pull-off moment 

𝑘𝑎𝑏
′ = (1 − 𝑘𝑎𝑏

2)
1 2⁄

  Complementary elliptic modulus of the contact ellipse at the 

pull-off moment  
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𝜑 = sin;1(𝑎 √𝑙 + 𝑎2⁄ )  Second argument of the incomplete elliptic integrals at the pull-

off moment 

𝑲(𝑘)     Complete elliptic integral of the first kind  

𝑬(𝑘)     Complete elliptic integral of the second kind  

𝑭(𝜑, 𝑘)   Incomplete elliptic integral of the first kind  

𝑬(𝜑, 𝑘)    Incomplete elliptic integral of the second kind  

∆𝛾    Surface energy 

𝑣    Scaling factor to keep σ0 and Δγ at a constant value 

𝑊     Applied load of the single asperity contact 

𝑃𝑜𝑎𝑏    Maximum pressure of the contact ellipse 

𝑃𝑜𝑐𝑑    Maximum pressure of the adhesive ellipse 

𝜔𝑖𝑛𝑎𝑏
    Surface displacement within the contact ellipse 

𝜔𝑜𝑢𝑡𝑎𝑏
    Surface displacement outside the contact ellipse 

𝜔𝑖𝑛𝑐𝑑
    Surface displacement within the adhesive ellipse 

𝜔0𝑎𝑏    Combined surface displacement for 0 ≤ r ≤ rab 

𝜔𝑎𝑏𝑐𝑑    Combined surface displacement for rab ≤ r ≤ rcd 

𝑧0    Equilibrium separation 

ℎ0 = 0.974𝑧0)  Separation limit between contacting surfaces for the MD model 

𝜎0 = 16∆𝛾/9√3𝑧0  Maximum adhesive stress for the MD model 

𝑃(𝑥, 𝑦)    Applied pressure for the MD model 

𝑔(𝑥, 𝑦) Separation between two surfaces after deformation, for the MD 

model 

𝐹0    Applied load for the MD model 
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𝑟    Nanofiber radius 

𝐷    SWHS structure diameter 

𝑃    SWHS structure pitch 

𝛼1    Helical angle of the nanoyarn 

𝛽    Twist angle of a strand 

𝑅1    Center distribution 

𝜔1    Nanofiber twisting speed 

𝜔2    Nanoyarn reeling speed 

𝑛    Number of nanofibers in a nanoyarn 
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𝑎, 𝑏  Semi-major and semi-minor axes of the contact ellipse at the 

pull-off moment 

𝜃𝑠𝑘𝑒𝑤     Angle between two cylindrical bodies 

𝐸∗     Reduced Young‟s modulus 

𝑅′, 𝑅′′     Principal relative radii of curvature 

𝑅 = √𝑅′𝑅′′    Equivalent radius 

𝜇    Tabor parameter 

∆𝛾    Work of adhesion 

𝑊𝑓     Normal contact force between two nanofibers  

𝑊𝑦     Axial load of the nanoyarn 

𝑊𝐽𝐾𝑅     JKR Pull-off force between adjacent nanofibers 
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Chapter 1 

INTRODUCTION 

 

For many centuries, fibers have been the source of many basic human necessities 

including clothing, building materials and household essentials such as fishing nets. 

30,000-year-old wild flax fibers were discovered in Dzudzuana Cave, Georgia, as reported 

in [1]. The fibers were used by the primitive people to make ropes, which were used for 

securing stone weapons and for weaving baskets and garments. Some of the fibers were 

dyed in various colours including turquoise and pink, obtained from natural sources such 

as roots. The discovery also found flax fibers that were weaved in a complex manner, as 

shown in Fig. 1. 

 

Fig. 1.1: Twisted flax fibers discovered in Dzudzuana Cave, Georgia [1]. 

 

The length of fibers is greater than their width. The hierarchical nature of the fiber 

structure is shown in Fig. 1.2. Fibers (microscale) are the raw material to create yarns 

(mesoscale); the yarns are then woven into fabrics (macroscale). Fibers can be divided 

into two categories; natural and synthetic fibers. Natural fibers are obtained from animals, 

plants and minerals, while synthetic fibers are man-made using chemical processes. 
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Fig. 1.2: The hierarchical nature of the fiber structure. 

 

The demand for synthetic fibers has been increasing in recent years, in contrast to 

natural fibers. In 2014, the demand for synthetic fibers occupies a 67.5% share of the 

world fiber production, which that year recorded an annual volume of more than 96 million 

tonnes [2]. Synthetic fibers are more favoured than natural fibers due to the increasing 

demand for technical textiles with high strength and stiffness, and easier handling of the 

artificial fibers, amongst others. Compared with natural fibers, one of the major advantages 

of synthetic fibers is that they can be manufactured to cater to specific designs and 

industrial needs such as resistance to moisture, chemical and abrasion.  

The applications of synthetic fibers are versatile, as the fiber materials can either be 

applied alone or combined with a wide range of other materials. Synthetic fibers are 

normally found in applications such as:  

 Rope - Twisted fibers form the yarns which are then fabricated into strands; a 

group of strands will form a rope. Nylon is one of the common materials used to 

make ropes. 

 Composites – Advanced engineering structures as the result of combining two or 

more materials, namely the matrix and the fibers as the reinforcement. If any of 

these combined materials is used independently, it will not achieve the desired 

properties. Fiber Reinforced Plastic (FRP) and Fiber Reinforced Concrete (FRC) 

are two examples of fibers that are applied in composites. 
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 Fabrics – Fabric production requires textile fibers to be cut at optimum fiber 

length; fibers for the ring spinning process have a standard length of 4 cm [3]. 

Examples of end products are knit fabrics, laces and woven fabrics. 

 

Fig. 1.3: Aramid fibers used in rope making.  

 

There are many investigations done to develop new fibers, in a way to keep up with 

the increasing demands for high performance fibers. For example, a flexible, strong and 

sustainable material that behaves similarly as the natural spider silk was successfully 

developed, as reported by [4]; it composes of 98% of water, silica and cellulose. However, 

like other designated fibers, the mass production of the material becomes the main 

concern. Designated fibers can be so fine that a unique spinning system has to be 

designed to turn the strands into thread.  

With fibers being the basic building block of many hierarchical structures as 

discussed previously, a deep knowledge on the contact mechanics of the fiber-on-fiber 

contact is a must, to ensure that the performance of the end product is not compromised. 

Fiber-on-fiber contact can occur in many different scales of the hierarchical structure, thus 

making contact mechanics modelling an important tool to study and understand the 

behaviour of fibers in contact. Critical parameters such as the real contact area, the 

interfacial separation in the non-contact regions, and the stress distribution in the contact 

regions can be obtained from modelling the contact between fibers. 

 

1.1 Contact mechanics modelling of fiber-on-fiber contacts 

1.1.1 Non-adhesive contacts 

Contact mechanics is a study of the deformation of two solids that come into contact with 

one another. The classical solution by Heinrich Hertz of the contact between two elastic 

bodies with curved surfaces is arguably the most famous model in contact mechanics [5]. 
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This non-adhesive contact problem can be generalised to other contacts, for example the 

contact between a rigid ball and a conforming surface, as shown in Fig. 1.4. Based on the 

Hertzian theory, the applied load will result in deformations, and the two surfaces will be 

separated as the applied load is reduced to zero. The assumptions of a Hertzian contact 

are (1) the contact is between smooth surfaces, (2) the contact has small deformations 

with no surface forces, (3) no friction influence on the contact and (4) the contact is 

between isotropic materials [6]. The Hertzian model is reliable for loads above a certain 

level but below the limit of elasticity. However, it has been shown to be incompatible for 

contacts with really low loads between small bodies, such as fiber-on-fiber contacts [7]. In 

these situations, surface forces such as adhesion can significantly affect the contact 

deformation. 

 

 

Fig. 1.4: Hertzian contact between a rigid ball and a conforming surface. 

 

1.1.2 Adhesive contacts 

For small-scale contacts with really low loads such as fiber-on-fiber contacts, the 

interactions are potentially dominated by adhesion, due to the increase of surface area-to-

volume ratio as the size decreases [8]. For non-adhesive contacts, when two surfaces are 

loaded, the contact will be broken when the load is removed. However, for adhesive 

contacts, the contact between both surfaces remains at a finite value even at zero external 

load due to the two surfaces being pulled together by the attractive surface forces. This 

means that the surfaces can be separated only by a „negative‟ external force, defined as 

the pull-off force. Due to the adhesive stresses in the non-contact area, contact 

deformations are larger than in non-adhesive contacts.  

Currently, there are four main contact models developed for adhesive circular 

contacts. Using the Hertzian work as the foundation [5], the Johnson-Kendall-Roberts 

(JKR) model was developed for adhesive contacts [7]. Another adhesive theory was 

developed soon after, the Derjaguin-Muller-Toporov (DMT) model [9], the results of which 

contradicted the JKR solution. The disagreement between the two models was finally 

settled by the finding of Tabor [10], who discovered that the JKR and the DMT models are 
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actually complementary. The JKR model is suitable for highly elastic materials while the 

DMT models are relevant for the contact of „rigid‟ materials. The gap between the two 

models for materials that are neither rigid nor highly elastic is filled by the Maugis-Dugdale 

(MD) solution [11]. The Double-Hertz (DH) theory is also developed for similar contact 

conditions as the MD model, but one advantage it has over the MD model is that the 

model involves only basic mathematical formulations [12]. 

Each adhesive model has a specific validity domain. An adhesion map developed in 

[13] illustrates the applicability range for several adhesive circular models. The adhesion 

map, shown in Fig. 1.5, is plotted using the coordinates of the elasticity parameter λ and 

the load parameter W*. The elasticity parameter calculates the elastic deformation of the 

solids to the effective range of surface forces while the load parameter is the ratio of the 

applied load to the pull-off force. 

 

 

Fig. 1.5: Adhesion map for the contact of elastic spheres, from [13]. 

 

The important criterion to distinguish between the DMT and the JKR models is the 

neck formation outside the contact area, see Fig. 1.6. The Tabor parameter 

 𝜇 =  𝜎0(𝑅 𝐸∗2∆𝛾⁄ )
1

3⁄  (1) 

is used to measure the ratio of neck height to the equilibrium separation [14]. For large 

values of the Tabor parameter, the adhesive stresses outside the contact area can be 

disregarded as the surfaces are totally separated. As the material is highly elastic, a 

greater neck height that corresponds to a wider gap is formed, as shown in Fig. 1.6. For 

this contact condition, no adhesion is present outside the contact area, which is the 

characteristic of a JKR contact [7].  
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Fig. 1.6: Necking behaviour of a highly elastic surface during contact with a rigid sphere. 

 

 In the case of the DMT model [9], the presence of adhesion is significant outside 

the contact area as the adhesive stresses barely deform the surfaces, thus no neck is 

formed. The DMT contact follows a continuous and stable path until separation at a zero 

contact as opposed to the jumping separation for the JKR model [6, 7, 14], which its elastic 

deformation in the contact area is due to the combination of contact pressure and 

adhesive stress [7].  

 The MD model occupies the intermediate zone in the adhesion map, smoothly 

reconciling the difference between the DMT and the JKR models. Based on the Dugdale 

approximation, the MD model predicts that a negative constant pressure due to adhesion 

acts within an annular region outside the contact area [11].  

 The DH model is a more recent addition to the adhesive contact models. The DH 

model is not part of the adhesion map in [13] but the geometrical behaviour of its annular 

adhesive region can be considered similar to the MD model, though the negative stress is 

not constant. The negative stress of the DH model is defined by the difference between 

two Hertzian pressure distributions: it has a maximum value at the inner boundary of the 

adhesive region and decreases to zero as it approaches the outer boundary [12]. Both the 

MD and the DH models cater for materials that are neither rigid nor highly elastic, thus the 

contact behaviour of the two models varies depending on the μ values, see Fig. 1.7. As the 

μ value approaches the DMT domain, the radius a, which is the inner boundary of the 

adhesive region, becomes smaller but the gap between a and the radius c of the outer 

boundary becomes larger, which is in contrast to the behaviour of materials closer to the 

JKR domain, where the gap becomes smaller as the a value increases. 

 

 

 



 
 

7 

 

 

                                           (a)                                           (b) 

 

Fig. 1.7: Contact behaviour for both MD and DH model (a) for μ values approaching the 

DMT domain (b) for μ values approaching the JKR domain. 

 

For fiber-on-fiber interaction, there are three possible contacts that can occur locally 

between the fibers: (1) the circular contact, (2) the line contact, and (3) the elliptical 

contact. The comparison between these contacts is shown in Table 1.1, which illustrates 

the effect of the skew angle between fibers on the resulting contact area. At a skew angle 

of 90°, the resulting contact area is in the shape of a circle; at an angle of 0° where the 

fibers are parallel to each other, the resulting contact area is a line. Between the angles of 

0° and 90°, the resulting contact area is an ellipse. Fiber interactions are typically assumed 

to be line contacts so as to make the contact analysis simpler. However, considering that 

the behaviour of fiber-on-fiber contacts is not always parallel or perpendicular to each 

other, assuming elliptical contacts as the contact type between fibers are actually a more 

fitting description in many fiber contact cases. 
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Table 1.1: Typical contacts between fibers. 

 

 

So far, only the DMT and the JKR models have been extended to all three types of 

fiber-on-fiber contacts, see Table 1.2. The approximate JKR model by [15] gives an insight 

into the behaviour of adhesive elliptical contacts for highly elastic materials. It is assumed 

that the contact area remains elliptical with both major and minor axes having the same 

values of stress intensity factor. Results show that the ellipticity ratio of the contact area 

varies with applied load, in contrast to the Hertzian contact behaviour where the ellipticity 

ratio is constant throughout the contact. When the results of the JKR model are compared 

with the experimental results in [16], it is shown that the two results are similar, though the 

errors become significant as the skew angles become lower than 20°. However, the model 

does not predict detachment, as seen in the experimental results when the skew angle 

approaches 0°. A numerical simulation by [17] is shown to have closer results to the 

experiments at lower skew angles. As for the DMT elliptical model [18], adhesion 

prediction for „rigid‟ materials is based on Bradley‟s theory [19], while the contact geometry 

and the elastic deformations are obtained using the DMT approach. As the angle between 

the cylindrical bodies increases, the contact areas become smaller.  
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Table 1.2: Comparison between existing adhesive contact models. 

 DMT JKR MD DH 

Adhesive 

modelling 

Outside the 

contact area 

Inside the 

contact area 

Outside the 

contact area 

Outside the 

contact area 

Circular contact ✔ ✔ ✔ ✔ 

Line contact ✔ ✔ ✔ ✔ 

Elliptical 

contact 

✔ ✔   

Application „Rigid‟ 

materials 

Highly elastic 

materials 

„Rigid‟ to highly 

elastic 

materials 

„Rigid‟ to highly 

elastic 

materials 

 

Common synthetic fibers such as aramid are neither rigid nor highly elastic 

materials [20], thus are not suitable to employ the DMT and the JKR models. Considering 

the complexity of an elliptical contact that can vary with angles between 0° to 90°, the best 

model to be extended for an adhesive elliptical contact modelling is the DH model as it is 

simpler in mathematical formulations, than the MD model [12]. 

 

1.2 Objectives 

This study is focused on gaining insight into the microscopic interaction between synthetic 

fibers. The main objectives of the research are: 

1. Development of a semi-analytical adhesion model for elliptical contacts between 

cylindrical bodies. 

2. Validation of the developed model with existing adhesive contact models and 

experimental results. 

3. Development of an adhesion map for adhesive elliptical contacts. 

4. Investigation on the significance of the presence of adhesion in fiber applications. 

 

 The developed adhesive elliptical model is limited to frictionless contact between 

synthetic fibers, so the contact stresses are acting perpendicularly to the contacting 

surfaces. The developed model is based on the Double-Hertz theory, applied at skew 

angles between 40° to 90°, with the intent to fill the gap of the lack of an adhesive elliptical 

model for fiber materials that are neither rigid nor highly elastic. This study will not 

determine the skew angle limit for the developed model. Multiple yarn modelling is also not 
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part of this study. The nature of the selected fiber application is a simple, low order 

hierarchical fiber structure and consists of only fibers and yarns as its constituents. 

 

1.3 Outline of the thesis 

This thesis focuses on the modelling investigation of fiber-on-fiber contacts for synthetic 

fibers. The topic is described briefly in Chapter 1, followed by an explanation of the contact 

mechanics of fiber-on-fiber interactions for both non-adhesive and adhesive contacts. The 

objectives of the research are also formulated in Chapter 1.  

The body of the thesis is discussed in detail from Chapter 2 to Chapter 5, which are 

summarised from papers that are already published or submitted for publication in 

scientific journals.  Fig. 1.8 shows how the papers are divided into the four chapters. 

 

 

Fig. 1.8: Schematic outline of the body of the thesis. 

 

In Chapter 2, the development of an adhesive elliptical contact model is explained in 

detail. Validations are done by employing the developed model for nearly circular contacts 

and comparing it with existing adhesive models, both circular and elliptical contacts.  

In Chapter 3, the extension of the model is explained, focusing on the pull-off 

moment behaviour of elliptical contacts with lower skew angles. The geometry of the 

adhesive region at the pull-off moment is determined numerically, then the numerical data 

is curve-fitted to suitable equations for accurate prediction of the adhesive region at the 

Modeling fiber-on-fiber 
interaction targeting 

synthetic fibers 

Modeling 

Chapter 2 

Paper A 

Adhesive modeling 
for nearly circular 

contacts 

Chapter 3 

Paper C 

Adhesive modeling 
for elliptical contacts 

Application 

Chapter 4 Chapter 5 

Paper D 

Adhesive nanofiber 
contacts in 
nanoyarns 
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pull-off moment. Similarly to the adhesion modelling of nearly circular contacts, the 

developed model is validated by comparing it with existing adhesive models for elliptical 

contacts, and also existing experimental results. 

In Chapter 4, an adhesion map for adhesive elliptical contacts is constructed (in a 

similar way to the adhesion map in Fig. 1.5 for circular contacts) to distinguish the validity 

domain of existing elliptical models for single asperity contacts. Experimental results are 

also compared with existing adhesive models for validation purposes. 

In Chapter 5, adhesive nanofiber contacts in nanoyarns are investigated. The 

geometrical properties during the electrospinning process are based on the model of a 

Stranded Wire Helical Spring (SWHS) structure, as both nanoyarns and SWHS in general 

have similar manufacturing process. The significance of the presence of adhesion 

between nanofibers in nanoyarns is determined and various parameters are tested to see 

their effects on adhesion between nanofibers. 

In Chapter 6, the significance of adhesion in realistic fiber-on-fiber contacts is 

discussed. An analysis is made of whether it is important to include adhesion in the 

contact between fibers. The application of the developed model is also compared with the 

existing adhesive model. Furthermore, conclusions are also drawn from the research, 

together with recommendations for future modelling extensions.  
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Chapter 2 

ADHESION MODELLING OF NEARLY CIRCULAR CONTACTS 

 

This chapter focuses on the development of an extended DH model for elliptical contacts 

and its validations for nearly circular contacts. The model validations for elliptical contacts 

with lower skew angles will be discussed in Chapter 3. 

  

2.1 Introduction 

For a circular contact, prediction of the geometry in the adhesive region is straightforward 

as the deformation is constant throughout the periphery, as shown in [11]. In the case of 

an elliptical contact, it is clearly a complex interaction, involving various contact conditions 

ranging from nearly circular to slim elliptical contacts. The ellipticity ratio, β is introduced in 

Paper A of Part II to illustrate the deviation of the ellipse from the circular shape. For 

contact cases that result in an elliptical contact area characterized by semi-major axis, a 

and semi-minor axis, b, β is defined as: 

 𝛽 =
𝑠𝑒𝑚𝑖;𝑚𝑖𝑛𝑜𝑟 𝑎 𝑖𝑠

𝑠𝑒𝑚𝑖;𝑚𝑎 𝑜𝑟 𝑎 𝑖𝑠
=

𝑏

𝑎
 (2.1) 

From Eq. (2.1), the values of the ellipticity ratios are found to be within the range of 0 < β < 

1 where β values closer to one have nearly circular contact areas, which are equivalent to 

having a nearly 90° angle between contacting cylinders. β values lower than one have 

contact areas with more elongated elliptical shape, due to small skew angles, ζskew. The 

shape variations of an elliptical contact are shown schematically in Fig. 2.1. 

 

 

                                       (a)                                                    (b) 

Fig. 2.1: Variation of an elliptical contact (a) Nearly circular contacts for β value close to 1   

(ζskew ≈ 90°) (b) Elliptical contacts for intermediate values of β (ζskew < 90°). 

 



 
 

14 

 

In this chapter, the development of the DH model for adhesive elliptical contacts 

from Paper A of Part II will be explained in detail, focusing on nearly circular contacts with 

initial ellipticity ratios ranging from 0.8 to 0.99. The extended DH model is expected to 

behave similarly to the current adhesive models in the limiting case of circular contacts, for 

materials with the Tabor parameter within the range of 0.5 ≤ μ ≤ 5. Here, both contact and 

adhesive ellipses which bounded the annular adhesive region are assumed to have 

identical, fixed ellipticity ratios throughout the contact, though the limit of this assumption 

must be evaluated. The extended DH model is also expected to follow the behaviour of the 

JKR elliptical model in the JKR domain. It is shown that the pull-off behaviour in the JKR 

domain is load-dependent, as shown by the unequal growth rate of its contact area in both 

major and minor axes directions, similar to the behaviour in [15]. However, the question of 

whether the adhesive region of the extended DH model is also subjected to the load-

dependence behaviour, inside and outside the JKR domain, needs to be investigated. 

These aspects are also explored in this chapter. 

 

2.2 The development of a DH elliptical model 

 From [12], the basis of the DH model for circular contacts is that the adhesive 

tensile stresses are represented by the difference between two Hertzian pressure 

distributions of contact radius, a and adhesive radius, c, with a < c, as shown in Fig. 2.2. 

Unlike the MD model where the adhesive tensile stress is constant within the adhesive 

region [11], the maximum adhesive tensile stress of the DH model occurs at a and then 

decreases to approach a zero value at c [12].  
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Fig. 2.2: The combination of two Hertzian pressure distributions to represent adhesive 

tensile stresses. 

 

The DH theory developed in [12] has been extended to elliptical contacts in Paper A 

of Part II, with two Hertzian pressure distributions having equivalent shapes of elliptical 

contact area, the only difference being in size. The smaller ellipse acts as the inner 

boundary of the adhesive region, while the larger ellipse acts as the outer boundary, which 

both are termed as the contact and adhesive ellipses respectively, resulting in an annular 

region where the adhesion forces act, see Fig. 2.3. The contact ellipse is due to the 

applied load, and characterised by semi-major axis a and semi-minor axis b. The 

additional pressure distribution outside the contact ellipse results in the adhesive ellipse, 

characterised by semi-major axis c and semi-minor axis d, as shown in Fig. 2.3. The 

ellipticity ratio for contact and adhesive ellipses are termed βab and βcd respectively.  
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Fig. 2.3: Adhesive region for the extended DH model for elliptical contacts from  

Paper B of Part II. 

 

For non-adhesive contacts, the β value throughout the contact remains constant 

[21] and is equal to the ellipticity ratio at initial loading, β0, which can be expressed as: 

 𝛽 =  𝛽0 (2.2) 

In the case of adhesive contacts, as considered in Paper A of Part II, it is assumed that 

both contact and adhesive ellipses have equal values of ellipticity ratio during contact, 

which is expressed as: 

 𝛽 = 𝛽𝑎𝑏 = 𝛽𝑐𝑑 (2.3) 

It is acknowledged that Eq. (2.3) is not correct for adhesive elliptical contacts; it is used as 

an approximation to better understand adhesive elliptical contacts, see Paper B of Part II.  

At the pull-off moment, the relation in Eq. (2.3) becomes: 

 𝛽(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓) = 𝛽𝑎𝑏(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)
= 𝛽𝑐𝑑(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)

 (2.4) 

 

Following the Hertzian assumption for elliptical contacts in Eq. (2.2), the relation of  

 𝛽 = 𝛽(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓) = 𝛽0 (2.5) 

is maintained throughout the adhesive contact. Again, similar to Eq. (2.3), it should be 

noted that this assumption is not correct as the ellipticity ratio clearly does not remain 

constant, as discussed in Paper B of Part II. The assumptions of Eq. 2.4 and Eq. 2.5 are 

expected to be valid for nearly circular contacts with β values close to 1. These 

assumptions are also valid for materials close to the DMT domain, as these materials are 

barely deformed [9]. Derivation of the extended DH model is explained in detail in Paper A 

of Part II.  
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2.3 Results and discussion 

The extended DH model in Paper A of Part II is validated for μ values of 0.5, 1, and 

5, with β values of 0.8, 0.9 and 0.99, which represent the contacts that can be considered 

as nearly circular contacts. Following the assumptions made in [13], μ = 0.5 is considered 

the upper limit for „rigid‟ materials in the DMT domain and μ = 5 is the lower limit for highly 

elastic materials in the JKR domain. μ = 1 is selected to represent materials that are 

neither rigid nor highly elastic, as the value is between the limit of the DMT and the JKR 

domains. The assumptions from Eq. (2.2) to Eq. (2.5) are illustrated in Table 2.1, showing 

the effect of β and material types on the adhesive regions of the extended DH contact. For 

a similar initial load, the non-adhesive contacts have the smallest contact areas; for 

adhesive contacts, as seen in the results of [12], materials with higher μ values have larger 

contact areas as highly elastic materials are easily deformed compared to „rigid‟ materials. 

However, the adhesive region for materials with higher μ is smaller compared to materials 

with lower μ; this is similar to the behaviour of the JKR circular contact [7] where the 

adhesion occurs at the edge of the contact area. As shown in Fig. 2.4, from the initial load 

to the pull-off moment, both contact area and adhesive region decrease in size, while 

maintaining the assumptions from Eq. (2.2) to Eq. (2.5). After the pull-off moment, 

separation of the contacting surfaces occurs at very low pull-off force values [12]. 
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Table 2.1: Graphical representation of the adhesive region due to applied assumptions. 

 

 

 

Fig. 2.4: Contact progression from initial loading to surface separation. 

 

For β0 = 0.99, the extended DH model produces results that are comparable with 

existing adhesive circular models, see Fig. 2.5a and Fig. 2.5b. At μ = 1, both the DH 

circular model and the extended DH model have similar results. The extended DH model 

at μ = 5 also predicts similar pull-off force as the JKR circular contacts. As μ values 

increase, the pull-off force becomes lower as the contacting surfaces are highly elastic and 
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become easier to separate. However, for β0 values of 0.8 and 0.9, the extended DH model 

underestimates the pull-off force prediction, see Fig. 2.5c. As discussed in Paper A of Part 

II, the constant ellipticity ratio assumption in Eq. (2.5) limits the changes in the adhesive 

region especially in the major axis direction, hence the pull-off forces are underestimated. 

 

(a) 

 

(b) 
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(c) 

Fig. 2.5: (a) Variation of the contact semi-major axis a* with the normalised load W* for 

various values of μ (b) Variation of the adhesive semi-major axis c* with the normalised 

load W* for various values of μ (c) Variation of the contact semi-major axis a* with the 

normalised load W* for various β0 values at μ = 5. 

 

When the extended DH model adopts the load-dependence behaviour for its 

adhesive region by using the JKR ellipticity ratio at the pull-off moment, the pull-off force 

prediction does increase slightly, see Fig. 2.6. The results are still not close to the 

expected values as the DH theory models adhesion outside the contact area while the 

JKR theory models the adhesion only within the contact area. 
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Fig. 2.6: Normalized pull-off force Wmax
* as a function of the Tabor parameter μ for various 

ellipticity ratios β0. 

 

To summarise, the assumption of a constant ellipticity ratio from the initial to the 

pull-off force in Eq. (2.5) is suitable only for β0 = 0.99. For other types of elliptical contacts, 

the constant ellipticity ratio assumption in Eq. (2.5) limits the changes in the adhesive 

region, as shown in Fig 2.7, even though the contact deformations are dominant in the 

major-axis direction. The load-dependence adhesive region that is assumed by the JKR 

(β(pull-off) ≠ β0) elliptical model [15] allows the adhesive region to change without constraints. 

As the load varies, the JKR contact changes from an ellipse to a nearly circular shape at 

the pull-off moment, an observation also supported by the experimental results in [16]. 

Adhesion that acts at the edge of a nearly circular contact area requires a higher pull-off 

force for separation compared to the case of a narrow annular elliptical adhesive region, 

which is the reason why the extended DH model underestimates the pull-off force 

prediction.  
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Fig. 2.7: Evolution of the adhesive region and the contact area from the initial loading to 

the pull-off moment for the JKR elliptical model and the proposed model. 

 

2.4 Conclusion 

 The assumption of identical, fixed ellipticity ratios throughout the contact for the 

contact and adhesive ellipses that bounded the DH-based adhesive region for elliptical 

contacts is shown to be unsuitable, as seen in the limiting JKR case where the pull-off 

force is underestimated. For accurate prediction of a DH based elliptical contacts, it is 

important to take into account that both βab and βcd do change as the applied load varies. 
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Chapter 3 

ADHESION MODELLING OF ELLIPTICAL CONTACTS 

 

This chapter continues the work on the extended DH model, validating the model using 

improved, realistic assumptions on the adhesive region, for elliptical contacts with lower 

skew angles.  

 

3.1 Introduction 

For an accurate pull-off force prediction, the extended DH model must employ a realistic 

and accurate assumption of the geometry of the contact and adhesive ellipses, as they 

affect the shape of the adhesive region. Based on the results obtained in Chapter 2, the 

ellipticity ratios for contact and adhesive ellipses, βab and βcd are shown to change from 

the initial load to the pull-off moment, given by: 

 𝛽𝑎𝑏(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)
 𝛽0 (3.1a) 

 𝛽𝑐𝑑(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)
 𝛽0 (3.1b) 

At the pull-off moment, the relation between βab and βcd can be summarised as: 

 𝛽𝑎𝑏(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)
 𝛽𝑐𝑑(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)

 (3.2) 

Although the load effect on both contact and adhesive ellipses during contact is 

recognized in Chapter 2 as the correct geometrical behaviour for the DH based adhesive 

region, analytical solutions that can be used to calculate both βab and βcd values at the 

pull-off moment are unavailable. Thus, a numerical solution becomes necessary to 

accurately predict both βab and βcd values, for a wide range of adhesive elliptical contacts, 

see Paper C of Part II.  

The development of the extended DH model in Chapter 2 is continued in this 

chapter, for elliptical contacts with lower skew angles, with a new assumption which the 

adhesive region is allowed to change without the constraint of a Hertzian contact. Both 

contact and adhesive ellipses that act as the inner and the outer boundaries of the 

adhesive region have ellipticity ratios that vary with load, with both having similar values of 

ellipticity ratio at the beginning of the contact. As the contact progresses to the pull-off 

moment, both boundaries begin to change in size, with the inner boundary having a 

different ellipticity ratio compared to the outer boundary, though both boundaries are 

assumed to keep their elliptical shapes. Chapter 3 focuses on the geometry of the 

adhesive region at the pull-off moment. The work in Chapter 3 consists of two parts: (1) 

predicting the geometry of the adhesive region at the pull-off moment by using a numerical 
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model, and (2) developing equations to describe the ellipticity ratio of the inner and the 

outer boundaries of the adhesive region, and also the semi-major axis of the elliptical 

contact area at the pull-off moment. Results obtained will be compared to the numerical 

model, other adhesive elliptical models and existing experimental results for validation 

purposes. 

 

3.2  Load dependence of DH-based elliptical contacts  

Due to the assumption of a load-dependent adhesive region, several equations of 

the extended DH model from Paper A of Part II are adjusted to βab and βcd having different 

values. These selected equations can be found in Paper C of Part II. 

As mentioned before, Chapter 3 focuses on adhesive elliptical contacts at the pull-

off moment, hence both βab and βcd are now expressed as: 

 𝛽𝑎𝑏 = 𝛽𝑎𝑏𝑝𝑢𝑙𝑙;𝑜𝑓𝑓
 (3.3a) 

 𝛽𝑐𝑑 = 𝛽𝑐𝑑𝑝𝑢𝑙𝑙;𝑜𝑓𝑓
 (3.3b) 

 

In Paper C of Part II, βHertz is introduced to describe the constant ellipticity ratio 

obtained from a normal elliptical Hertzian contact. Before the ellipticity ratio changes due 

to the applied load, the assumption for the adhesive contact at the initial load can be 

summarised as: 

 𝛽0 = 𝛽0𝑎𝑏
= 𝛽0𝑐𝑑

 (3.4a) 

 𝛽0 = 𝛽𝐻𝑒𝑟𝑡𝑧 (3.4b) 

Assumptions in Eq. (3.4) are made as an approximation of the behaviour for both contact 

and adhesive ellipses; though these assumptions are suitable for materials with very low μ 

that are close to the DMT domain as these materials barely deform. 

 The geometry of DH based adhesive regions due to elliptical contacts can be 

simulated by a Boundary Element Model (BEM) with a Dugdale approximation for the 

adhesive stress, developed by [22], utilising the Conjugate Gradient Method (CGM). The 

numerical model is suitable for solving non-linear contact problems such as adhesive 

elliptical contacts where the contact geometry is unknown a priori. In the method, the 

contribution of each element in the pressure and the deformation profiles is considered 

separately. The CGM algorithm is shown in Fig. 3.1. Detailed equations of the numerical 

model are shown in Paper C of Part II. 
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Fig. 3.1: CGM based algorithm for adhesive contacts [22]. 

 

Numerical simulations are conducted for β0 values of 0.3 (ζskew = 43.63°), 0.4 (ζskew 

= 53.14°), 0.6 (ζskew = 68.51°) and 0.8 (ζskew = 80.45°), within the range of 0.5 ≤ μ ≤ 4. 

Results from the numerical simulations are obtained using the element number, N along 

the major and the minor axes of N = 2048 for 0.5 ≤ μ < 2 (the domain size is 2048 

elements x 2048 elements) and N = 4096 for 2 ≤ μ ≤ 4 (the domain size is 4096 elements x 

4096 elements). In all cases, the calculation domain is set six times larger than the contact 

domain. An increased resolution is required for larger μ values due to the small adhesive 

zone outside the contact. These values are set after repeating the numerical computations 

using various element numbers and extension factors for the contact domain to get the 

optimal numerical parameters for all contact conditions. The accurate prediction of βab and 

βcd values at the pull-off moment uses a negative load input in the numerical algorithm; this 

negative load represents the pull-off force required to separate the surfaces. The pull-off 

force is determined by the greatest negative load that first converges within 200 iterations.  

An example of the numerical model‟s results on predicting adhesive elliptical 

contacts at the pull-off moment is shown in Fig. 3.2. The results are obtained using the 

contact parameters in Table 3.1 as the input. Fig. 3.2a shows the image of three-

dimensional pressure profile within the computation domain with 2048 elements along the 

major and the minor axes while Fig. 3.2b and Fig. 3.2c show the resulting pressure 

distribution along the semi-major axis and semi-minor axis. The selected points of a and b 

are obtained from the semi-major and semi-minor axes of the contact ellipse while the 

points of c and d are obtained from the semi-major and semi-minor axes of the adhesive 

ellipse.  
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Table 3.1: Parameter of the adhesive elliptical contact at the pull-off moment. 

Parameters Values Unit 

Predicted pull-off force 75 nN 

Fiber diameter 3.5 Μm 

Skew angle, ζskew 43.63 ° 

Hertzian ellipticity ratio, β0 0.3 - 

Tabor parameter, μ 0.5 - 

Number of elements along major and minor axes, N 2048 - 

 

 

Fig. 3.2: Numerical solution for the elliptical contact (a) three-dimensional pressure profile 

for the elliptical contact (b) stress distribution along the semi-major axis and                     

(c) stress distribution along the semi-minor axis. 
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 Using the data from the numerical model, equations that can predict the values of 

βab and βcd at the pull-off moment, as a function of μ and ζskew are obtained. These 

ellipticity ratio equations at the pull-off moment are given as: 

 𝛽𝑎𝑏 =  0.3899𝜃𝑠𝑘𝑒𝑤
1.7669 + 0.0829𝜇0.3316 + 0.0233 (3.5a) 

 𝛽𝑐𝑑 = 0.4139𝜃𝑠𝑘𝑒𝑤
1.5837 + 0.7199𝜇;0.0074 − 0.5783 (3.5b) 

Using βab from Eq. (3.5a), the equation to predict the semi-major axis of the contact ellipse 

at the pull-off moment, a is given as: 

 𝑎 =  .
𝑅 ∆ 

 ∗
/
1

3⁄

(sin (1.0499𝛽𝑎𝑏
;0.1553 − 0.0648𝜇;1.1945))

2
  (3.6) 

Eq. (3.5) and Eq. (3.6) are then incorporated into the extended DH model to calculate the 

semi-major axis of the adhesive ellipse at the pull-off moment, c and the scaling factor 𝑣, 

by solving Eq. (31) and Eq. (35) in Paper A of Part II. With this information, the pull-off 

force can be calculated using Eq. (14) in Paper C of Part II.  

 

3.3 Results and discussion 

For the curve-fitting of the ellipticity ratio data at the pull-off moment, there are many 

mathematical functions that can be considered to represent the data. However, by 

referring to the pull-off force behaviour of an adhesive circular contact as discussed in [12], 

it is clear how the contact should behave. The curve-fitted equations in Eq. (3.5) are 

shown to predict accurately the βab and βcd values, as shown in Fig. 3.3a and Fig 3.3b. 

The values of βab increase rapidly at low μ values that are close to the DMT domain. 

Materials that are considered close to the DMT domain barely deform along the semi-

major axis direction, as shown by the close value of βab to β0. The rapid increase in βab 

eventually slows down as the curve is within the intermediate domain and becomes nearly 

stable as it approaches the JKR domain. Closed to the JKR domain, the highly elastic 

materials are easily deformed, resulting in high βab values. This behaviour is represented 

well by Eq. (3.5a). As for the behaviour of βcd, there is no reference available on how the 

adhesive ellipse might behave. Solely based on the trend of the numerical data, it is shown 

that the values of βcd decrease at a nearly constant manner, indicating that the effect of μ 

on βcd is not dominant. When compared with the numerical model, the maximum errors of 

βab and βcd predictions using Eq. (3.5) are 2.67% for βab at β0 = 0.3, and 0.76% for βcd at β0 

= 0.4, whereas the minimum errors are calculated as 0.124% at β0 = 0.8 and 0.007% at β0 

= 0.3, for βab and βcd, respectively. As for the errors of apull-off prediction using Eq. (3.6), the 

maximum error is 2.87% at β0 = 0.4, while the minimum error is 0.15% at β0 = 0.3. 



 
 

28 

 

 

(a) 

 

(b) 

Fig. 3.3: (a) Ellipticity ratio of the contact ellipse for the numerical model and the curve-

fitted equation at the pull-off moment for various β0 values (b) Ellipticity ratio of the 

adhesive ellipse for the numerical model and the curve-fitted equation at the pull-off 

moment for various β0 values. 



 
 

29 

 

The values of non-dimensionalised contact semi-major axis at the pull-off moment 

a* from Eq. (3.6) and the resulting adhesive semi-major axis, c* are plotted in Fig. 3.4a, 

alongside the numerical results. Values from Eq. (3.5) and Eq. (3.6) are used in the 

extended DH model to calculate c* values. The a* values from both numerical results and 

Eq. (3.6) are similar for all β0 values, while the c* values obtained from the solution of Eq. 

(3.5) and Eq. (3.6) are higher from the numerical results, as expected. The higher c* 

prediction is set to compensate the decreasing values of adhesive stresses, as opposed to 

constant adhesive stresses by the MD model in the adhesive region, as shown in Fig. 

3.4b. This is to ensure that both MD and DH models have the same work of adhesion. In 

general, the adhesive zone in the semi-major axis direction becomes smaller as μ 

approaches the JKR domain. For lower μ, the pull-off forces predicted by both the 

extended DH model and the numerical model are close even though the fitted c* is larger 

than the c* predicted numerically. The difference between the two c* values has little 

influence on the pull-off force prediction, as the results of the two models are close. 

However, the numerical errors become significant at higher μ values that are close to or 

already in the JKR domain, especially for low β0 values due to a very small adhesive zone. 

At very high μ, the adhesive zone is so small that the extended DH model cannot model 

such behaviour accurately. Hence, the pull-off forces predicted by the extended DH model 

have large errors in comparison with the numerical results. 
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(a) 

 

(b) 

Fig. 3.4: (a) Non-dimensionalised semi-major axis of the contact ellipse for the numerical 

model and the curve-fitted equations at the pull-off moment for various β0 values             

(b) Graphical representation of adhesive stresses distribution by both DH and MD models.  
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The extended DH model incorporated with Eq. (3.5) and Eq. (3.6) is validated by 

comparing its pull-off force results with those of the JKR elliptical model, the numerical 

simulation and the experimental results in [16], as shown in Fig. 3.5. Eq. (3.5) and Eq. 

(3.6) are incorporated in the extended DH model to predict c* and the scaling factor 𝑣 at 

the pull-off moment, which are then used to calculate the pull-off forces. For β0 values of 

0.3 and 0.4, the curves for both numerical and extended DH model are similar for low μ up 

to μ = 1, where the numerical pull-off forces keep on decreasing while the pull-off force 

values of the extended DH model begin to increase. For β0 value of 0.8, the extended DH 

model predicts higher pull-off forces near the DMT domain, though before μ = 2 the pull-off 

forces of the numerical model start to exceed the extended DH results.  

 

 

Fig. 3.5: Pull-off force prediction between the numerical model, the extended DH model, 

the JKR elliptical model and the existing experimental results for various β0 values. 

 

Some of the results in Fig. 3.5 are replotted in Fig. 3.6 with the pull-off force as a 

function of ζskew. The curves for μ values of 0.5 and 1 are shown to have behaviour similar 

to that of the JKR elliptical model; the curve of μ = 1 follows the behaviour of the JKR 

results very closely, in contrast to the curve of μ = 0.5, signifying that it is very close to the 

JKR domain. However, for the curve of μ = 2, its behaviour is totally different from the JKR 

result. This can be an indicator that at μ = 2, the contact is already within the JKR domain. 
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This situation is further proved by the ratio of cnum
* to anum

* in Table 3.2, calculated from the 

numerical results. At μ = 2, the values of cnum
*/anum

* are very close to 1, especially for lower 

β0 values, a sign that the adhesive region outside the contact is very small, which is the 

characteristic of the JKR model. To conclude, the JKR domain is larger for elliptical 

contacts than for circular contacts, since the JKR domain starts at much lower μ value than 

5, which is the application limit for the JKR model of circular contacts.  

 

 

Fig. 3.6: Pull-off forces as a function of ζskew for μ values of 0.5, 1 and 2, in comparison 

with the JKR elliptical model. 

 

Table 3.2: Ratio of cnum
*to anum

* for various contact conditions. 

μ 

 

cnum*/ anum* 

β0 = 0.3 β0 = 0.4 β0 = 0.6 β0 = 0.8 

0.5 1.8146 1.8837 1.9379 1.9477 

1 1.2606 1.2793 1.3039 1.3157 

2 1.0692 1.0757 1.0863 1.0947 

3 1.0340 1.0371 1.0425 1.0459 
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3.4 Conclusion 

The work on the extended DH model has been continued to include the assumption of an 

adhesive region with boundaries that vary with load, for an accurate pull-off force 

prediction. The geometry of the annular adhesive region at the pull-off moment is obtained 

from a Dugdale-based numerical model. These numerically-obtained values are curve-

fitted to find the equations to predict the ellipticity ratios for both ellipses that bounded the 

adhesive region at the pull-off moment and the semi-major axis of the contact ellipse, and 

then incorporated into the extended DH model. The incorporated equations of the ellipticity 

ratio and the contact semi-major axis at the pull-off moment allow the extended DH model 

to accurately predict the pull-off force in its working domain of 0.5 ≤ μ < 2, for various 

elliptical contacts. It is shown that the validity domain for the JKR model is expanding and 

dominating adhesive elliptical contacts. 
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Chapter 4 

ADHESION MAP FOR ADHESIVE ELLIPTICAL CONTACTS 

 

The results in Chapter 3 show that for adhesive elliptical contacts the JKR model is 

important. The DH model transitions to the JKR model at lower μ values than the typical 

limit for adhesive circular contacts, regardless of the ζskew values. However, the application 

limit between the DH and the JKR model for elliptical contacts is unclear. In this chapter, 

the construction of an adhesion map for elliptical contacts will be explained; the adhesion 

map can guide the selection of the suitable contact model for a specific contact condition. 

 

4.1 Introduction 

For adhesive circular contacts, it has been concluded from [14] that adhesion is best 

described by the DMT model [10] for μ < 0.1 and the JKR model [7] for μ > 5. For 0.1 < μ < 

5, adhesion can be described either by the MD model [11] or by the DH model [12]. As for 

the elliptical contacts, there are three contact models that can describe adhesion: (1) the 

DMT-based model [15], (2) the JKR-based model [18] and (3) the DH-based model from 

Paper A of Part II. Unlike the circular contact, there is no established criterion on the 

selection of the elliptical contact models. In Chapter 3, the results show that the JKR 

elliptical model is valid for smaller μ values than μ = 5, more so as the skew angle 

becomes smaller.  This shows that the JKR domain becomes larger as the contact area 

becomes more elliptical. To define the validity domain of the different adhesive elliptical 

models, a map can be utilized to show the domain of each model graphically. This 

adhesion map can provide guidance and criteria for selecting a suitable contact model 

from existing elliptical contact models for a specific contact type.  

 In Chapter 4, the construction of the adhesion map for adhesive elliptical contacts 

will be described; the DH elliptical model becomes the base contact model to compare 

with other elliptical contact models.  The application of the adhesion map is also 

demonstrated; for a specific contact condition, the chosen adhesive contact model is 

compared with existing experimental results.  
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4.2 Adhesion map 

4.2.1 Construction 

The construction of the adhesion map for elliptical contacts is similar to the adhesion map 

for the circular contacts [13]; the adhesion map for adhesive elliptical contacts is plotted 

using the coordinate of μ from Eq. (35) and W* from Eq. (36), both from Paper A of Part II. 

The adhesion map for elliptical contacts is based on the DH elliptical model from Paper A 

of Part II because the MD model is not available for elliptical contacts.  

The adhesion map for elliptical contacts is shown in Fig. 4.1. Using the DH elliptical 

model as the base model for comparison, the adhesion map is plotted for the limited range 

of 0.5 ≤ μ ≤ 4; these μ values are selected due to the result from Paper C of Part II which 

found that the working domain for the DH model is smaller than the working domain of the 

DH circular model. Because of the relatively high μ values, the adhesion map covers only 

the domains of the DH elliptical model and the JKR elliptical model. As mentioned in 

Chapter 1, the skew angle for elliptical contacts can vary, with 0° < ζskew < 90°. The 

adhesion map in Fig. 4.1 is plotted for three ζskew of 45°, 60° and 89.5°. 

 

 

Fig 4.1: Adhesion map for elliptical contacts. 
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4.2.1.1 The Hertz domain 

Adhesion force can be ignored at high load, which means that the Hertz theory is 

applicable. The Hertz limit can be drawn using the limit of: 

 |𝑊𝐷𝐻 𝑊⁄ | <  𝜁 (4.1) 

where W is taken from Eq. (25) of Paper A of Part II and the DH-based adhesive force 

WDH is obtained by subtracting Eq. (10) from Eq. (25), both from Paper A of Part II, which 

results in: 

 𝑊 = −
4 ∗

3𝑅  
2𝑣 0(𝑐𝑑)

3
2⁄ − (𝑎𝑏)

3
2⁄ 13 (4.2) 

The value of δ is chosen arbitrarily. For this adhesion map, the Hertz limit is drawn for δ = 

0.05, similar to the value used in the adhesion map for circular contacts [13]. The chosen 

limit of δ = 0.05 means that the contact is regarded as adhesive when the pull-off force is 

more than five percent of the total load. 

 

4.2.1.2 The JKR domain 

The JKR domain is valid for contact surfaces that are highly elastic. The limit for the JKR 

domain can be expressed as: 

 |𝛿 ℎ⁄ | >  𝜂 (4.3) 

From Paper A of Part II, δ is from Eq. (14a) and h is from Eq. (27). The limit of the JKR 

zone is chosen to be ε = 20, which is similar to the value used to limit the JKR zone in the 

adhesion map in [13], see Fig. 1.5.  

 

4.2.2 Application 

To demonstrate the application of the adhesion map, experimental results from [23] are 

used, where the pull-off force for the fiber contacts with various ζskew values are obtained 

using the Atomic Force Microscopy (AFM). Experiments on the fiber-on-fiber contacts use 

aramid fibers with properties as listed in Table 4.1. The pull-off force experiments are 

conducted at ζskew of 45°, 60°, and 89.5°, similar to the ζskew values of the curves plotted in 

the adhesion map.  
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Table 4.1: Mechanical properties for the aramid (Twaron) fiber. 

Property Value Unit Ref 

Axial elastic modulus, Eaxial 109 GPa [23] 

Transverse elastic modulus, Etrans 1.6 GPa [23] 

Poisson‟s ratio,  𝜗 0.33 - [23] 

Fiber radius 6 μm [23] 

Work of adhesion 65.38 mJ/m2 [23] 

Intermolecular distance, z0 5.1 Å [24] 

 

The data from Table 4.1 is used as the input to calculate µ, using Eq. (35) from 

Paper A of Part II. Table 4.2 lists all the calculated µ values for the corresponding ζskew. 

Using the non-dimensional values of the pull-off force and the µ values on the adhesion 

map developed in Section 4.2.1, the suitable model for the contact is the JKR elliptical 

contact model. Figure 4.2 shows the comparison between the measured pull-off force and 

the forces obtained by the JKR elliptical contact model. It can be seen that the discrepancy 

between the two results is more significant as the value of ζskew decreases. This trend is 

similar to another comparison of measured and calculated data for JKR contacts [16,17]. 

The JKR elliptical model assumes that the adhesive contacts are between smooth 

surfaces [15]. On the other hand, it has been discussed in [25] that surface roughness 

plays an important role in measuring the adhesion force. Even an increase of irregularities 

just a few nanometers within the range of 1 to 10 nm would result in the adhesion force 

decreasing by more than an order of magnitude. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
 

39 
 

Table 4.2: Tabor parameter for various ζskew values. 

ζskew 45° 60° 89.5° 

Tabor parameter, µ 6.9741 6.5186 6.2135 

 

 

 

Fig. 4.2: Pull-off force comparison between the experimental results from [23] and the 

selected JKR elliptical model [15]. 

 

4.3 Conclusions 

An adhesion map for elliptical contacts has been developed. It is shown that the limit 

between the JKR and the DH domain shifts closer to the DMT domain which becomes 

significant as the skew angles decreases. The constructed adhesion map can be used as 

a guide to select the suitable contact model for a specific elliptical contact condition. 
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Chapter 5 

ADHESIVE NANOFIBER CONTACTS IN ELECTROSPUN NANOYARNS  

 

In this chapter, nanofiber contacts in electrospun nanoyarns are investigated to determine 

the significance of the presence of adhesion in such contacts. Contact and load properties 

are obtained using the geometrical model of an existing application with similar process. 

Adhesion is then modeled using the adhesive model that is relevant based on the 

adhesion map in Chapter 4. 

 

5.1 Introduction 

Using the model developed in Chapter 2 and Chapter 3, an adhesion map for elliptical 

contacts has been developed, see Chapter 4. It is shown that adhesive elliptical contacts 

in general are dominated by the JKR type of adhesion [15], also supported by the findings 

in Chapter 3, which show that the limit between the JKR model and the DH model from 

Paper C of Part II is lower than μ = 5, for all ζskew. Therefore, here the JKR elliptical model 

has been chosen to analyse the significance of the presence of adhesion in fiber-based 

applications such as nanofiber contacts in electrospun nanoyarns. 

Nanofibers are fibers that have diameters in the nanometer range, and a ratio of 

length to diameter of 100:1 [26]. Nanofibers can be produced from various polymers; this 

results in nanofibers having different physical properties and application potential. A typical 

method to produce nanofibers is electrospinning.   

Electrospinning is a straightforward yarn production system that utilizes electric 

force to draw charged threads of polymer solutions to fiber diameters up to hundred 

nanometers [26]. To do this, polymer solution is forced through a syringe; a solution drop is 

then formed at the needle tip. A high voltage is applied to the needle, which induces 

electric charges within the fluid. When the applied voltage is greater than a critical voltage, 

the repulsive force within the charged solution is greater than its surface tension and a jet 

erupts from the tip of the needle. As this jet travels through the air, the solvent evaporates, 

and consequently a polymer fiber is gathered by a funnel-shaped collector, which functions 

as a negative electrode [27, 28]. The collector rotates and exerts a twist on the nanofiber 

bundles to form a nanoyarn; the nanoyarn is then wound on a yarn rolling device or 

wrapped around another yarn as a protection. The electrospinning process is simplified 

graphically in Fig. 5.1. 

Contact studies on nanofibers are normally done for contacts between single 

nanofibers, as seen in [29-31]. No existing research has been done to analyse the 
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significance of the presence of adhesion at the nanofiber level within a nanoyarn. This 

chapter investigates the significance of the presence of adhesion in nanofiber contacts 

within electrospun nanoyarns, based on the ratio of the adhesive force and the total 

applied load. In the analysis, the effects of the yarn structure and the manufacturing 

properties are also investigated. 

 

5.2 Modelling adhesive nanofiber contacts in electrospun nanoyarns 

The nanofiber electrospinning process is similar to the manufacturing process of a 

Stranded Wire Helical Spring (SWHS). SWHS is a unique helical spring, normally made up 

of several steel wires that are tied together to form a multilayer and coaxial strand, which is 

then twisted to form a helical spring, with the same direction as the spiral [32]. Typically, it 

is assumed that the wires in the cable of SWHS have frictionless contact between them. 

Based on the results in [33], the contacts between stranded wires inside the cable are 

elliptical contacts, rather than line contacts. This becomes the foundation of the SWHS 

model, modelling the elliptical contacts between the stranded wires in the cable. When 

compared to the nanofibers electrospinning process, stranded wires are similar to the 

nanofibers while the cable is similar to the nanoyarns. The translation of the nanofiber 

electrospinning process to the SHWS geometrical model is illustrated graphically in Fig. 

5.1(a) and Fig. 5.1(b).  

 

 

 

Fig 5.1: (a) Nanoyarn electrospinning process (b) SWHS geometrical representation for 

the nanoyarn electrospinning process. 
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The skew angle between adjacent nanofibers in the protective yarn ζskew is given in [33] 

as:  

 𝑐𝑜𝑠𝜃𝑠𝑘𝑒𝑤 =
𝑎⃗  ∙𝑎⃗  

|𝑎⃗  |∙|𝑎⃗  |
 (5.1) 

where 𝑎 1 and 𝑎 2 are the tangential vectors in any point of the central line of two adjacent 

nanofibers. Based from the analysis in [32], the general normal contact force value, Wf 

between any two nanofibers is given as: 

 𝑊𝑓 = 𝑊𝑦𝑐𝑜𝑠 𝛼/(𝑛 − 1) (5.2) 

where Wy  is the axial load applied to the structure, α is the nanoyarn wrapped angle and n 

is the number of nanofibers in a nanoyarn.  

Here, the JKR elliptical model in [15] is used to model adhesion between the 

nanofibers in electrospun nanoyarns. When two nanofibers are brought into contact, the 

normal load is given as: 

 𝑊𝐽𝐾𝑅 = 2𝜋𝑎𝑏,𝑝1 − (∆1𝑎
2 + ∆2𝑏

2)/3- (5.3) 

which in this chapter is determined at the pull-off moment. Solutions for a, b, p1, Δ1, Δ2 and 

corresponding equations can be found in Paper D, Part II. 

 

5.3 Results and discussion 

The presence of adhesion between nanofibers in electrospun nanoyarns is investigated on 

nylon 6,6 nanofibers. Table 5.1 lists the material properties while Table 5.2 lists the 

electrospinning properties. The chosen applied load is 10% from the breaking load of 

nylon 6 nanofibers that have similar properties as nylon 6,6 obtained from [34]. 

Parameters that affect adhesion in the nanofiber contacts using the values in Table 5.1 and 

Table 5.2 are taken as the reference properties. These chosen values are analysed to see 

if any changes in these values will affect adhesion between adjacent nanofibers in 

electrospun nanoyarns. The steps to obtain the results are explained in Paper D, Part II. 
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Table 5.1: Properties of the chosen nanofiber. 

Properties Nylon 6,6 Unit Ref. 

Transverse elastic modulus, Etrans  3 Gpa [35] 

Poisson‟s  ratio, 𝜗 0.39 - [35] 

Work of adhesion 46.5 mJ/m2 [35] 

Interatomic spacing, z0 4.4 Å [35] 

 

Table 5.2: Properties of the electrospinning process. 

Properties Value Unit Ref. 

Helix angle, α π /4 rad  

Inner diameter, Dcore 2 mm  

Applied load, W  15.2 μN [34] 

Nanofiber radius, r 800 nm [36] 

Twisting speed, ω1 2π/3 rad/s [28] 

Reeling speed, ω2 π/6 rad/s [28] 

 

Figure 5.2 shows the effect of nanofiber radius on the adhesive contacts and also 

the effect of the number of nanofibers in nanoyarns. The larger nanofiber radius does not 

affect the ζskew values regardless of the nanofiber radius. However, the larger nanofiber 

radius is shown to result in higher μ, larger contact area and greater pull-off force. For 

materials in the JKR domain, the resulting contact deformation is larger and the pull-off 

force is lower than for the less elastic materials. Yet, for nanoyarns that consist of many 

highly elastic nanofibers the space between nanofibers is limited, hence higher pull-off 

force is needed to separate the nanofibers in contact. It should be noted that for both fiber 

radius cases at n = 7 the contact area and the pull-off force cannot be predicted as the 

ζskew values are too low for the JKR elliptical contact. In general, a larger number of 

nanofibers in nanoyarns will have lower ζskew, higher μ values, larger contact area and 

greater pull-off force.  

In terms of the effect of higher applied load, there is no change in the adhesive 

contacts apart than affecting the load between nanofibers in contact; change in load 

results only in a larger Hertzian contact area. Being independent of the applied load is a 

characteristic of a JKR contact. 
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Fig. 5.2: The effect of number of fibers in a nanoyarn and nanofiber radius on (a) angle 

between the fibers, ζskew, (b) Tabor parameter, μ, (c) contact area, and (d) pull-off force, W. 

  

The effect of a higher nanofiber twisting speed ω1 of 5π/6 and higher nanofiber 

reeling speed of π/3 are shown in Fig. 5.3 and Fig. 5.4 respectively. Results show that the 

effects of ω1 are opposite to those of ω2. Higher ω1 is shown to result in higher ζskew, lower 

μ values, smaller contact area and lower pull-off force. Higher ω1 results in more nanofiber 

sections to be twisted, hence it increases the ζskew between adjacent nanofibers. At n = 7 

for higher ω1 and at n > 3 for higher ω2, the contact area and the pull-off force cannot be 

predicted as the ζskew is too low for the JKR elliptical contact, similar to the situation for n = 

7 of previous results in Fig. 5.2. 
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Fig. 5.3: The effect of nanofiber twisting speed on (a) angle between the fibers, ζskew,      

(b) Tabor parameter, μ, (c) contact area, and (d) pull-off force, W. 
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Fig. 5.4: The effect of reeling speed on (a) angle between the fibers, ζskew, (b) Tabor 

parameter, μ, (c) contact area, and (d) pull-off force, W. 

 

Obviously, the adhesive force can be neglected at high load, as the adhesive load is 

smaller than the applied load. In this case, the contact can be regarded as a non-adhesive 

contact. Following the limit set in Chapter 4 to differentiate between adhesive contacts and 

non-adhesive contacts, the significance of the presence of adhesion in the contact 

between nanofibers in electrospun nanoyarns is determined using the ratio of the pull-off 

force to the total load, given as: 

 |
𝑊𝐽𝐾𝑅

𝑊𝑡𝑜𝑡𝑎𝑙
| > 0.05 (5.4) 

Setting the minimum limit to 0.05, it means that the contact is regarded as adhesive when 

the pull-off force is more than five percent of the total load. Wtotal is given as: 

 𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝐽𝐾𝑅 + 𝑊𝑓 (5.5) 
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Fig. 5.5 shows the result of the ratio between WJKR/Wtotal for all the analysed 

parameters. The majority of the contacts have ratios higher than 0.05, indicating that 

adhesion is indeed very significant in those contacts. However, as the number of 

nanofibers increases, the nanoyarn becomes packed; the nanofibers are almost parallel to 

each other and contacts between nanofibers have really low ζskew values. Hence, the JKR 

model cannot predict the adhesive behaviour of these contacts.  

 

Fig 5.5: The force ratio for all parameters. 

 

5.4 Conclusion 

The significance of the presence of adhesion between nanofibers in nanoyarns is 

investigated in this paper. Load and contact properties of the nanofiber contacts in 

electrospun nanoyarns are obtained using the SWHS geometrical model, which then 

become the input for the JKR elliptical model. The significance of the presence of 

adhesion in nanofiber contacts is shown by the ratio of adhesive forces to the total load; 

properties such as nanofiber radius, the number of nanofibers in a nanoyarn, nanofiber 

twisting speed and nanofiber reeling speed are shown to influence adhesion at the 

nanofiber level. It has been shown that in most cases adhesion between nanofibers in 

electrospun nanoyarns cannot be ignored. 



 
 

49 

 

Chapter 6 

DISCUSSION AND CONCLUSION 

 

From the work described in the previous chapters, the significance of the presence of 

adhesion in real applications and the practicality of the developed DH model compared to 

the JKR elliptical model are discussed in this chapter. General conclusions are drawn from 

the research and recommendations for future work are suggested. 

 

6.1 Discussion  

Adhesion in real application 

The contact behaviour at the fiber level is typically influenced by interface bonds such as 

adhesion; hence for single fiber-on-fiber contacts it is important to include adhesion in the 

contact mechanics models, as seen in modelling approaches [7,9,11-12,15,18] and 

experiments [16,23]. If adhesion is significant at fiber level, adhesive contact areas will be 

larger than non-adhesive contact areas and surface separation can be made only by 

exerting a pull-off force.  

 In real applications, adhesion is often disregarded as a way to simplify the contact 

of the already complicated structures. For ropes, it is generally assumed that the contacts 

between fibers are always line contacts; adhesion is shown to have minor influence in 

these contacts. However, based on the work done in Chapter 5 for nanoscale materials, 

adhesion cannot be disregarded. The results show that the presence of adhesion is 

significant between the nanofiber contacts in electrospun nanoyarns. When adhesion is 

present between nanofibers, adjacent nanofibers are bonded together with a contact area 

that is larger than for non-adhesive contacts. For single nanofiber contacts, both 

nanofibers are separated more easily than nanofibers in a nanoyarn: the spaces between 

nanofibers in a nanoyarn are limited, thus bonded nanofibers will continue to be in contact. 

The enlarged contact area due to adhesion will also increase friction between nanofibers, 

which can be undesirable depending on the applications. To summarize, adhesion has 

been shown to be significant only at the nanoscale level while it can be ignored for 

contacts at the microscale level. 

 

 

 

 

 



 
 

50 

 

Adhesive elliptical contacts: JKR model vs DH model 

For circular contacts, the adhesion map in [13] lays out clearly the validity domain for each 

of the adhesive models. The DH and the MD models are shown to be dominant for a large 

portion of the adhesion map, within the range of 0.1 ≤ μ ≤ 5. As for the elliptical contact, 

the numerical results in Paper C of Part II show that the pull-off force predicted by the JKR 

elliptical model approaches the pull-off force of the DH elliptical model at μ much less than 

5, which is a typical value for circular contacts. 

As the skew angle between the cylindrical bodies decreases, the limit between the 

DH and the JKR models moves to the left in the adhesion map for elliptical contacts, see 

Fig. 4.1. This means that as the contact gets further away from a circular contact, the 

application domain for the DH elliptical model becomes smaller while the JKR domain 

becomes bigger. In general, the JKR elliptical model is more practical for modelling 

general adhesive elliptical contacts. Nevertheless, the DH model remains relevant for 

adhesive elliptical contacts, particularly for fibers with smaller radii. 

 

6.2 Conclusion 

The purpose of this thesis is to provide an insight into the contact mechanics of the fiber-

on-fiber contacts. The mechanics of fiber-on-fiber contacts was studied, with a focus on 

modelling an adhesive elliptical contact. In Chapter 2, the development of the contact 

model for adhesive elliptical contacts was described, which was shown to be suitable only 

for nearly circular contacts as the exact geometry of the elliptical contact and the 

corresponding adhesive zone are unknown a priori. The work was continued in Chapter 3, 

where geometrical equations for the annular adhesive region were obtained, to allow the 

developed adhesive model to predict the pull-off force accurately. Following the circular 

contacts, an adhesion map was developed in Chapter 4 to guide the selection of currently 

available adhesive elliptical models. This adhesion map provides the application limit for 

each adhesive elliptical model. Finally, in Chapter 5, adhesive nanofiber contacts in 

electrospun nanoyarns were investigated using the relevant adhesive model selected from 

the adhesion map in Chapter 4, to see the significance of the presence of adhesion in 

such contacts. 

Overall, the work done in this thesis can be summarized as follows: 

1. The fiber-on-fiber contact between cylindrical bodies for various contact conditions 

is modelled based on the DH theory. 

2. Geometrical equations for the ellipticity ratio of both contact and adhesive ellipses 

and for the semi-major axis of the contact ellipse have been obtained. This enables 



 
 

51 

 

the developed DH elliptical contact model to be applied for both nearly circular and 

elliptical contacts. 

3. An adhesion map to guide the adhesive model selection for adhesive elliptical 

contacts has been developed. 

4. A relevant adhesive model based on the developed adhesion map for elliptical 

contacts has been applied to model the nanofiber contacts in electrospun 

nanoyarns, showing that adhesion is indeed significant in the contacts at nanofiber 

level.   

 

6.3 Recommendations for future research 

The DH model developed in Chapter 2 shows the contact mechanics for adhesive elliptical 

contacts; it is learnt that the inner and the outer boundaries of the adhesive region are 

load-dependent. With this new knowledge, geometry equations for the adhesive region 

were fitted in Chapter 3, allowing the developed DH model to be used for various elliptical 

contact conditions. The developed DH model provides the foundation to further understand 

adhesive elliptical contacts. Several recommendations are presented below for future work 

to improve the model. 

 

Obtain the contact angle limit of the DH elliptical model 

Currently, there is no known validity limit with respect to the ζskew for the developed model. 

For accurate representation of the contact, the angle limit of the DH elliptical model can be 

found by comparing it with experimental and numerical data, similar to the comparison 

made for the JKR-based contacts. A transition function then can be derived between the 

angle limit and zero degree (angle representing the line contacts) to allow adhesive 

contact modelling at very low ζskew values.  

 

Adhesive contact modelling for fiber contacts in complex structures 

Contacts in complex structures such as ropes occur at different length scales. Contact 

modelling of such structures can utilise the SWHS geometrical model that is established to 

model more than a single material layer. The inner layer (modelling level for Chapter 5), 

the middle layer and the outer layer of the structure, such as shown in Fig. 6.1, can be 

modelled using the SHWS geometrical model. 
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Fig. 6.1: Possible fiber contact modelling for different layer of materials using the SWHS 

geometrical model. 

 

Collapse analysis of nanofibers 

When a fiber network is subjected to any external disturbance, fibers in the network may 

deflect and stick to adjacent fibers due to adhesion and the tendency of fibers to bending. 

Fiber collapse due to adhesion has been known to reduce the performance of nanofiber 

networks that can result in nonlinear behaviour. Collapse analysis of nanofibers can be 

done by developing a fiber collapse model as in [37] to analyse the effects of fiber 

elasticity, surface adhesion and fiber geometries on the critical collapse distance. 
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Abstract An adhesive elliptical contact is normally found in microscale applications that 

involve cylindrical solids, crossing at an angle between 0° and 90°. Currently, only one 

model is available to describe the elliptical contact‟s surface interaction: the approximate 

Johnson-Kendall-Roberts (JKR) model which is limited to soft materials. Here, a new 

adhesive elliptical model is developed for a wide range of adhesive contacts by extending 

the double-Hertz theory, where adhesion is modeled by the difference between two 

Hertzian pressure distributions. Both Hertzian pressures are assumed to have an 

equivalent shape of contact areas, the only difference being in size. Assuming that the 

annular adhesive region is obtained by the area difference between the two Hertzian 

contact areas, the pull-off force curves can be calculated. In the limiting case of an 

adhesive circular contact, the results are very close to results from the existing models. 

However, for an adhesive elliptical contact in the JKR domain, lower pull-off forces are 

predicted when compared to the JKR values. Unlike the developed model, the shape of 

the JKR contact area varies throughout contact. Results show, particularly for conditions 

close to the JKR domain, that it is important to take into account that the adhesive region 

is the result of the two Hertzian contact areas having a non-equivalent shape. 

 

Keywords double-Hertz model; elliptical contact; adhesion; contact mechanics 

 

List of symbols  

𝑎, 𝑏      Semi-major and semi-minor axes of the contact ellipse 

𝑐, 𝑑       Semi-major and semi-minor axes of the adhesive ellipse 

𝛽0     Ellipticity ratio at initial loading 

𝛽(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)    Ellipticity ratio at pull-off moment 

𝛽𝐽𝐾𝑅(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)    Ellipticity ratio at pull-off moment from JKR elliptical 

     model 

𝛽     Ellipticity ratio throughout contact 

𝛽𝑎𝑏 = 𝑏 𝑎⁄     Ellipticity ratio of the contact ellipse 

𝛽𝑐𝑑 = 𝑑 𝑐⁄      Ellipticity ratio of the adhesive ellipse 

𝑟      Radial coordinate 

𝜃𝑝      Angular coordinate 

𝑟𝑎𝑏      Radial coordinate of the contact ellipse 

𝑟𝑐𝑑      Radial coordinate of the adhesive ellipse  

𝜃𝑠𝑘𝑒𝑤      Angle between crossing cylinders 

𝐸∗      Reduced Young‟s modulus 
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𝐸1, 𝐸2       Young moduli of the contacting materials 

𝑅𝑐       Radius of cylinder 

𝑅′, 𝑅′′      Principal relative radii of curvature 

𝑅 = √𝑅′𝑅′′     Equivalent radius 

𝜗      Poisson‟s ratio  

𝜇     Tabor parameter 

𝑘 = (1 − 𝛽2)1 2⁄    Elliptic modulus (eccentricity)  

𝑘′ = (1 − 𝑘2)1 2⁄     Complementary elliptic modulus 

𝜑 = sin;1(𝑎 √𝑙 + 𝑎2⁄ )   Second argument of the incomplete elliptic integrals 

𝑲(𝑘)      Complete elliptic integral of the first kind  

𝑬(𝑘)      Complete elliptic integral of the second kind  

𝑭(𝜑, 𝑘)    Incomplete elliptic integral of the first kind  

𝑬(𝜑, 𝑘)     Incomplete elliptic integral of the second kind  

𝑣     Scaling factor to keep σ0 and Δγ at a constant value  

𝑊      Applied load of single asperity 

∆𝛾      Work of adhesion 

𝑃𝑜𝑎𝑏     Maximum pressure of the contact ellipse 

𝑃𝑜𝑐𝑑     Maximum pressure of the adhesive ellipse 

𝜎0     Maximum adhesive stress 

𝜔𝑖𝑛𝑎𝑏
     Surface displacement within the contact ellipse 

𝜔𝑜𝑢𝑡𝑎𝑏
     Surface displacement outside the contact ellipse 

𝜔𝑖𝑛𝑐𝑑
     Surface displacement within the adhesive ellipse 

𝜔0𝑎𝑏     Combined surface displacement for 0 ≤ r ≤ rab 

𝜔𝑎𝑏𝑐𝑑     Combined surface displacement for rab ≤ r ≤ rcd 

𝛿     Approach of distant points 

𝑧     Initial gap in contact area 

ℎ     Separation between surfaces in the adhesive region 

 

1 Introduction 

Surface adhesion is important in the mechanics of surface contacts, in particular at 

microscale [1-4], as a result of high surface area-to-volume ratios [5]. Various models have 

been developed to describe the adhesive contact between surfaces. In the context of 

modeling smooth surfaces, three important adhesive contact theories exist: (1) the 

Johnson-Kendall-Roberts (JKR) model [6]; (2) the Derjaguin-Muller-Toporov (DMT) model 
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[7], which was later corrected by Muller et al. [8]; and (3) the Maugis-Dugdale (MD) model 

[9]. In the case of a circular contact, the JKR model relies on the assumption that short 

range adhesion forces act within the contact area. Conversely, in the DMT model, long 

range adhesion forces are assumed to act outside the contact area. Later, it was found 

that the DMT model and the JKR model had different pull-off predictions. This debate 

continued until a finding by Tabor [10] revealed that both theories were actually 

complementary. Solid materials with low surface energy are particularly suited to using the 

DMT model, while the JKR model is suitable for soft materials with high surface energy 

values. The important criterion to distinguish between the DMT model and the JKR model 

is the neck formation outside the contact area. The Tabor parameter μ is used to measure 

the ratio of neck height to the equilibrium separation [10]. For high values of μ, the 

adhesion forces outside the contact area can be disregarded as the surfaces are totally 

separated. This behavior perfectly describes the JKR contact [6]. As in the case of small μ 

values, the presence of adhesion forces is significant outside the contact area, as shown 

by the DMT model [7]. 

The transition between the DMT model and the JKR model is completed by the 

intermediate MD model that befits a wider range of common materials. Solutions from the 

MD model can be obtained analytically by solving a set of equations simultaneously. 

Greenwood and Johnson developed another transition model known as the double-Hertz 

(DH) model [11]. Not only has that model been proven to be feasible by producing similar 

results to those from the MD model, but it is also more straightforward in terms of 

mathematical formulations. All the models mentioned above have been extended for the 

application of line contacts, as shown by [12] with a JKR-based foundation and [13, 14] for 

cohesive MD models. The extension of the DH model was developed in [15]. Since its 

development, the DH model has been extended to various applications such as random 

multi-asperity contacts [16] and a sinusoidal wavy surface [17]. 

At present, there is only one contact model that can describe the mechanics of an 

adhesive elliptical contact, namely the approximate JKR model [18]. The model is built on 

the assumption that both major and minor axes have identical values of the stress intensity 

factor at the edges of the contact. This assumption is to avoid the separation at both ends 

of the major axis, while the stress intensity factor at both edges of the minor axis remains 

lower than the critical value. The shape of the elliptical contact area is shown to vary with 

the applied load. This behavior is different from that predicted by the Hertz theory in which 

the ellipse‟s growth rate remains radially constant as the load varies. Validations for the 

elliptical JKR model have been conducted by several researchers, either by experimental 
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or numerical studies. A finding in [19] shows that the difference between the pull-off forces 

from the experimental data and the model becomes prominently greater as the contact 

area approaches a slim elliptical shape. The same result was also reported in numerical 

works in [20]. It is found that in contrast to the JKR elliptical theory, the pull-off forces 

decrease as the skew angles become smaller in the numerical simulations. 

For circular contacts, prediction of the contact behavior in the adhesive region is 

straightforward with constant deformations throughout the periphery. In the case of 

elliptical contacts, it is clearly a complex contact, involving various contact geometries, 

ranging from nearly circular to slim elliptical contacts. The ellipticity ratio β is introduced to 

illustrate the deviation of the ellipse from the circular shape, given as: 

 𝛽 =
𝑠𝑒𝑚𝑖;𝑚𝑖𝑛𝑜𝑟 𝑎 𝑖𝑠

𝑠𝑒𝑚𝑖;𝑚𝑎 𝑜𝑟 𝑎 𝑖𝑠
 (1) 

From Eq. (1), the values of the ellipticity ratios are found to be within the range of 0 < β < 1 

where β values closer to one have nearly circular contact areas, which are equivalent to 

having a nearly 90° angle between the cylinders. β values closer to zero have contact 

areas with shapes that resemble line forms, due to really small skew angles. The shape 

variations of an elliptical contact are shown schematically in Fig. 1. 

 

                                      (a)                                                     (b) 

Fig. 1: Variation of an elliptical contact (a) Nearly circular contact for β value close to 1   

(ζskew ≈ 90°) (b) Mildly elliptical contact for intermediate values of β (ζskew < 90°). 

 

The current work focuses on extending the DH model for adhesive elliptical 

contacts with high initial ellipticity ratios β0 ranging from 0.8 to 0.99. The developed model 

is expected to behave similarly to the current adhesive models in the limiting case of 

circular contacts within the range of 0.5 ≤ μ ≤ 5. In this paper, both contact and adhesive 

ellipses which bound the adhesive annular region are assumed to have identical, fixed 

ellipticity ratios throughout the contact, though the limit of this assumption must be 

evaluated. The developed model is also expected to follow the behavior of the JKR 

elliptical model in the JKR domain. It is shown that the pull-off behavior in the JKR domain 

is influenced by the unequal growth rate of its contact area in both major and minor axes 
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directions. However, the question of whether the adhesive region of the developed model 

is also subjected to the unequal growth rate, inside and outside the JKR domain, needs to 

be investigated. These aspects are explored in this paper. 

 

2 Model development 

2.1 Non-adhesive elastic contact 

The Hertz model, described in [21], was the pioneer of contact models. An elliptical contact 

is produced from crossed cylinders with skew angle, ζskew, between 0° to 90°. The contact 

area is an ellipse, with semi-major axis a and semi-minor axis b, as shown in Fig. 2. 

 

Fig. 2: An elliptical contact due to crossed cylinders (0° < ζskew < 90°). 

 

Formulations for the non-adhesive elliptical contact model are given in [21], in 

Cartesian coordinates. In this paper, all the equations are expressed in a polar coordinate 

system, where geometrical parameters are defined in Appendix A. 

 

The initial gap, z, in polar coordinates is given in [21] by the general expression: 

 𝑧(𝑟, 𝜃𝑝) =
1

2𝑅 (𝑟𝑐𝑜𝑠𝜃𝑝)
2
+ 

1

2𝑅  (𝑟𝑠 𝑛𝜃𝑝)
2
 (2) 

where R’ and R” are the first and the second principal relative radii of curvature for the 

cylinders. r is the radial coordinate and ζp is the angular coordinate of the chosen point in 

the contact region. R’ and R” are related to the angle between the crossing cylinders, ζskew, 

by:  

 𝑅′ = 𝑅𝑐/(1 − 𝑐𝑜𝑠𝜃𝑠𝑘𝑒𝑤) (3) 

 𝑅′′ = 𝑅𝑐/(1 + 𝑐𝑜𝑠𝜃𝑠𝑘𝑒𝑤) (4) 

where the cylinders in contact are assumed to have the same radius Rc. 
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The effective radius, R, is given by: 

 𝑅 =  √𝑅′𝑅′′ (5) 

and the effective Young's modulus is: 

 𝐸∗ = .
1;  

 

  
+

1;  
 

  
/
;1

 (6) 

where 𝜗 is the Poisson‟s ratio and E is the Young‟s modulus for each cylinder. 

 

When the adhesion effect is neglected, the Hertzian pressure distribution, P, acting in the 

elliptical contact area as obtained by [21], can be expressed as follows: 

 𝑃(𝑟, 𝜃𝑝) = 𝑃𝑜𝑎𝑏 01 − (𝑟𝑐𝑜𝑠𝜃𝑝 𝑎⁄ )
2
− (𝑟𝑠 𝑛𝜃𝑝 𝑏⁄ )

2
1
1 2⁄

 (7) 

 

For this pressure distribution, the maximum pressure in the contact ellipse, Poab, is given 

as: 

 𝑃𝑜𝑎𝑏 = 
 ∗

2𝑅

𝑘 𝑎

 *,𝑬(𝑘)   ⁄ ;𝑲(𝑘)-,𝑲(𝑘);𝑬(𝑘)-+  ⁄   (8) 

where K(k) and E(k) are the complete elliptic integral of the first and second kind, and k is 

the elliptic modulus (eccentricity of the ellipse). The value of β throughout the contact is 

equal to β0, the initial ellipticity ratio at initial loading that can be expressed as: 

 𝛽 =  𝛽0 (9) 

 

The total load compressing the cylinders, W, is related to the contact area as follows: 

 𝑊 = 
4 ∗

3𝑅  
(𝑎𝑏)

3
2⁄  (10) 

where 

 𝐹1 = .
4

 𝑘 
𝛽

3
2⁄ *,𝑬(𝑘) 𝛽2⁄ − 𝑲(𝑘)-,𝑲(𝑘) − 𝑬(𝑘)-+1 2⁄ /

1
3⁄

  (11) 

 

Due to the pressure in Eq. (7), the surface displacement within the ellipse of two bodies, 

ω, is expressed in [21] as: 

𝜔𝑖𝑛𝑎𝑏
(𝑟, 𝜃𝑝) =

1

  ∗ {
  𝑜𝑎𝑏𝑎𝑏

2
∫ [1 −

(𝑟𝑐𝑜𝑠  )
 

𝑎 :𝑤
−

(𝑟𝑠𝑖𝑛  )
 

𝑏 :𝑤
]

 

0

𝑑𝑤

,(𝑎 :𝑤)(𝑏 :𝑤)𝑤-  ⁄ }    0  𝑟  𝑟𝑎𝑏

 (12a) 

𝜔𝑜𝑢𝑡𝑎𝑏
(𝑟, 𝜃𝑝) =

1

  ∗
{
  𝑜𝑎𝑏𝑎𝑏

2
∫ [1 −

(𝑟𝑐𝑜𝑠  )
 

𝑎 :𝑤
−

(𝑟𝑠𝑖𝑛  )
 

𝑏 :𝑤
]

 

𝑙

𝑑𝑤

,(𝑎 :𝑤)(𝑏 :𝑤)𝑤-  ⁄
}  𝑟  𝑟𝑎𝑏 (12b) 

where 𝑙 is the positive root to 
(𝑟𝑐𝑜𝑠  )

 

𝑎 :𝑙
+

(𝑟𝑠𝑖𝑛  )
 

𝑏 :𝑙
= 1. 
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Solutions for Eq. (12a) were obtained from [21]. Eq. (12b) was solved in [22] and is applied 

here in our model. Further solutions for Eq. (12b) can be found in Appendix B. Surface 

displacements in Eq. (12) are then rewritten as: 

 𝜔𝑖𝑛𝑎𝑏
(𝑟, 𝜃𝑝) =

1

  ∗ 0 𝑖𝑛𝑎𝑏
−  𝑖𝑛𝑎𝑏

(𝑟𝑐𝑜𝑠𝜃𝑝)
2
−  𝑖𝑛𝑎𝑏

(𝑟𝑠 𝑛𝜃𝑝)
2
1    0  𝑟  𝑟𝑎𝑏 (13a) 

 𝜔𝑜𝑢𝑡𝑎𝑏
(𝑟, 𝜃𝑝) =

1

  ∗ 0 𝑜𝑢𝑡𝑎𝑏
−  𝑜𝑢𝑡𝑎𝑏

(𝑟𝑐𝑜𝑠𝜃𝑝)
2
−  𝑜𝑢𝑡𝑎𝑏

(𝑟𝑠 𝑛𝜃𝑝)
2
1    𝑟  𝑟𝑎𝑏 (13b) 

 

where 

  𝑖𝑛𝑎𝑏
= 𝛿 =  𝜋𝑃𝑜𝑎𝑏

𝑏𝑲(𝑘) (14a) 

  𝑖𝑛𝑎𝑏
=  𝜋𝑃𝑜𝑎𝑏

𝛽,𝑲(𝑘) − 𝐸(𝑘)-/𝑘2𝑎 (14b) 

  𝑖𝑛𝑎𝑏
=  𝜋𝑃𝑜𝑎𝑏

𝛽,𝑬(𝑘)/𝛽2 − 𝑲(𝑘)-/𝑘2𝑎 (14c) 

and 

  𝑜𝑢𝑡𝑎𝑏
=  𝜋𝑃𝑜𝑎𝑏

𝑏𝑭(𝜑, 𝑘) (15a) 

  𝑜𝑢𝑡𝑎𝑏
=  𝜋𝑃𝑜𝑎𝑏

𝛽,𝑭(𝜑, 𝑘) − 𝑬(𝜑, 𝑘)-/𝑘2𝑎 (15b) 

  𝑜𝑢𝑡𝑎𝑏
=  𝜋𝑃𝑜𝑎𝑏

𝛽[𝑬(𝜑, 𝑘) − 𝑘′2𝑭(𝜑, 𝑘) − 𝑘2𝑠 𝑛𝜑𝑐𝑜𝑠𝜑/√1 − (𝑘𝑠 𝑛𝜑)2]/𝑘2𝑘′2𝑎 (15c) 

F(φ,k) and E(φ,k) are the incomplete elliptic integral of the first and second kind. k’ is the 

complementary elliptic modulus and φ is the second argument of the incomplete elliptic 

integrals. 

 

2.2 Extension of the double-Hertz theory to adhesive elliptical contacts 

We developed the adhesive elliptical contact model by extending the DH theory by [11], 

originally created for an adhesive circular contact. The basis of the DH model is that the 

adhesive tensile stresses are represented by the difference between two Hertzian 

pressure distributions of different radii (radial coordinates). The equations describing the 

adhesive stresses are given by: 

𝑃(𝑟, 𝜃𝑝) = 𝑃𝑜𝑐𝑑 [1 − .
𝑟𝑐𝑜𝑠  

𝑐
/
2

− .
𝑟𝑠𝑖𝑛  

𝑑
/
2

]

1
2⁄

− 𝑃𝑜𝑎𝑏 [1 − .
𝑟𝑐𝑜𝑠  

𝑎
/
2

− .
𝑟𝑠𝑖𝑛  

𝑏
/
2

]

1
2⁄

0  𝑟  𝑟𝑎𝑏

 (16a) 

 𝑃(𝑟, 𝜃𝑝) = 𝑃𝑜𝑐𝑑 [1 − .
𝑟𝑐𝑜𝑠  

𝑐
/
2

− .
𝑟𝑠𝑖𝑛  

𝑑
/
2

]

1
2⁄

      𝑟𝑎𝑏  𝑟  𝑟𝑐𝑑 (16b) 

 

where rab and rcd are the radial coordinates for the contact and the adhesive ellipses 

respectively, such that rab < rcd. The contact ellipse is the Hertzian contact area that is due 

to the applied load. The additional pressure distribution creates the adhesive ellipse with 

semi-major axis c and semi-minor axis d. Contact and adhesive ellipses bounded the 
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adhesive region, an annular elliptical shaped area where the adhesion forces act. In this 

paper, it is assumed that both contact and adhesive ellipses have equal values of ellipticity 

ratio during contact, which is expressed as: 

 𝛽 = 𝛽𝑎𝑏 = 𝛽𝑐𝑑 (17) 

which at the pull-off moment, the relation in Eq. (17) becomes: 

 𝛽(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓) = 𝛽𝑎𝑏(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)
= 𝛽𝑐𝑑(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)

 (18) 

Following the Hertzian assumption for elliptical contacts, the relation of  

 𝛽 = 𝛽(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓) = 𝛽0 (19) 

 is maintained throughout the adhesive contact. 

  

The maximum pressure in the adhesive ellipse, Pocd, is given as: 

 𝑃𝑜𝑐𝑑 = 
 ∗

2𝑅

𝑘 𝑐

 *,𝑬(𝑘)   ⁄ ;𝑲(𝑘)-,𝑲(𝑘);𝑬(𝑘)-+  ⁄
 (20) 

which is similar in form as Eq. (8) of the contact ellipse. 

  

The surface displacements are: 

 𝜔0𝑎𝑏(𝑟, 𝜃𝑝) =  𝜔𝑖𝑛𝑎𝑏
− 𝜔𝑖𝑛𝑐𝑑

   0  𝑟  𝑟𝑎𝑏 (21a) 

 𝜔𝑎𝑏𝑐𝑑(𝑟, 𝜃𝑝) =  𝜔𝑜𝑢𝑡𝑎𝑏
− 𝜔𝑖𝑛𝑐𝑑

   𝑟𝑎𝑏  𝑟  𝑟𝑐𝑑 (21b) 

 

Fig. 3(a) shows the normalized pressure P/P0 curves, obtained using Eqs. (8), (16) 

and (20) at β0 = 0.99, which corresponds to ζskew ≈ 90°. From Fig. 3(a), the maximum 

adhesive stress can be seen to occur at rab and then decreases to approach a zero value 

at rcd. Surface displacements at β0 = 0.99 are also presented in Fig. 3(b), using Eq. (21). 

The results of the original DH model for a circular contact are also included. A uniform 

displacement over the contact region is annulled by a rigid-body displacement over the 

adhesive region of rab ≤ r ≤ rcd to leave a gap. It can be observed that the surface 

deformations for the current model at β0 = 0.99 closely resemble those of the DH model for 

a circular contact. 
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(a) 

 

(b) 

Fig. 3: (a) The pressure difference between two Hertzian solutions (b) Surface 

displacements for both the DH circular model and the developed model. 
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In a similar way as in the original DH model, the pressure expressions in Eq. (16) 

are scaled by 𝑣 to model the adhesive tensile stresses over the adhesive region,              

rab ≤ r ≤ rcd, which produces the final stresses distribution when combined with an unscaled 

Hertzian pressure. The scaling factor 𝑣 is determined by the surface forces, which will be 

further discussed in Section 2.3. The pressure equations are now expressed as: 

 𝑃(𝑟, 𝜃𝑝) =

𝑣 {𝑃𝑜𝑐𝑑 [1 − .
𝑟𝑐𝑜𝑠  

𝑐
/
2

− .
𝑟𝑠𝑖𝑛  

𝑑
/
2

]

1
2⁄

− 𝑃𝑜𝑎𝑏 [1 − .
𝑟𝑐𝑜𝑠  

𝑎
/
2

− .
𝑟𝑠𝑖𝑛  

𝑏
/
2

]

1
2⁄

}          0  𝑟  𝑟𝑎𝑏

 (22a) 

 𝑃(𝑟, 𝜃𝑝) = 𝑣𝑃𝑜𝑐𝑑 [1 − .
𝑟𝑐𝑜𝑠  

𝑐
/
2

− .
𝑟𝑠𝑖𝑛  

𝑑
/
2

]

1
2⁄

      𝑟𝑎𝑏  𝑟  𝑟𝑐𝑑 (22b) 

 

From Eq. (22b), it can be seen that the distribution of the tensile stress over the adhesive 

annular region is given by: 

 𝜎𝑎𝑐(𝑟, 𝜃𝑝) = −𝑃(𝑟, 𝜃𝑝) = −𝑣𝑃𝑜𝑐𝑑 [1 − .
𝑟𝑐𝑜𝑠  

𝑐
/
2

− .
𝑟𝑠𝑖𝑛  

𝑑
/
2

]
1 2⁄

 (23) 

 

Then, at r = a and ζp = 0°, the maximum adhesive stress is given by: 

 𝜎0 = −𝑣𝑃𝑜𝑐𝑑 .1 −
𝑎 

𝑐 /
1 2⁄

 (24) 

 

The combined load, including the load in Eq. (10), is expressed as: 

 𝑊 = 
4 ∗

3𝑅  
2(𝑎𝑏)

3
2⁄ − 𝑣 0(𝑐𝑑)

3
2⁄ − (𝑎𝑏)

3
2⁄ 13 (25) 

To include the scaling factor 𝑣, surface displacements in Eq. (21) are rewritten as: 

 𝜔0𝑎𝑏(𝑟, 𝜃𝑝) =  𝑣(𝜔𝑖𝑛𝑎𝑏
− 𝜔𝑖𝑛𝑐𝑑

)   0  𝑟  𝑟𝑎𝑏 (26a) 

 𝜔𝑎𝑏𝑐𝑑(𝑟, 𝜃𝑝) =  𝑣(𝜔𝑜𝑢𝑡𝑎𝑏
− 𝜔𝑖𝑛𝑐𝑑

)   𝑟𝑎𝑏  𝑟  𝑟𝑐𝑑 (26b) 

 

The gap, h, for the area outside the contact where rab ≤ r ≤ rcd is then given by: 

 ℎ(𝑟, 𝜃𝑝) =  𝑧 + 𝜔𝑜𝑢𝑡𝑎𝑏
+ 𝜔𝑎𝑏𝑐𝑑 − 𝜔0𝑎𝑏 − 𝛿 (27) 
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2.3 Work of adhesion 

The work needed to break the intermolecular bonds at the pull-off moment is termed work 

of adhesion. This work is required to create new surfaces when separating two bodies 

attached together due to the presence of the adhesion forces. The work of adhesion from 

[11] can be expressed as: 

 ∆𝛾 = ∫ 𝜎𝑎𝑐𝑑ℎ
 

0
 (28) 

which becomes 

 ∆𝛾 = ∫ ∫ 𝑑𝜎𝑎𝑐𝑑ℎ
 𝑎𝑐( )

0

 

0
 (29) 

where σac(h) is dependent on the separation h. For an elliptical contact, h  is a function of 

both r and ζp, as shown in Eq. (27). Using the Jacobian of the transformation, the work of 

adhesion for an adhesive elliptical contact from Eq. (29) can be expressed as: 

 ∆𝛾 = 4∫ ∫ (
𝑑 𝑎𝑐

𝑑𝑟

𝑑 

𝑑  
−

𝑑 𝑎𝑐

𝑑  

𝑑 

𝑑𝑟
) 𝑑𝑟𝑑𝜃𝑝

𝑟𝑐𝑑
𝑟𝑎𝑏

 
2⁄

0
 (30) 

where the scaling factor 𝑣 is chosen such that the values of σ0 and Δγ are fixed. 

 In this paper, only the results for the angular coordinate at ζp = 0° are shown, 

resulting in the model having a one-dimensional solution for the contact problem. The 

expression for the work of adhesion in Eq. (30) for ζp = 0° can be rewritten as:  

 ∆𝛾 = ∫ 𝜎𝑎𝑐(𝑟)
𝑑 

𝑑𝑟
𝑑𝑟

𝑟𝑐𝑑
𝑟𝑎𝑏

 (31) 

 

3 Results 

Previous results are summarized in non-dimensional form following the work of [11] and 

[23] by: 

 𝑎 =  𝑐𝑟𝑎
∗  𝑏 =  𝑐𝑟𝑏

∗  𝑐 =  𝑐𝑟𝑐
∗ 𝑑 =  𝑐𝑟𝑑

∗ (32) 

and 

 𝑐𝑟
3 = 𝑅2∆𝛾/𝐸∗  (33) 

 𝑊 = 2𝜋𝑅∆𝛾𝑊∗/𝑠 𝑛𝜃𝑠𝑘𝑒𝑤 (34) 

 

Further, the Tabor parameter is defined in [10] as: 

 𝜇 =  𝜎0(𝑅 𝐸∗2∆𝛾⁄ )
1

3⁄  (35) 

 

Using the equations above, the normal load in Eq. (25) is now expressed in non-

dimensional form as: 

 𝑊∗ =
2

3 

𝑠𝑖𝑛   𝑒 

  
 2(𝑎∗𝑏∗)

3
2⁄ − 𝑣 0(𝑐∗𝑑∗)

3
2⁄ − (𝑎∗𝑏∗)

3
2⁄ 13 (36) 
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The effects of changing the normalized load W* on the semi-major axes of contact 

and adhesive ellipses, a* and c*, are shown in Fig. 4 and Fig. 5. We obtained the values of 

c* and the scaling factor 𝑣 by solving Eqs. (31) and (35) simultaneously in MATLAB. Due 

to incomplete elliptic integrals in Eq. (31), it cannot be solved directly in the same manner 

as in the DH circular contact.  Both c* and 𝑣 values were then used in Eq. (36) to calculate 

the corresponding load. At a nearly circular contact, the model is compared to the original 

DH model for an intermediate case of μ = 1 and the JKR circular model for the soft 

material comparison at μ = 5. A β0 value of 0.99 follows the behavior of a circular contact 

accurately for all μ values. At μ = 0.5, the pull-off moment occurs at a near-zero contact 

with a high pull-off force. It is shown that the deformations due to adhesion forces are 

negligible, which is in agreement with the predictions of the DMT model. For μ = 5, the 

surface separation involves a low pull-off force at an apparent non-zero contact, which is 

similar to those predicted by the JKR model. In Fig. 5, c* values are shown to be highly 

influenced by the value of μ, such that they become smaller with increasing μ. As the μ 

values approach the JKR domain where materials are easily deformed, the adhesive 

ellipse becomes smaller while the contact ellipse becomes larger, resulting in a narrow 

adhesive region. This is in close agreement with the adhesive behavior in the JKR domain, 

where adhesion is contained within the contact area. 
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Fig. 4: Variation of the contact semi-major axis a* with the normalized load W* for various 

values of μ. 

 

Fig. 5: Variation of the adhesive semi-major axis c* with the normalized load W* for various 

values of μ. 
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The performance of the developed model is further investigated for particular μ 

groups, as shown in Fig. 6 and Fig. 7. Both graphs plot the semi-major axes of contact and 

adhesive ellipses, a* and c*, versus the normalized load W*. Results are shown for various 

β0 values at μ = 0.5 and μ = 5 respectively. At μ = 0.5, it is shown that with decreasing β0 

values, the gap between a* and c* becomes considerably wider. This shows that, outside 

the contact area, an expansion of the adhesive region along the major axis is predicted for 

contacts which deviate from a circular shape. However, there is barely any effect at μ = 5, 

as shown in Fig. 7. At μ = 5, a* values are nearly equal to c* values, indicating a narrow 

adhesive region.  

 

Fig. 6: Contact and adhesive semi-major axes a* and c* versus the normalized load W* for 

various β0 values at μ = 0.5. 
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Fig. 7: Contact and adhesive semi-major axes a* and c* versus the normalized load W* for 

various β0 values at μ = 5. 

 

In Fig. 8, the model is compared to the JKR elliptical model at its adhesive domain 

of μ = 5. Only the curve of β0 = 0.99 has a close fit to the JKR elliptical model. The 

difference in pull-off force values between both models is more apparent with decreasing 

β0. Although both models show similar deformations, the pull-off forces predicted by the 

developed model at β0 values of 0.8 and 0.9 are considerably low for β0 values that are 

considered to be close to one.  
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Fig. 8: Variation of the contact semi-major axis a* with the normalized load W* for various 

β0 values at μ = 5. 

 

As previously shown in Fig. 8, the initial assumption of an adhesive region with both 

contact and adhesive ellipses having equal and constant ellipticity ratios as the load 

varies, as given in Eqs. (17) and (19), is not realistic for β0 values of 0.8 and 0.9. To further 

analyse the behavior of the adhesive region during contact, the pull-off moment results 

from the assumption of Eq. (19) are compared to when the model employed JKR-like 

behavior, in which its ellipticity ratio is constantly changing as the load varies. At the pull-

off moment, both results employ Eq. (18) for the relation between the contact and 

adhesive ellipses. For the JKR-like behavior, the ellipticity ratios of both contact and 

adhesive ellipses are made equal as the ellipticity ratio of the contact area obtained from 

the JKR elliptical model, which is expressed as β(pull-off) = βJKR(pull-off), for all β0 values of 0.8, 

0.9 and 0.99.  

The variation of the normalized pull-off force Wmax
*  with the Tabor parameter μ is 

shown in Fig. 9(a). Results from both assumptions employed in the developed model are 

compared with the existing adhesive circular and elliptical models. Both results from the 

developed model produce curves which lie close to the other adhesive circular and 

elliptical models at β0 = 0.99. At β0 values of 0.8 and 0.9, the assumption of Eq. (19) 

produces results which clearly deviate from the JKR elliptical model. With the new 
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assumption of JKR-like behavior, the gap between the predicted pull-off forces of the 

developed model and the JKR values is slightly improved for β0 values of 0.8 and 0.9, as 

shown in the relative errors graph in Fig. 9(b). It must be noted that a perfect fit between 

the JKR curves and the developed model cannot be expected in the JKR domain. The 

adhesive force for the JKR model is restricted within its contact area, which is different 

from the adhesive behavior outside the JKR domain, where the adhesive region is present 

outside the contact ellipse. This is an important characteristic of the developed model that 

must be taken into consideration. 
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(a) 

 

 (b) 

Fig. 9: (a) Normalized pull-off force Wmax
* as a function of the Tabor parameter μ for 

various ellipticity ratios β0 (b) The percentage of relative error for both results from the 

developed model when compared to the JKR elliptical model in the JKR domain. 
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4 Discussion 

At β0 values of 0.8 and 0.9, results from the developed model show an apparent deviation 

for the nearly circular contact comparison. Using the initial assumption of β = β(pull-off) = β0 

throughout the contact until the pull-off moment, the adhesive region becomes smaller as 

the load decreases but it maintains its annular elliptical shape. This is due to a constant 

deformation rate along the major and minor axes directions for both the contact and 

adhesive ellipses. As for the JKR contact, which assumes a constantly changing β during 

contact (β(pull-off) ≠ β0), the shape of the contact area that contains the adhesive stresses 

slowly changes from an ellipse to a nearly circular shape at the pull-off moment. From the 

initial load, the deformation rate along the minor axis of the elliptical contact slowly 

increases, the shape of which eventually turns into a nearly circular contact area during 

pull-off. Adhesion that acts within a nearly circular contact area requires a higher pull-off 

force for the separation compared to a narrow annular elliptical-shaped adhesive region. 

Fig. 10 illustrates the evolution of the adhesive region and the contact area for the 

developed model with β = β(pull-off) = β0 assumption, including the JKR contact area as a 

comparison. The assumption of identical, fixed ellipticity ratios throughout the contact for 

the contact and adhesive ellipses which bounded the adhesive region is shown to be 

unsuitable for the pull-off force prediction, as seen in the limiting JKR case where the pull-

off force is underestimated. 

 

 

Fig. 10: Evolution of the adhesive region and the contact area from initial loading to pull-off 

moment for both the JKR and the proposed model.  
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At the JKR domain, pull-off moment results from the new assumptions (β(pull-off) = 

βJKR(pull-off)) are closer to the JKR elliptical model, compared to those from the initial 

assumption of β = β(pull-off) = β0. The results provide insight into how the developed model 

should behave near the JKR domain, which has ellipticity ratios that are continuously 

changing as the load varies. At  μ = 5, a smooth transition cannot be expected between 

the developed model with either the initial or the new assumption and the JKR elliptical 

model, because the developed model cannot model the adhesion inside the contact area, 

which is the foundation of the JKR model.  

Additionally, assuming an equal value of β for both contact and adhesive ellipses   

(β = βab = βcd) over a wide range of μ is also unrealistic. It is important to find the real 

geometrical behavior of both contact and adhesive ellipses to improve the model‟s 

prediction, regardless of material types and crossing angles. It is expected that the 

adhesive ellipse has the same ellipticity ratio as the contact ellipse for low μ values, while 

nearly circular adhesive regions are expected for high μ values that are closer to the JKR 

domain. Further work is essential to predict realistic geometrical behavior of contact and 

adhesive ellipses to enable accurate prediction for an adhesive elliptical contact. 

Numerical simulations such as [20, 24] have been shown to be able to model adhesive 

contact accurately, which can help us to predict the behavior of both contact and adhesive 

ellipses. 

 

5 Conclusions 

A model has been developed for predicting the adhesive elliptical contact by extending the 

DH model. Both contact and adhesive ellipses have identical, fixed ellipticity ratios, 

following the Hertzian assumption. Based on this, the geometry of the adhesive contact 

can be modeled, allowing pull-off force predictions for adhesive elliptical contacts. The 

results are in agreement with those obtained using existing adhesive circular and elliptical 

models, but only at nearly circular contacts. Mildly elliptical contacts have better results 

when the adhesive region is assumed to be constantly changing, as taken into account in 

the JKR model. This behavior is also expected for non-JKR contacts, based on the 

transition from the JKR model to the developed model in the pull-off force prediction.  

 

Acknowledgments 

The authors gratefully acknowledge support from the Ministry of Education Malaysia, 

Universiti Teknikal Malaysia Melaka and Green Tribology and Engine Performance (G-

TriboE) research group. 



 Extending the double-Hertz model to allow modeling of an adhesive elliptical contact 
 

A-21 

 

Appendix A: Coordinate system for governing equations 

 

Fig. 11: Cartesian to polar coordinate system transformation for the contact and adhesive 

ellipses. 

 𝑟𝑎𝑏 = 𝑎𝑏 √(𝑏𝑐𝑜𝑠𝜃𝑝)
2
+ (𝑎𝑠 𝑛𝜃𝑝)

2
⁄   (A-1) 

 𝑟𝑐𝑑 = 𝑐𝑑 √(𝑑𝑐𝑜𝑠𝜃𝑝)
2
+ (𝑐𝑠 𝑛𝜃𝑝)

2
⁄   (A-2) 

where 

 𝑥 =  𝑟𝑐𝑜𝑠𝜃𝑝  (A-3) 

 𝑦 =  𝑟𝑠 𝑛𝜃𝑝  (A-4) 

 

Appendix B: Solutions for incomplete elliptic integrals 
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We are honored that our work on the extension of the Double-Hertz (DH) model for 

adhesive elliptical contacts [1] was commented by Greenwood, whose paper with Johnson 

[2] was the source of inspiration for our work. 

  In a comment to our published work, Greenwood argues that rather than predicting 

the pull-off forces, the extended DH model for elliptical contacts are actually predicting the 

force at which stable, local, peeling starts to occur. He also concludes that our contact 

analysis that is based only on the major axis underestimates the pull-off force.  

In our work [1], the adhesive region is assumed to be in the shape of an annulus, 

bounded by a contact ellipse of semi-major axis a and semi-minor axis b on the inside, and 

an adhesive ellipse of semi-major axis c and semi-minor axis d on the outside, as shown in 

Fig. 1.  

 

 

Fig. 1: Adhesive region of a DH-based elliptical contact. 

 

The ellipticity ratio for the contact and the adhesive ellipses are termed βab and βcd, 

respectively, given by: 

 𝛽𝑎𝑏 = 𝑏 𝑎⁄  (1a) 

 𝛽𝑐𝑑 = 𝑑 𝑐⁄  (1b) 

A contact problem with an annular elliptical adhesive region is difficult to solve as a, b, c 

and d are unknown a priori. Hence, we assume that it is appropriate for the extended DH 

model to first employs the simplest assumption concerning the ellipticity ratio of the 

adhesive region β, that is both βab and βcd have similar values, given by: 

 𝛽 = 𝛽𝑎𝑏 = 𝛽𝑐𝑑 (2) 
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We fully acknowledge that Eq. (2) is not correct for adhesive elliptical contacts; it was also 

not our intention to suggest this being the case. The original paper was intended as a 

reformulation of the DH model to allow incorporation of arbitrary 𝛽𝑎𝑏 and 𝛽𝑐𝑑 values. In [1], 

Eq. 2 has been used as a zero, very rough approximation, as a way to better understand 

adhesive elliptical contacts.  

When the pull-off force is achieved, the expression in Eq. (2) becomes: 

 𝛽(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓) = 𝛽𝑎𝑏(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)
= 𝛽𝑐𝑑(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓)

 (3) 

Assuming that the ellipticity ratio remains constant throughout the contact, at the pull-off 

moment, both βab and βcd become equal to the ellipticity ratio at the initial loading, β0, thus: 

 𝛽 = 𝛽(𝑝𝑢𝑙𝑙;𝑜𝑓𝑓) = 𝛽0   (4) 

Again, similar to Eq. (2), we understand that this assumption is not correct as the ellipticity 

ratio clearly does not remain constant.  

And indeed, the assumption in Eq. (4) is the reason why the pull-off forces predicted 

by the extended DH model in [1] for β0 = 0.8 and β0 = 0.9 are lower than the approximate 

Johnson-Kendall-Roberts (JKR) model [3], at the limiting case close to the JKR domain, 

where these ratios‟ change significantly due to the elastic deformation caused by the 

surface forces. However, it is already mentioned in our paper [1] that Eq. (4) is expected to 

be valid only for β0 = 0.99, as the shape of both contact and adhesive ellipses are similar 

to a circular contact. For β0 = 0.8 and β0 = 0.9, the contact shapes are obviously elongated 

in the major axis direction, hence the application of Eq. (4) results in inaccurate pull-off 

force predictions, by assuming βab = βcd for µ values close to the JKR domain. However, it 

is worth noting that the assumptions in Eq. (4) is also expected to be approximately valid 

for elliptical contacts at relatively low µ values, where the elastic deformation due to 

surface forces is relatively low. Although for increasing µ values, it is expected that the 

geometry of the adhesive contact will evolve from an elliptical geometry to a JKR-like 

geometry. 

To show that the extended DH model framework [1] can predict accurately the pull-

off force for various contact cases with the correct βab and βcd assumptions, we simulate 

the adhesive elliptical contact using a Dugdale-based Boundary Element Model (BEM) that 

employs the Conjugate Gradient Method (CGM) [4]. The numerical simulation can be done 

for various contact cases, here the contact for β0 values of 0.99, 0.8 and 0.5 is simulated, 

similar to the cases discussed in Greenwood‟s comment. The model is further explained in 

Supplementary Material. The obtained βab, βcd and a values from the numerical 

simulations are then applied in the extended DH model to predict the pull-off forces.  
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 Pull-off force predictions from various models are compared in Table 1, for µ = 1.  

The table includes pull-off force predictions by the extended DH model and the numerical 

simulations, Greenwood‟s result which he applied a direct JKR solution for the extended 

DH model and also results using the approximate JKR model in [3]. When the pull-off force 

is achieved, the numerical simulations predict βab and βcd to have different values from 

each other, higher than β0 at the initial loading. It has to be noted that unlike the results in 

Greenwood‟s comment, here the pull-off forces are transformed into non-dimensional 

forms similar to [1], following the Derjaguin approximation for the case of an adhesive 

contact between two cylinders of radii R1 and R2, crossed at an angle, ζ to each other [5]. 

Then, the applied force, W can be expressed in a non-dimensional form as W*, which is 

given as: 

 𝑊∗ =
𝑊    

2 𝑅∆ 
 (7) 

 R is the relative radius and Δγ is the surface energy. From Table 1, it is shown that the 

extended DH model predicts higher pull-off forces compared to the approximate JKR 

model [3] and the calculations by Greenwood. This situation is expected as the results 

from the extended DH model are obtained for low μ value of 1, which is outside the JKR 

domain. Results in Table 1 show that with a proper assumption for the adhesive region 

(varying βab and βcd throughout the contact), the extended DH model can indeed predict 

accurately the pull-off force for various cases of adhesive elliptical contacts.  

 

 Table 1: Comparison between pull-off force predictions for various elliptical contacts at     

μ = 1. 

β0 = b/a 

(Hertzian) 

Direct  

K1 

(Greenwood) 

Approx. 

JKR 

model 

Numerical model 
Extended 

DH model 

W*
 W*

 βab(pull-off) βcd(pull-off) W* W* 

0.99 0.7462 0.7500 0.9927 0.9943 0.7901 0.7941 

0.8 0.6584 0.7370 0.8232 0.8489 0.7785 0.7864 

0.5 0.4453 0.6366 0.5486 0.5982 0.6926 0.692 
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Finally, it is worth to note that the purpose of our paper [1] is to present the 

development of an adhesive elliptical model, achieved by extending the DH theory. The 

model development is completed, and validated for a high β0 value of 0.99. For lower β0 

values, to assume constant ellipticity ratios for the adhesive region is indeed inaccurate, as 

also discussed in our paper [1]. We have shown through numerical simulations that both 

βab and βcd do change significantly as the contact progresses. With this knowledge, we 

have continued the work on the extended DH model by finding the solutions for βab and βcd 

that are suitable for a wide range of contact conditions. These solutions are already 

obtained and are planned to be published in a follow-up paper. By employing these 

solutions in the extended DH model, accurate prediction of adhesive elliptical contacts can 

be made for various contact conditions. 

We again would like to thank Greenwood for his comments, which provide us an 

opportunity to elaborate more on our work. 

 

Acknowledgements 

The authors gratefully acknowledge support from the Ministry of Education Malaysia, 

Universiti Teknikal Malaysia Melaka and Green Tribology and Engine Performance (G-

TriboE) research group. 

 

References 

1. Zini, N.H.M., de Rooij, M.B., Bazr Afshan Fadafan, M. et al. Tribol. Lett. (2018) 66: 

30. https://doi.org/10.1007/s11249-017-0976-8  

2. Greenwood, J.A., Johnson, K.L: An alternative to the Maugis model of adhesion 

between elastic spheres. J. Phys. D Appl. Phys. 31(22), 3279-3290 (1998) 

3. Johnson, K.L., Greenwood, J.A.: An approximate JKR theory for elliptical contacts. 

J. Phys. D Appl. Phys.  38(7), 1042-1046 (2005) 

4. Bazrafshan, M. de Rooij, M.B., Valefi, M., Schipper, D.J.: Numerical method for the 

adhesive normal contact analysis based on a Dugdale approximation. Tribol. Int. 

112, 117-128 (2017) 

5. Israelachvili, J.N.: Intermolecular and Surface Forces, 3rd edn. Academic Press, 

Amsterdam (2011) 

6. Maugis, D.: Adhesion of spheres: The JKR-DMT transition using a Dugdale model. 

J. Colloid Interface Sci. 150(1), 243-269 (1992) 

 



 

 

 

Paper C 

 

Predicting the pull-off force of the double-Hertz elliptical 

contact with a load-dependent adhesive region 

 

 

 N.H.M. Zini1,2*, M.B. de Rooij1, M. Bazrafshan1, A. Akchurin1, D.J. Schipper1 

 

1) Department of Surface Technology and Tribology, Faculty of Engineering Technology,  

University of Twente, the Netherlands 

2) Faculty of Mechanical Engineering, Universiti Teknikal Malaysia Melaka, 

Hang Tuah Jaya, 76100 Durian Tunggal, Melaka, Malaysia 

 

Submitted to Tribology Transactions 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

 

 

 

 



Predicting the pull-off force of the double-Hertz elliptical contact with a load-dependent adhesive region 

C-1 

 

Abstract Adhesive elliptical contacts are found in small-scale applications such as fiber-

on-fiber contacts. A recently extended Double-Hertz (DH) model for adhesive elliptical 

contacts is shown to predict accurately the pull-off force, but the employed assumptions 

restricted the model application to nearly circular contacts. Ellipticity ratios of the inner and 

the outer boundaries of a DH based adhesive region cannot be determined as the 

geometry of the adhesive region is unknown a priori, thus making the model unsuitable for 

a wide range of elliptical contacts. Here, the equations at the pull-off moment for the 

boundaries of the adhesive region and the semi-major axis of the elliptical contact area are 

proposed and incorporated into the extended DH model for various elliptical contacts. 

Initially, the geometry of the adhesive region at the pull-off moment is predicted using 

numerical simulations utilizing the Boundary Element Method. The numerical data is used 

to curve-fit equations of the ellipticity ratio and the semi-major axis of the elliptical contact 

area. The resulting equations are then incorporated into the extended DH model for pull-off 

force predictions. Results show that the incorporated equations allow the extended DH 

model to predict the pull-off force for various elliptical contacts within its working domain. 

For adhesive elliptical contacts, the limit of the JKR domain is also shown to be shifted 

closer to the DMT limit, expanding the validity domain of the JKR model to lower values of 

the Tabor parameter. 

 

Keywords Double-Hertz model; elliptical contact; pull-off force; adhesion  

 

List of symbols 

𝑎, 𝑏  Semi-major and semi-minor axes of the contact ellipse at the 

pull-off moment 

𝑐, 𝑑  Semi-major and semi-minor axes of the adhesive ellipse at the 

pull-off moment 

𝛽𝐻𝑒𝑟𝑡𝑧     Ellipticity ratio of the Hertzian contact  

𝛽0     Ellipticity ratio of the initial contact  

𝛽𝑎𝑏     Ellipticity ratio of the contact ellipse at the pull-off moment 

𝛽𝑐𝑑     Ellipticity ratio of the adhesive ellipse at the pull-off moment 

𝑟     Radial coordinate 

𝜃𝑝     Angular coordinate 

𝑟𝑎𝑏     Radial coordinate of the contact ellipse 

𝑟𝑐𝑑     Radial coordinate of the adhesive ellipse  

𝜃𝑠𝑘𝑒𝑤     Angle between two cylindrical bodies 
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𝐸∗     Reduced Young‟s modulus 

𝑅 = √𝑅′𝑅′′    Equivalent radius 

𝜇    Tabor parameter 

𝑘𝑎𝑏 = (1 − 𝛽𝑎𝑏
2)

1 2⁄
  Elliptic modulus of the contact ellipse at the pull-off moment 

𝑘𝑐𝑑 = (1 − 𝛽𝑐𝑑
2)

1 2⁄
  Elliptic modulus of the adhesive ellipse at the pull-off moment 

𝑘𝑎𝑏
′ = (1 − 𝑘𝑎𝑏

2)
1 2⁄

  Complementary elliptic modulus of the contact ellipse at the 

pull-off moment  

𝜑 = sin;1(𝑎 √𝑙 + 𝑎2⁄ )  Second argument of the incomplete elliptic integrals at the pull-

off moment 

𝑲(𝑘)     Complete elliptic integral of the first kind  

𝑬(𝑘)     Complete elliptic integral of the second kind  

𝑭(𝜑, 𝑘)   Incomplete elliptic integral of the first kind  

𝑬(𝜑, 𝑘)    Incomplete elliptic integral of the second kind  

∆𝛾    Surface energy 

𝑣    Scaling factor to keep σ0 and Δγ at a constant value 

𝑊     Applied load of the single asperity contact 

𝑃𝑜𝑎𝑏    Maximum pressure of the contact ellipse 

𝑃𝑜𝑐𝑑    Maximum pressure of the adhesive ellipse 

𝜔𝑖𝑛𝑎𝑏
    Surface displacement within the contact ellipse 

𝜔𝑜𝑢𝑡𝑎𝑏
    Surface displacement outside the contact ellipse 

𝜔𝑖𝑛𝑐𝑑
    Surface displacement within the adhesive ellipse 

𝜔0𝑎𝑏    Combined surface displacement for 0 ≤ r ≤ rab 

𝜔𝑎𝑏𝑐𝑑    Combined surface displacement for rab ≤ r ≤ rcd 

𝑧0    Equilibrium separation 

ℎ0 = 0.974𝑧0)  Separation limit between contacting surfaces for the MD model 

𝜎0 = 16∆𝛾/9√3𝑧0  Maximum adhesive stress for the MD model 

𝑃(𝑥, 𝑦)    Applied pressure for the MD model 

𝑔(𝑥, 𝑦) Separation between two surfaces after deformation, for the MD 

model 

𝐹0    Applied load for the MD model 
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1 Introduction 

Contact modeling is essential in micro-scale applications such as fiber-on-fiber contacts. 

At this scale, adhesion typically plays a major role in contact deformations as a 

consequence of high surface area-to-volume ratios [1]. For a simple contact behavior like 

adhesive circular contacts, there are several contact models available such as the 

Derjaguin-Muller-Toporov (DMT) model [2], which was later corrected by Muller et al. [3], 

the Johnson-Kendall-Roberts (JKR) model [4], the Maugis-Dugdale (MD) cohesive model 

[5] and the Double-Hertz (DH) model [6].  

 An adhesion map for circular contacts by Johnson and Greenwood [7] shows the 

application range of the adhesive models. The Tabor parameter, μ developed in [8], 

calculates the ratio of the neck height to the equilibrium separation. For large values of μ, 

adhesion is limited to the contact area. Thus, the adhesive stresses outside the contact 

area can be disregarded as the surfaces are totally separated outside the contact area, 

which is the basis of a JKR contact [4]. On the other hand, in the case of the DMT model, 

the presence of adhesion is significant outside the contact area. No deformation is allowed 

in the DMT model, hence no neck is formed outside the contact area. The DMT contact 

follows a continuous and stable path until a separation occurs at zero contact as opposed 

to the separation at a finite value of the contact radius for the JKR model [4,9,10]. This 

contact behavior is similar to the Hertzian contact, though the DMT contact is separated at 

the pull-off force value rather than at zero load [2]. For the MD model in [5], the adhesive 

stresses are constant within the adhesive annular region. Occupying the intermediate zone 

in the adhesion map, the MD model smoothly reconciles the difference between the DMT 

and the JKR models. Another intermediate model, the DH model [6], is not part of the 

adhesion map [7]. The contact geometry of the DH model is similar to the MD model [5], 

though the DH model is simpler in mathematical formulations [6]. For the DH model, 

adhesion is modeled by the difference between two Hertzian pressure distributions. These 

pressure distributions are the results of two Hertzian circular contact areas of different 

radii. The adhesive region outside the contact is obtained by the area difference between 

the two Hertzian contact areas. All the adhesive models mentioned above have been 

extended to allow predictions for adhesive line contacts. However, for more complicated 

surface interactions such as adhesive elliptical contacts, there is no model available 

between the DMT and the JKR domains.  

The approximate JKR model developed in [11] has provided the knowledge on how 

an adhesive elliptical contact behaves. This model has been developed on the basis that 

the contact area remains elliptical, with both major and minor axes having the same stress 
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intensity factor. The resulting eccentricity due to the ellipticity ratio of the contact area is 

shown to vary with load. The approximate JKR model does give good results, though it is 

only valid for highly elastic materials. A comparison with experimental results of 

Polydimethylsiloxane (PDMS) material in [12] shows that both the approximate JKR model 

and the experiment have similar pull-off force values; the relative errors between both 

results only exceed 10% when the skew angle between the surfaces, ζskew decreases to 

20° and less. As ζskew approaches 0°, the contact areas obtained from the experiment start 

to detach in the major axis direction, which is not predicted by the approximate JKR model 

[12]. A numerical simulation in [13] also compares its results to the approximate JKR 

model in [11] and the experiments in [12], which show that the numerical simulation has 

closer results to the approximate JKR model at lower ζskew values. Recently, the 

approximate JKR model has been modified in [14], to generalize the contact prediction by 

assuming that the contact areas for both adhesive and non-adhesive contacts are similar, 

with a suitable increased load.  

Another adhesive elliptical model is proposed in [15] and is used to describe the 

adhesive elliptical contacts between rigid filaments. The DMT approach from [2] is 

employed to calculate the contact geometry and the elastic deformations, while Bradley‟s 

theory in [16] is used in the DMT-based model to predict adhesion. As ζskew between two 

filaments increases, the contact area begins to shrink rapidly as the filament radius 

increases. Unlike the JKR model in [11], the pull-off force of the DMT elliptical model in 

[15] is independent of the size of the contact area. 

 The limited application of the JKR and the DMT elliptical models are solved by the 

introduction of an adhesive elliptical model that employs the DH theory [17], which 

assumptions are clarified further in [18]. Pull-off force predictions are shown to be 

underestimated due to the assumption that both inner and outer boundaries of the 

adhesive region have constant, identical ellipticity ratios from the initial load to the pull-off 

force at the pull-off moment, following the Hertzian assumption for non-adhesive contacts. 

Results of the extended DH model in the JKR domain are closer to the approximate JKR 

model [11] by using the geometrical properties from the JKR model that vary with load, but 

not close enough as both boundaries of the adhesive region are assumed to have similar 

ellipticity ratios. Based on this observation, it is concluded that an accurate modeling of an 

adhesive elliptical contact can be made possible for the extended DH model in [17] by 

modeling an adhesive region with load-dependent boundaries that change throughout the 

contact. 
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 For the current research, the adhesive region is allowed to change without the 

constraint of a Hertzian contact. Both contact and adhesive ellipses that act as the inner 

and the outer boundaries of the adhesive region have ellipticity ratios that vary with load, 

with both ellipses having similar ellipticity ratios at the initial load. As the contact 

progresses to the pull-off moment where the „negative‟ separation force is maximum (the 

pull-off force), both boundaries begin to change in size, with the inner boundary having a 

different ellipticity ratio than the outer boundary, though both boundaries are assumed to 

keep their elliptical shapes. The work consists of two parts: (1) predicting the geometry of 

the adhesive region at the pull-off moment by using a numerical model; and (2) developing 

equations to predict the ellipticity ratio of the inner and the outer boundaries of the 

adhesive region, and also the semi-major axis of the elliptical contact area, both at the 

pull-off moment. Results obtained will be compared with the numerical model, other 

adhesive elliptical contact models and existing experimental results for validation 

purposes. It will also be analysed if the application limit for the JKR model still applies for 

adhesive elliptical contacts.  

 

2 Load-dependence of DH-based elliptical contacts  

2.1 Adhesion modeling  

Continuing the work in [6], the behavior of an adhesive elliptical contact is modeled using 

the DH approach in [17], using the polar coordinate system whose geometrical parameters 

are defined in Appendix A. Using the DH approach, adhesion is modeled by the difference 

between two Hertzian pressure distributions. Both Hertzian pressures are assumed to 

have equivalent shapes, the only difference being the size of the area of which the 

pressure acts. The smaller ellipse acts as the inner boundary of the adhesive region, while 

the larger ellipse acts as the outer boundary (termed respectively as the contact and the 

adhesive ellipses), resulting in an annular region where the adhesion forces act, as shown 

in Fig. 1. The contact ellipse is the Hertzian contact area, with semi-major axis a and semi-

minor axis b. The adhesive ellipse is due to the additional pressure distribution outside the 

contact ellipse, with semi-major axis c and semi-minor axis d.  
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Fig. 1: Adhesive region of a DH-based elliptical contact [18]. 

 

With the new assumption of DH-based elliptical contacts with adhesive region 

boundaries that vary with load, selected adhesive equations are reproduced in this paper, 

focusing on adhesive contacts at the pull-off moment. Based on the extended DH model in 

[17], the adhesive stresses for DH based elliptical contacts can be expressed in polar 

coordinates as: 

𝑃(𝑟, 𝜃𝑝) =

𝑣 {𝑃𝑜𝑐𝑑 [1 − .
𝑟𝑐𝑜𝑠  

𝑐
/
2

− .
𝑟𝑠𝑖𝑛  

𝑑
/
2

]

1
2⁄

− 𝑃𝑜𝑎𝑏 [1 − .
𝑟𝑐𝑜𝑠  

𝑎
/
2

− .
𝑟𝑠𝑖𝑛  

𝑏
/
2

]

1
2⁄

}          0  𝑟  𝑟𝑎𝑏

 (1a) 

 𝑃(𝑟, 𝜃𝑝) = 𝑣𝑃𝑜𝑐𝑑 [1 − .
𝑟𝑐𝑜𝑠  

𝑐
/
2

− .
𝑟𝑠𝑖𝑛  

𝑑
/
2

]

1
2⁄

      𝑟𝑎𝑏  𝑟  𝑟𝑐𝑑 (1b) 

 

where 𝑣 is the scaling factor, r is the radial coordinate and ζp is the angular coordinate of 

the selected point in the contact region. rab and rcd are the radial coordinates for the 

contact and the adhesive ellipses respectively, such that rab < rcd. The result of the 

adhesive stresses distribution in [17] shows that within the adhesive region, the maximum 

adhesive stresses occurs at rab and decreases to zero value at rcd. 
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The maximum pressure in the contact and the adhesive ellipses, Poab and Pocd can be 

expressed as: 

 𝑃𝑜𝑎𝑏 = 
 ∗

2𝑅

𝑘𝑎𝑏
 𝑎

 𝑎𝑏{[𝑬(𝑘𝑎𝑏)  𝑎𝑏
 ⁄ ;𝑲(𝑘𝑎𝑏)],𝑲(𝑘𝑎𝑏);𝑬(𝑘𝑎𝑏)-}

  ⁄  (2a) 

 𝑃𝑜𝑐𝑑 = 
 ∗

2𝑅

𝑘𝑐𝑑
 𝑐

 𝑐𝑑{[𝑬(𝑘𝑐𝑑)  𝑐𝑑
 ⁄ ;𝑲(𝑘𝑐𝑑)],𝑲(𝑘𝑐𝑑);𝑬(𝑘𝑐𝑑)-}

  ⁄  (2b) 

where K(k) and E(k) are the complete elliptic integral of the first and the second kind, and 

k is the elliptic modulus (eccentricity of the ellipse). Unlike in [17], due to the new 

assumption of a load-dependent adhesive region, k values for the contact and the 

adhesive ellipses in this paper are not equal, hence the different definitions of kab and kcd. 

As this paper focuses on the elliptical contacts at the pull-off moment, βab and βcd are 

given as: 

 𝛽𝑎𝑏 = 𝛽𝑎𝑏𝑝𝑢𝑙𝑙;𝑜𝑓𝑓
 (3a) 

 𝛽𝑐𝑑 = 𝛽𝑐𝑑𝑝𝑢𝑙𝑙;𝑜𝑓𝑓
 (3b) 

Based from the results in [17], for a load-dependent adhesive region, at the pull-off 

moment, the relation between the initial ellipticity ratio at the beginning of the adhesive 

contact, β0, βab and βcd can be described as: 

 𝛽0  𝛽𝑎𝑏  𝛽𝑐𝑑 (4) 

βHertz is introduced to describe the constant ellipticity ratio obtained from a normal Hertzian 

elliptical contact. Before the ellipticity ratios change due to the applied load, the 

assumption for the initial adhesive contact for the contact and the adhesive ellipses can be 

summarized as: 

 𝛽0 = 𝛽0𝑎𝑏
= 𝛽0𝑐𝑑

 (5a) 

 𝛽0 = 𝛽𝐻𝑒𝑟𝑡𝑧 (5b) 

which the relation between βHertz to ζskew is solved in [10]. 

 

The surface displacement between two cylindrical bodies, ω, is given by: 

 𝜔0𝑎𝑏(𝑟, 𝜃𝑝) =  𝑣(𝜔𝑖𝑛𝑎𝑏
− 𝜔𝑖𝑛𝑐𝑑

)   0  𝑟  𝑟𝑎𝑏 (6a) 

 𝜔𝑎𝑏𝑐𝑑(𝑟, 𝜃𝑝) =  𝑣(𝜔𝑜𝑢𝑡𝑎𝑏
− 𝜔𝑖𝑛𝑐𝑑

)   𝑟𝑎𝑏  𝑟  𝑟𝑐𝑑 (6b) 

where 

 𝜔𝑖𝑛𝑎𝑏
(𝑟, 𝜃𝑝) =

1

  ∗ 0 𝑖𝑛𝑎𝑏
−  𝑖𝑛𝑎𝑏

(𝑟   s 𝜃𝑝)
2
−  𝑖𝑛𝑎𝑏

(𝑟 sin 𝜃𝑝)
2
1    0  𝑟  𝑟𝑎𝑏  (7a) 

 𝜔𝑜𝑢𝑡𝑎𝑏
(𝑟, 𝜃𝑝) =

1

  ∗ 0 𝑜𝑢𝑡𝑎𝑏
−  𝑜𝑢𝑡𝑎𝑏

(𝑟   s 𝜃𝑝)
2
−  𝑜𝑢𝑡𝑎𝑏

(𝑟 sin 𝜃𝑝)
2
1    𝑟  𝑟𝑎𝑏 (7b) 

and 

 𝜔𝑖𝑛𝑐𝑑
(𝑟, 𝜃𝑝) =

1

  ∗
0 𝑖𝑛𝑐𝑑

−  𝑖𝑛𝑐𝑑
(𝑟   s 𝜃𝑝)

2
−  𝑖𝑛𝑐𝑑

(𝑟 sin 𝜃𝑝)
2
1    0  𝑟  𝑟𝑐𝑑 (8) 
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Definitions of L, M and N can be found in Appendix B. 

 

From [14], the combined load for adhesive elliptical contacts is obtained by integrating the 

stresses over the elliptical contact area and the annulus adhesive region, which can be 

expressed as: 

 𝑊 = 
4 ∗

3𝑅
2
(𝑎𝑏)  ⁄

 𝑎𝑏
 − 𝑣 0

(𝑐𝑑)  ⁄

 𝑐𝑑
 −

(𝑎𝑏)  ⁄

 𝑎𝑏
 13 (9) 

where 

 𝐹𝑎𝑏 = .
4

 𝑘𝑎𝑏
 𝛽𝑎𝑏

3 2⁄ {[𝑬(𝑘𝑎𝑏) 𝛽𝑎𝑏
2⁄ − 𝑲(𝑘𝑎𝑏)],𝑲(𝑘𝑎𝑏) − 𝑬(𝑘𝑎𝑏)-}

1 2⁄
/
1 3⁄

(10a) 

 𝐹𝑐𝑑 = .
4

 𝑘𝑐𝑑
 𝛽𝑐𝑑

3 2⁄ {[𝑬(𝑘𝑐𝑑) 𝛽𝑐𝑑
2⁄ − 𝑲(𝑘𝑐𝑑)],𝑲(𝑘𝑐𝑑) − 𝑬(𝑘𝑐𝑑)-}

1 2⁄
/
1 3⁄

(10b) 

 

Following [6], results are summarized in non-dimensional form, with the geometry of the 

adhesive region at the pull-off moment given as: 

 𝑎∗ = 𝑎/𝑐𝑟  𝑏
∗ = 𝑏/𝑐𝑟  𝑐

∗ = 𝑐/𝑐𝑟 𝑑
∗ = 𝑑/𝑐𝑟 (11) 

where 

 𝑐𝑟
3 = 𝑅2∆𝛾/𝐸∗  (12) 

 𝑊∗ = 𝑊 sin 𝜃𝑠𝑘𝑒𝑤 /2𝜋𝑅∆𝛾 (13) 

 

The load in Eq. (9) can be transformed into non-dimensional form as: 

 𝑊∗ =
2       𝑒 

3 
2
(𝑎∗𝑏∗)  ⁄

 𝑎𝑏
 − 𝑣 0

(𝑐∗𝑑∗)  ⁄

 𝑐𝑑
 −

(𝑎∗𝑏∗)  ⁄

 𝑎𝑏
 13 (14) 

 

2.2 Prediction of the adhesive region boundaries 

2.2.1 Numerical approach 

For accurate behavior prediction of an adhesive elliptical contact at the pull-off moment, 

the model must employ a realistic and accurate assumption of the geometry of the contact 

and the adhesive ellipses, which determines both βab and βcd values. The load effect on 

both βab and βcd values during contact is recognized in [17] as the correct geometrical 

behavior for the DH based adhesive region. Results from [17] prove that with correct βab 

and βcd values, it is possible for the extended DH model to predict accurately the pull-off 

force for various elliptical contacts. However, without the geometrical values of a, b, c and 

d, both βab and βcd cannot be solved. Here, numerical simulations will be utilized to predict 

accurately βab and βcd values, for various elliptical contacts.  

A Boundary Element Model (BEM) was developed in [19] to predict adhesion 

between rough surfaces, based on the Dugdale approximation for the adhesive stresses. 
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From the MD model in [5], adhesion depends on the separation limit between the surfaces 

in contact, h0. The relation between h0 and the surface energy, Δγ, is given as: 

 ∆𝛾 = 𝜎0ℎ0 (15) 

σ0 is the maximum adhesive stress, expressed as: 

 𝜎0 =
16∆ 

9√3𝑧0
 (16) 

z0 is the equilibrium separation. Using Eq. (16), Eq. (15) is rewritten as: 

 ℎ0 =
9√3𝑧0

16
= 0.974𝑧0 (17) 

The separation between the surfaces, ϵ is given as: 

  = {
0   𝑎𝑡 𝑟 = 𝑎
ℎ0 𝑎𝑡 𝑟 = 𝑐

 (18) 

Hence, the cohesive zone for the numerical model starts at the beginning of the constant 

pressure and ends when ϵ = h0.  

From the theory in [5], a general adhesive contact problem can be described as 

having two surfaces deformed due to the applied pressure, P(x,y): 

 𝑃(𝑥, 𝑦) > −𝜎0      𝑎𝑡     𝑔(𝑥, 𝑦) = 0  

 𝑃(𝑥, 𝑦) = −𝜎0       𝑎𝑡     0 < 𝑔(𝑥, 𝑦) < ℎ0  

 𝑃(𝑥, 𝑦) = 0      𝑎𝑡     𝑔(𝑥, 𝑦) > ℎ0 (19) 

 ∫𝑃(𝑥, 𝑦)𝑑𝑥𝑑𝑦 = 𝐹0  

g(x,y) is the separation between two surfaces after deformation and F0 is the applied load. 

The BEM model in [19] utilizes an extended Conjugate Gradient Method (CGM), an 

iterative method that can solve non-linear optimization problems. The contact problem in 

Eq. (19) can be expressed in the discretized format as: 

 𝑃𝑖 > −𝜎0      𝑎𝑡     𝑔𝑖 = 0  

 𝑃𝑖 = −𝜎0       𝑎𝑡     0 < 𝑔𝑖 < ℎ0  

 𝑃𝑖 = 0      𝑎𝑡     𝑔𝑖 > ℎ0 (20) 

 ∆𝑥∆𝑦∑ ∑ 𝑃𝑖  = 𝐹0
 
 <1

 
𝑘<1   

where i,j = 1, 2, …, N, which N is the number of rectangular surface elements of the 

calculation area; a higher N will produce a finer mesh. 

CGM algorithm can solve complex contact problems, including adhesive elliptical 

contacts with a wide range of ellipticity ratios. In this algorithm, the geometry is not 

assumed as the contribution of each element in the pressure and the deformation profiles 

is considered separately [19]. Hence the algorithm can be used for any type of contact 

geometry including adhesive elliptical contacts. The CGM algorithm for solving the 

adhesive elliptical contacts is shown schematically in Fig. 2. 
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Fig. 2: CGM based algorithm for adhesive elliptical contacts [19]. 

 

Numerical simulations are conducted for β0 values of 0.3 (ζskew = 43.63°), 0.4 (ζskew 

= 53.14°), 0.6 (ζskew = 68.51°) and 0.8 (ζskew = 80.45°), within the range of 0.5 ≤ μ ≤ 4. 

Results from the numerical simulations are obtained using the element number, N along 

the major and the minor axes of N = 2048 for 0.5 ≤ μ < 2 (the domain size is 2048 

elements x 2048 elements) and N = 4096 for 2 ≤ μ ≤ 4 (the domain size is 4096 elements x 

4096 elements). In all cases, the calculation domain is set six times greater than the 

contact domain. An increased resolution is required for larger μ values due to the small 

adhesive zone outside the contact. These values are set after repeating the numerical 

computations using various element numbers and extension factors for the contact domain 

to get the optimal numerical parameters for all contact conditions. The accurate prediction 

of βab and βcd values at the pull-off moment uses a negative load input in the numerical 

algorithm; this negative load represents the pull-off force required to separate the surfaces. 

The pull-off force is determined by the greatest negative load that first converges within 

200 iterations.  

An example of the numerical model‟s results on predicting adhesive elliptical 

contacts at the pull-off moment are shown in Fig. 3. The results are obtained using the 

contact parameters in Table 1 as the input. Fig. 3a shows the image of three-dimensional 

pressure profile within the computation domain with 2048 elements along the major and 

the minor axes while Fig. 3b and Fig. 3c show the resulting pressure distribution along the 

semi-major axis and semi-minor axis. The selected points of a and b are obtained from the 

semi-major and semi-minor axes of the contact ellipse while the points of c and d are 

obtained from the semi-major and semi-minor axes of the adhesive ellipse.  
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Table 1: Parameter of the adhesive elliptical contact at the pull-off moment. 

Parameters Values Unit 

Predicted pull-off force 75 nN 

Fiber diameter 3.5 Μm 

Skew angle, ζskew 43.63 ° 

Hertzian ellipticity ratio, β0 0.3 - 

Tabor parameter, μ 0.5 - 

Number of elements along major and minor axes, N 2048 - 

 

 

Fig. 3: Numerical solution for the elliptical contact (a) three-dimensional pressure profile for 

the elliptical contact (b) stress distribution along the semi-major axis and (c) stress 

distribution along the semi-minor axis. 
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Next, the values of βab and βcd are determined by applying the values of a, b, c and 

d obtained from numerical simulations into the ellipticity ratio equation from [17], given as: 

 𝛽𝑎𝑏 = 𝑏/𝑎 (21a) 

 𝛽𝑐𝑑 = 𝑑/𝑐 (21b)  

 

Fig. 4 shows the results from the numerical simulations for both contact and 

adhesive ellipses at the pull-off moment, for the effect of μ on the ellipticity ratio. Starting 

from μ = 0.5, the large differences between βab and βcd become smaller as the μ values 

approach 3. It is also shown that both βab and βcd at the pull-off moment are higher than β0. 

This indicates that both ellipses transform from an elliptical shape at the beginning of the 

contact to a much rounder ellipse at the pull-off moment, a behavior also reported in 

[11,12, 20]. 

 

Fig. 4: Numerical prediction of the ellipticity ratio for both contact and adhesive ellipses at 

the pull-off moment for various β0 values. 
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Fig. 5 shows the adhesive regions for various elliptical contacts between two 

cylindrical bodies from the same material, obtained from the numerical simulations in 

Section 2.2.1. Following Eq. (11), the geometry of the adhesive region is summarized in a 

non-dimensional form. Results show that the differences between the semi-major and 

semi-minor axes for both contact and adhesive ellipses become smaller as β0 increases.  

 

 

Fig. 5: Non-dimensional contact and adhesive radii of the adhesive region at the pull-off 

moment for various β0 values. 

 

Numerical data at the pull-off moment is then curve-fitted to obtain ellipticity ratio 

equations of the adhesive region boundaries, and also the semi-major axis of the contact 

ellipse, for various elliptical contacts. 

 

2.2.2 Fitting procedure 

The procedure for curve-fitting begins by using the numerical model discussed in Section 

2.2.1 to calculate βab and βcd as a function of ζskew and μ. The resulting numerical data is 

then analysed to determine the best curve-fit for independent parameters individually. All 

the curve-fits are obtained using the built-in fminsearch function in MATLAB.  

 The curve-fitting procedure for a is similar to βab and βcd. However, unlike βab and 

βcd, a has a dimensional unit; hence it is curve-fitted first into non-dimensional form a*, as a 
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function of non-dimensional parameters of βab and μ. The fitted a* equation is then 

transformed into the dimensional form a that is based on the JKR semi-major axis solution 

in [11], with the inclusion of the dimensional parameters of R, Δγ and E* in the equation. 

 

3 Results 

From the curve-fitting in section 2.2.2, we have obtained the equations that can predict the 

values of βab and βcd at the pull-off moment, as a function of μ and ζskew. These ellipticity 

ratio equations at the pull-off moment are given as: 

 𝛽𝑎𝑏 =  0.3899𝜃𝑠𝑘𝑒𝑤
1.7669 + 0.0829𝜇0.3316 + 0.0233 (22a) 

 𝛽𝑐𝑑 = 0.4139𝜃𝑠𝑘𝑒𝑤
1.5837 + 0.7199𝜇;0.0074 − 0.5783 (22b) 

Using βab from Eq. (22a), the equation to predict the semi-major axis of the contact ellipse 

at the pull-off moment, a is given as: 

 𝑎 =  .
𝑅 ∆ 

 ∗ /
1

3⁄

(sin (1.0499𝛽𝑎𝑏
;0.1553 − 0.0648𝜇;1.1945))

2
  (23) 

 

When compared with the numerical model, the maximum errors of Eq. (22) are 2.67% for 

βab at β0 = 0.3, and 0.76% for βcd at β0 = 0.4, while the minimum errors are calculated as 

0.124% at β0 = 0.8 and 0.007% at β0 = 0.3, for βab and βcd, respectively. As for the errors 

of a in Eq. (23), the maximum error is 2.87% at β0 = 0.4, while the minimum error is 0.15% 

at β0 = 0.3. 

 Fig. 6 and Fig. 7 show the effect of the Tabor parameter, μ on both βab and βcd at 

the pull-off moment, with the values obtained from Eq. (22) are compared to the numerical 

model. The ellipticity ratios from the JKR elliptical model at the pull-off moment are also 

included for reference, but only in Fig. 6. The adhesive stresses in the JKR model occur 

only within the contact area, thus only βab values of the JKR model are available for 

comparison. It is shown in Fig. 6 that βab increases at a faster rate for lower μ values and 

eventually slows down as the curve approaches μ = 3. The result from the curve-fitted Eq. 

(22) is shown to approach the JKR result as μ and β0 values increase. Meanwhile, in Fig. 

7, the decreasing rate for βcd is fairly constant from μ = 0.5 to μ = 3.  
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Fig. 6: Ellipticity ratio of the contact ellipse at the pull-off moment for the numerical model, 

the curve-fitted equation and the JKR elliptical model for various β0 values. 

 

 

Fig. 7: Ellipticity ratio of the adhesive ellipse at the pull-off moment for the numerical model 

and the curve-fitted equation for various β0 values. 
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 The non-dimensional values of the semi-major axis of the contact ellipse at the pull-

off moment, a* from Eq. (23) and the resulting semi-major axis of the adhesive ellipse at 

the pull-off moment, c* are plotted in Fig. 8, with the numerical results. Values from Eq. 

(22) and Eq. (23) are used in the extended DH model to calculate c* values. The a* values 

from both numerical results and Eq. (23) are similar for all β0 values, while the c* values 

obtained from the solution of Eq. (22) and Eq. (23) are higher than the numerical results.  

 

 

Fig. 8: Non-dimensional semi-major axis of both contact and adhesive ellipses at the pull-

off moment for the numerical model and the curve-fitted equations for various β0 values. 

 

Fig. 9 shows the comparison between the pull-off force results of the numerical 

model, the extended DH model, the PDMS experimental results in [12] which are obtained 

using a graph digitizer software, and the JKR elliptical model [11]. Eq. (22) and Eq. (23) 

are incorporated in the extended DH model to predict c* and the scaling factor 𝑣 at the pull-

off moment, which are then used to calculate the pull-off forces. For β0 values of 0.3 and 

0.4, the curves for both numerical and extended DH model are similar for low μ up to μ = 1, 

where the numerical pull-off forces keep on decreasing while the pull-off force values of 

the extended DH model begin to increase. For β0 value of 0.8, the extended DH model 

predicts higher pull-off forces near the DMT domain, though before μ = 2 the pull-off forces 

of the numerical model start to exceed the extended DH results. 
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Fig. 9: Pull-off force prediction between the numerical model, the extended DH model, the 

JKR elliptical model and the existing experimental results for various β0 values. 

 

Some of the results in Fig. 9 are replotted in Fig. 10 with the pull-off force as a 

function of ζskew. The curves for μ values of 0.5 and 1 are shown to have similar behavior 

as the JKR elliptical model. The extended DH model can be considered to already achieve 

its limit somewhere in the range of 1 < μ < 2, though this might need further research. 
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Fig. 10: Pull-off forces as a function of ζskew for μ values of 0.5, 1 and 2, compared to the 

JKR elliptical model.  

 

4 Discussion 

For the curve-fitting of the ellipticity ratio data at the pull-off moment, there are many 

mathematical functions that can be considered to represent the data. However, by 

referring to the pull-off force behavior of an adhesive circular contact as discussed in [6], it 

is clear how the contact should behave. It should be noted that for adhesive elliptical 

contacts, there are no theoretical limits of the contact models in terms of rigid and highly 

elastic materials, unlike the adhesive circular contacts. However, in this paper, the fitting 

equations are developed for 0.5 ≤ μ ≤ 3, as the lower limit for the extended DH model is μ 

= 0.5 and the upper limit for the numerical model is μ = 3. The values of βab increase 

rapidly at low μ values that are close to the DMT domain. Materials that are considered 

closed to the DMT domain barely deform along the semi-major axis direction, as shown by 

the close value of βab to β0. The rapid increase of βab eventually slows down as the curve 

is within the intermediate domain and becomes nearly stable as it approaches the JKR 

domain. Closed to the JKR domain, the highly elastic materials are easily deformed, 

resulting in high βab values. This behavior is represented well by Eq. (22a). As for the 

behavior of βcd, there is no reference available on how the adhesive ellipse might behave. 
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Solely based on the trend of the numerical data, it is shown that the values of βcd decrease 

at a nearly constant manner, indicating that the effect of μ on βcd is not dominant. 

Although the curve-fitting of a is based on the JKR semi-major axis equation in [11], 

the final form of a is not similar to the JKR solution. Unlike the JKR elliptical model, whose 

application is specific to highly elastic materials, μ does affect the pull-off force values in 

the extended DH model. Hence, μ is included in the fitted a equation. Even though a* 

predictions are similar for the numerical model and the extended DH model, the c* values 

are shown to be higher than the numerical results. As the numerical simulation is based on 

the MD model, it is expected to have similar work of adhesion (surface energy) as the 

extended DH model. Hence, the area under the curve for both models should be equal, as 

illustrated in Fig. 11. The higher c* prediction is to compensate the decreasing values of 

adhesive stresses, as opposed to constant adhesive stresses by the MD model in the 

adhesive region. For lower μ, the pull-off forces predicted by both the extended DH model 

and the numerical model are close even though the fitted c* is larger than the c* predicted 

numerically. The difference between both c* values have little influence on the pull-off force 

prediction as both models have close results. However, the numerical errors become 

significant at higher μ values that are close to or already in the JKR domain, especially for 

low β0 values due to a really small adhesive zone. At really high μ, the adhesive zone is so 

small that the extended DH model cannot model such behaviour accurately. Hence, the 

pull-off forces predicted by the extended DH model have large errors compared to the 

numerical results. 

 

Fig. 11: Graphical representation of the adhesive stresses distribution by both DH and MD 

models. 
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From Fig. 10, it is shown that the behavior of the curves for μ values of 0.5 and 1 

are similar to the JKR results; the curve of μ = 1 follows really closely the behavior of the 

JKR results compared to the curve of μ = 0.5, signifying that it is really close to the JKR 

domain. However, for the curve of μ = 2, its behavior is totally different compared to the 

JKR result. This can be an indicator that at μ = 2, the contact is already within the JKR 

domain. This situation is further proved by the ratio of cnum
* to anum

* in Table 2, calculated 

from the numerical results. At μ = 2, the values of cnum
*/anum

* are really close to 1, 

especially for lower β0 values, a sign that the adhesive region outside the contact is really 

small, which is the characteristic of the JKR model. To conclude, the JKR domain is larger 

for elliptical contacts compared to the circular contacts, as seen by the JKR domain starts 

at much lower μ value than 5, which is the application limit for the JKR model of circular 

contacts.  

 

Table 2: Ratio of cnum
*to anum

* for various contact conditions. 

μ cnum
*/ anum

* 

β0 = 0.3 β0 = 0.4 β0 = 0.6 β0 = 0.8 

0.5 1.8146 1.8837 1.9379 1.9477 

1 1.2606 1.2793 1.3039 1.3157 

2 1.0692 1.0757 1.0863 1.0947 

3 1.0340 1.0371 1.0425 1.0459 

 

Unlike the JKR domain, validation for βab values with the DMT elliptical model near 

the rigid domain is not possible due to the Bradley‟s approach for the DMT elliptical model 

[15]. From the pull-off force comparison for the adhesive models of circular contacts in [6], 

it is shown that at μ = 0.5, the deviation of the pull-off force prediction by the Bradley model 

from the DH model is already significant with a large error of 15%.  Basically, the pull-off 

behavior of the Bradley model is already different compared to the DH model at μ = 0.5. 

On the other hand, at μ = 3, both the DH model and the JKR model have nearly similar 

results with a low error of 2%, even though the application of the JKR model only begins at 

μ = 5. Based from these error values, larger discrepancies between these models should 

be expected for elliptical contacts. Hence, for Tabor range of 0.5 ≤ μ ≤ 3, the contact 

model comparison is only conducted between the DH model and the JKR model. 
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5 Conclusions 

The work on the extended DH model has been continued to include the assumption of an 

adhesive region with boundaries that vary with load, for an accurate pull-off force 

prediction. The geometry of the annular adhesive region at the pull-off moment is obtained 

from a Dugdale-based numerical model. These numerically-obtained values are curve-

fitted to find the equations to predict the ellipticity ratios for both ellipses that bounded the 

adhesive region at the pull-off moment and the semi-major axis of the contact ellipse, and 

then incorporated into the extended DH model. The incorporated equations of the ellipticity 

ratio and the contact semi-major axis at the pull-off moment allow the extended DH model 

to accurately predict the pull-off force in its working domain of 0.5 ≤ μ < 2, for various 

elliptical contacts. It is shown that the validity domain for the JKR model is expanding and 

dominating adhesive elliptical contacts. 
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Appendix A: Coordinate system for governing equations 

The transformation from Cartesian to polar coordinate system for the contact and adhesive 

ellipses are obtained from [17], which rab and rcd from Fig. 12 are given as: 

 𝑟𝑎𝑏 = 𝑎𝑏 √(𝑏𝑐𝑜𝑠𝜃𝑝)
2
+ (𝑎𝑠 𝑛𝜃𝑝)

2
⁄   (A-1) 

 𝑟𝑐𝑑 = 𝑐𝑑 √(𝑑𝑐𝑜𝑠𝜃𝑝)
2
+ (𝑐𝑠 𝑛𝜃𝑝)

2
⁄   (A-2) 

where 

 𝑥 =  𝑟𝑐𝑜𝑠𝜃𝑝  (A-3) 

 𝑦 =  𝑟𝑠 𝑛𝜃𝑝  (A-4) 
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Fig. 12: Cartesian to polar coordinate system transformation for the contact and adhesive 

ellipses [17]. 

 

Appendix B: Solutions for incomplete elliptic integrals 

  𝑖𝑛𝑎𝑏
= 𝛿 =  𝜋𝑃𝑜𝑎𝑏

𝑏𝑲(𝑘𝑎𝑏) (B-1) 

  𝑖𝑛𝑎𝑏
=  𝜋𝑃𝑜𝑎𝑏

𝛽𝑎𝑏,𝑲(𝑘𝑎𝑏) − 𝐸(𝑘𝑎𝑏)-/𝑘𝑎𝑏
2𝑎 (B-2) 

  𝑖𝑛𝑎𝑏
=  𝜋𝑃𝑜𝑎𝑏

𝛽𝑎𝑏[𝑬(𝑘𝑎𝑏)/𝛽𝑎𝑏
2 − 𝑲(𝑘𝑎𝑏)]/𝑘𝑎𝑏

2𝑎 (B-3) 

  𝑜𝑢𝑡𝑎𝑏
=  𝜋𝑃𝑜𝑎𝑏

𝑏𝑭(𝜑, 𝑘𝑎𝑏) (B-4) 

  𝑜𝑢𝑡𝑎𝑏
=  𝜋𝑃𝑜𝑎𝑏

𝛽𝑎𝑏,𝑭(𝜑, 𝑘𝑎𝑏) − 𝑬(𝜑, 𝑘𝑎𝑏)-/𝑘𝑎𝑏
2𝑎 (B-5) 

 𝑜𝑢𝑡𝑎𝑏
=  𝜋𝑃𝑜𝑎𝑏

𝛽𝑎𝑏[𝑬(𝜑, 𝑘𝑎𝑏) − 𝑘𝑎𝑏
′2𝑭(𝜑, 𝑘𝑎𝑏) − 𝑘𝑎𝑏

2 sin𝜑   s𝜑 /√1 − (𝑘𝑎𝑏 sin𝜑)2]/

𝑘𝑎𝑏
2𝑘𝑎𝑏

′2𝑎 (B-6) 

  𝑖𝑛𝑐𝑑
=  𝜋𝑃𝑜𝑐𝑑

𝑑𝑲(𝑘𝑐𝑑) (B-7) 

  𝑖𝑛𝑐𝑑
=  𝜋𝑃𝑜𝑐𝑑

𝛽𝑐𝑑,𝑲(𝑘𝑐𝑑) − 𝐸(𝑘𝑐𝑑)-/𝑘𝑐𝑑
2𝑐 (B-8) 

  𝑖𝑛𝑐𝑑
=  𝜋𝑃𝑜𝑐𝑑

𝛽𝑐𝑑[𝑬(𝑘𝑐𝑑)/𝛽𝑐𝑑
2 − 𝑲(𝑘𝑐𝑑)]/𝑘𝑐𝑑

2𝑐 (B-9) 
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Abstract In contact between single fibers, the presence of adhesion is acknowledged and 

has been deeply researched. However, a general understanding is still lacking in terms of 

adhesive contacts between fibers in hierarchical structures. Hierarchical fiber structures 

like nanoyarns acknowledge that adhesion is present in the contacts between nanofibers, 

though the general understanding of the mechanism is still lacking. This work sets out to 

investigate the significance of the presence of adhesion in the contact between nanofibers 

in a nanoyarn. The effect of the electrospinning process parameters on adhesion between 

nanofibers in a nanoyarn is also determined. Contact and load properties for the nanofiber 

contacts in electrospun nanoyarns are obtained from a geometrical model of a low-order 

hierarchical structure; these parameters are then used as inputs to the adhesive contact 

model to predict adhesion between nanofibers in a nanoyarn. Adhesion is indeed 

significant between nanofiber contacts in electrospun nanoyarns and is shown to be 

influenced by the nanofiber radius, the number of nanofibers in a nanoyarn, the nanofiber 

twisting speed and the nanoyarn reeling speed; the effect of the nanofiber twisting speed 

on the adhesive nanofiber contacts is opposite to that of the nanoyarn reeling speed. 

 

Keywords: Adhesion; Elliptical contact; JKR elliptical; Hierarchical structure; Nanofiber 

contacts 

 

List of symbols 

𝑟  Nanofiber radius 

𝐷  SWHS structure diameter 

𝑃  SWHS structure pitch 

𝛼1  Helical angle of the nanoyarn 

𝛽  Twist angle of a strand 

𝑅1  Center distribution 

𝜔1  Nanofiber twisting speed 

𝜔2  Nanoyarn reeling speed 

𝑛  Number of nanofibers in a nanoyarn 

𝑎, 𝑏  Semi-major and semi-minor axes of the contact ellipse at the pull-off    

moment 

𝜃𝑠𝑘𝑒𝑤   Angle between two cylindrical bodies 

𝐸∗   Reduced Young‟s modulus 

𝑅′, 𝑅′′   Principal relative radii of curvature 

𝑅 = √𝑅′𝑅′′  Equivalent radius 
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𝜇  Tabor parameter 

∆𝛾  Work of adhesion 

𝑊𝑓   Normal contact force between two nanofibers  

𝑊𝑦   Axial load of the nanoyarn 

𝑊𝐽𝐾𝑅   Pull-off force between adjacent nanofibers 

 

1. Introduction 

Fibers have long been utilized by mankind in various applications. Fibers can be 

divided into two types: natural and synthetic. In contrast to natural fibers that are produced 

from animals and plants, synthetic fibers are man-made, created in laboratories. Both 

natural and synthetic fibers consist of hierarchical structures, though the structures of 

synthetic fibers are typically simpler than those of natural hierarchical structures.  

A hierarchical structure is a structure that has more than one length scale. The 

structural hierarchy can significantly affect the bulk material properties; one of the 

advantages of utilizing hierarchical structures is that the structures typically have high 

strength-to-weight ratios [1]. Various levels of hierarchical fiber structures can be explained 

as follows: the basic component is the fibers, which form the basic structure - yarns; these 

structures are obtained by braiding or twisting a group of fibers together. There are also 

yarns that are made from parallel fibers with no twisting involved. For complex structures 

such as ropes, the next higher levels can consist of rope yarns, strands, core, subropes 

and cover [2], as shown in Figure 1.  

 

 

Fig. 1: Example of a hierarchical structure of ropes. 
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There are also simple, low-order hierarchical structures that consist of fewer levels, 

such as electrospun nanoyarns. Electrospinning is a straightforward nanoyarn production 

system that uses an electric force to draw charged threads of polymer solutions with fiber 

diameters in the order of nanometers [3]. A polymer solution is forced through a syringe; a 

solution drop is then formed at the needle tip. A high voltage is applied to the needle, 

which induces electric charges within the fluid. When the applied voltage is greater than 

the critical voltage, the repulsive force within the charged solution is greater than its 

surface tension and a jet erupts from the tip of the needle. As this jet travels through the 

air, the solvent evaporates, and the polymer fiber is gathered by a funnel-shaped collector, 

which functions as a negative electrode [4,5]. The collector rotates and exerts a twist on 

the nanofiber bundles to form a nanoyarn; the nanoyarn is then wound on a yarn rolling 

device or wrapped around another yarn as protection. The electrospinning process is 

simplified graphically in Fig. 2(a). Nanofibers have diameters in the nanometer range, and 

a ratio of length to diameter of 100:1 [3]. Hence, during the electrospinning process 

nanofibers are prone to adhesion-induced deformations. 

Adhesion is caused by intermolecular forces between two surfaces and becomes 

increasingly significant at the fiber level due to a high surface-to-volume ratio [6]. Adhesion 

causes two surfaces to remain in contact even though the applied load is removed; a 

„negative‟ force termed as the pull-off force is required to separate the surfaces at a certain 

pull-off moment. Adhesion influences the fiber-on-fiber contact by increasing the contact 

area, consequently increasing friction between fibers and affecting phenomena like bundle 

spreading. There are four main adhesive models that can be used to describe the 

adhesive contact between fibers: (1) the Johnson-Kendall-Roberts (JKR) model [7], (2) the 

Derjaguin-Muller-Toporov (DMT) model [8], (3) the Maugis-Dugdale (MD) model [9] and (4) 

the Double-Hertz (DH) model [10]. The JKR model in [7] is applicable for highly elastic 

materials while the DMT model is applicable to relatively rigid materials [8]. Both the MD 

[9] and the DH [10] models are suitable for materials that are neither rigid nor highly 

elastic. All these four models were initially developed for circular contacts and have been 

extended to describe the line contacts: [11] for the JKR-based adhesion, [12, 13] for the 

MD-based adhesion and [14] for the DH-based adhesion. For elliptical contacts, currently 

there are three adhesive models available: (1) the DMT based model with Bradley‟s 

approach for the adhesive stress [15], (2) the approximate JKR model [16] and (3) the 

extended DH model [17]. Incorporated with the geometrical solutions on the adhesive 

region obtained numerically from [18], the extended DH model is shown to be suitable for 

elliptical contacts with various conditions. However, it is also shown that for elliptical 
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contacts, the DH model transitions to the JKR model at a much lower Tabor parameter μ. 

Investigations on adhesive contacts in hierarchical structures have been widely 

conducted for biological structures especially gecko [19-21]; however, no research has 

been done on adhesive fiber contacts in a hierarchical structure. Studies on adhesive fiber 

contacts are normally done for contacts between single fibers, as seen in [22-24] for 

nanofibers. For a low-order hierarchical structure like electrospun nanoyarns that consist 

of one component and one structure, adhesion may be present in the contact between 

nanofibers in the nanoyarn. There is no research available to verify the significance of the 

presence of adhesion in the nanofiber contacts in electrospun nanoyarns.  

This paper investigates the significance of the presence of adhesion in a low-order 

hierarchical structure of electrospun nanoyarns. The effects of the electrospinning 

parameters on the adhesive nanofiber contacts are also analysed. 

 

2 Modelling nanofiber contacts in electrospun nanoyarns  

At the present time there is no fiber-based geometry model that incorporates the 

hierarchical structure of an electrospun nanoyarn. As the purpose of this study is to obtain 

the contact mechanics of adhesive nanofiber contacts in electrospun nanoyarns, other 

applications with similar hierarchical structure are utilized. 
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2.1 Stranded Wire Helical Spring model 

The nanofiber electrospinning process is similar to the manufacturing process of a 

Stranded Wire Helical Spring (SWHS). SWHS is a unique helical spring, normally made up 

of several steel wires that are tied up to form a multilayer and coaxial strand, which is then 

twisted to form a helical spring, with the same direction as the spiral [25]. Typically, it is 

assumed that the wires in the cable of SWHS have frictionless contact between them. 

Based from the results in [26], the contacts between stranded wires inside the cable are 

elliptical contacts, rather than line contacts. This becomes the foundation of the SWHS 

model, modelling the elliptical contacts between the stranded wires in the cable. When the 

structure of both SWHS and electrospun nanoyarns are compared, it can be seen that the 

component for SWHS (stranded wires) is similar to the component of the electrospun 

nanoyarns (nanofibers), while the cable is similar to the nanoyarns. The translation of the 

nanofiber electrospinning process to the SWHS geometrical model is illustrated graphically 

in Fig. 2(a) and Fig. 2(b).  

 

 

 

Fig. 2: (a) Nanoyarn electrospinning process (b) SWHS geometrical representation for the 

nanoyarn electrospinning process. 
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3.1.1 Geometrical analysis 

The skew angle between adjacent fibers in the protective yarn, ζskew can be determined 

using a coordinate transformation, as done by [25]:  

𝑐𝑜𝑠𝜃𝑠𝑘𝑒𝑤 =
𝑎⃗  ∙𝑎⃗  

|𝑎⃗  |∙|𝑎⃗  |
 (1) 

where the tangential vectors in any point of the central line of two adjacent fibers, 𝑎 1 and 

𝑎 2, are given as: 

𝑎 1 =

{
 
 

 
 
𝑥1

′ = −𝜔2𝐷 sin(𝜔2𝑡) + 𝑟(sin 𝛼1 ∙ 𝜔1 − 𝜔2) ∙   s(𝜔1𝑡) sin(𝜔2𝑡)

+𝑟(sin 𝛼1 ∙ 𝜔2 − 𝜔1) ∙ sin(𝜔1𝑡) sin(𝜔2𝑡)

𝑦1
′ = 𝜔2𝐷   s(𝜔2𝑡) + 𝑟(𝜔2 − sin𝛼1 ∙ 𝜔1) ∙   s(𝜔1𝑡)   s(𝜔2𝑡)

−𝑟(sin 𝛼1 ∙ 𝜔2 − 𝜔1) ∙ sin(𝜔1𝑡) sin(𝜔2𝑡)

𝑧1
′ = 𝜔1𝑟   s 𝛼1   s(𝜔1𝑡) + 𝐷𝜔2 tan𝛼1

 (2a) 

𝑎 2 =

{
 
 
 
 

 
 
 
 𝑥2

′ = −𝜔2𝐷 sin(𝜔2𝑡) + 𝑟(sin(𝛼1) ∙ 𝜔1 − 𝜔2) ∙   s .𝜔1𝑡 +
2 

𝑛
/ sin(𝜔2𝑡) 

+ 𝑟(sin 𝛼1 ∙ 𝜔2 − 𝜔1) ∙ sin .𝜔1𝑡 +
2 

𝑛
/ sin .𝜔1𝑡 +

2 

𝑛
/ sin (𝜔2𝑡) 

𝑦2
′ = 𝜔2𝐷   s(𝜔2𝑡) + 𝑟(𝜔2 − sin(𝛼1) ∙ 𝜔1) ∙   s .𝜔1𝑡 +

2 

𝑛
/   s(𝜔2𝑡)

−𝑟(𝜔1 − sin 𝛼1 ∙ 𝜔2) ∙ sin .𝜔1𝑡 +
2 

𝑛
/ sin (𝜔2𝑡)

𝑧2
′ = 𝜔1𝑟   s(𝛼1)   s .𝜔1𝑡 +

2 

𝑛
/ + 𝐷𝜔2 tan(𝛼1)

(2b) 

x’, y’ and z’ are the axis coordinates of the central line of the nanofibers, as a function of 

reeling time t, n is the number of nanofibers in a nanoyarn, α1 is the helical angle of the 

nanofiber, r is the nanofiber radius, D is the diameter of the SWHS structure, ω1 is the 

nanofiber twisting speed and ω2 is the nanoyarn reeling speed. The basic geometrical 

equations are listed in Appendix A. 

 

3.1.2 Force analysis 

Based from the analysis in [26], the general normal contact force value Wf between any 

two nanofibers in a nanoyarn is given as: 

 𝑊𝑓 = 𝑊𝑦𝑐𝑜𝑠 𝛼/(𝑛 − 1) (3) 

where Wy is the axial load. From Fig. 2(b), the relation between the nanoyarn wrapping 

angle α, the nanoyarn pitch p and D can be expressed as: 

 𝑝 = √(𝜋𝐷/𝑐𝑜𝑠 𝛼)2 − (𝜋𝐷)2 (4) 
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Due to the limitation of existing literature, several assumptions have to be made to use the 

SWHS geometrical model to represent nanofiber contacts in electrospun nanoyarns: 

1. D from Fig. 2(b) is obtained from: 

 𝐷 =  𝐷𝑐𝑜𝑟𝑒 + 𝑑 (5) 

where Dcore represents the diameter of the core yarn/winding roller and d is the 

diameter of the twisted nanoyarn. 

2. The relation between nanofiber pitch S, d and n is given in [27] as: 

 𝑆 𝑑⁄   2𝑛 (6) 

which means that the ratio of S/d should be equal to or greater than twice the value 

of n. It is stated that the larger the S/d ratio is, the smaller the relative errors are, for 

the same number of wires in the strand. In this study, the ratio of S/d is set to be 

seven times greater than the n values, hence S can be expressed as: 

 𝑆 = 7𝑑𝑛 (7) 

 

3.2 Adhesive contact modelling of adjacent fibers in the protective yarn 

The JKR elliptical model in [16] is used to model adhesion in the nanofiber contacts within 

the hierarchical structure of electrospun nanoyarns. When two nanofibers are brought into 

contact, the normal load is given as: 

 𝑊𝐽𝐾𝑅 = 2𝜋𝑎𝑏,𝑝1 − (∆1𝑎
2 + ∆2𝑏

2)/3- (8) 

The maximum negative value of WJKR is obtained at the pull-off moment, where the 

separation between the bonded nanofibers starts to occur. The semi-major axis of the 

contact area a is given as: 

 𝑎3/2 = 2𝑅√
2∆ 

  ∗

(𝑏/𝑎) / (1;(𝑏/𝑎) / )

∆ 
 (𝑏/𝑎) ;∆ 

  (9) 

Given is: 

 𝑝1 = 
∆ 𝑎

5/ ;∆ 𝑏
5/ 

𝑎 / ;𝑏 / 
 (10) 

where ∆1 and ∆2 can be obtained by solving: 

 [
(𝑫 + 𝑪)∆1

′ − (𝑏2/𝑎2)𝑪∆2
′

−𝑪∆1
′ + (𝑩 + (𝑏2/𝑎2)𝑪)∆2

′] =  [
 

1/ 
] (11) 

B, C, D are complete elliptic integrals, which related equations can be found in Appendix 

B. Next, the relation between λ, R’, R’’ and R is given as: 

 
1

𝑅 = 
 

𝑅
 (12a) 

 
1

𝑅  = 
1

 𝑅
 (12b) 
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The geometrical parameters of the electrospun nanoyarn structure can result in the 

nanofiber contacts having less elastic behaviour, whereas in other conditions with similar 

contact properties, such as single adhesive nanofiber contacts, the interaction can be 

considered highly elastic. This can be analysed by using Tabor parameter μ developed by 

[28]. μ can be obtained by finding the ratio of neck height to the equilibrium separation, 

which is expressed by: 

 𝜇 =  𝜎0(𝑅 𝐸∗2∆𝛾⁄ )
1

3⁄  (13) 

where σ0 is the maximum adhesive stresses, R is the equivalent radius, E* is the reduced 

Young‟s modulus and Δγ is the surface energy. “Rigid” materials will have low μ while 

highly elastic materials will have higher μ. 

 

4. Results 

The presence of adhesion between nanofibers in electrospun nanoyarns is investigated on 

nylon 6,6 nanofibers. Table 1 lists the material properties while Table 2 lists the 

electrospinning properties. For the current analysis, the chosen applied load is 10% from 

the breaking load of nylon 6 nanofibers, obtained from [29]. Although they are different in 

terms of chemical structures, both nylon 6 and nylon 6,6 share the same mechanical 

properties. Parameters that affect adhesion in the nanofiber contacts will be determined, 

with the values in Table 1 and Table 2 being taken as the reference properties. A 

parameter study will be performed so as to analyse the significance of the presence of 

adhesion between nanofibers in an electrospun nanoyarn. 

 

Table 1: Properties of the nanofiber.  

Properties Nylon 6,6 Unit Ref. 

Transverses elastic modulus, Etrans 3 GPa [30] 

Poisson‟s  ratio, 𝜗 0.39 - [30] 

Work of adhesion  46.5 mJ/m2 [30] 

Interatomic spacing, z0 4.4 Å [30] 
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Table 2: Properties of the electrospinning process. 

Properties Value Unit Ref. 

Helix angle, α π/4 rad  

Core diameter, Dcore 2 mm  

Applied load, W  15.2 μN [29] 

Nanofiber radius, r  800 nm [31] 

Twisting speed, ω1  2π/3 rad/s [5] 

Reeling speed, ω2  π/6 rad/s [5] 

 

4.1 Calculation steps 

The steps to obtain the results are listed below: 

i. Set the value for α, Dcore, r, F, ω1, ω2 and n. 

ii. Calculate p from Eq. (4), D from Eq. (5) and S from Eq. (7).  

iii. Calculate the basic geometrical parameters in Appendix A. 

iv. Calculate ζskew from Eq. (1) and Eq. (2). 

v. Determine Fn from Eq. (3) and Eq. (4). 

vi. Determine μ from Eq. (13). 

vii. Use ζskew and Fn as the input for the JKR elliptical model to predict pull-off force in 

Eq. (8) and the contact area in Eq. (9). 

 

4.2 The effect of the number of nanofibers in a nanoyarn and the nanofiber radius 

Fig. 3 shows the effect of nanofiber radius on the adhesive contacts, which also 

shows the effect of the number of nanofibers in nanoyarns. The larger nanofiber radius has 

no effect on the ζskew values, as the values remain unchanged. However, the larger 

nanofiber radius is shown to result in higher μ, larger contact area and higher pull-off force. 

For materials in the JKR domain, the resulting contact deformation is larger and the pull-off 

force is lower compared to the less elastic materials. Yet, for nanoyarns that consist of 

many highly elastic nanofibers the spaces between nanofibers are limited, hence higher 

pull-off force is needed to separate the nanofibers in contact. It should be noted that for 

nanofiber radius of 800nm at n = 7, the contact area and the pull-off force cannot be 

predicted as the ζskew is too low for the JKR elliptical contact model. In general, a higher 

number of nanofibers in nanoyarns will have lower ζskew, higher μ values, larger contact 

area and greater pull-off force.  

In terms of the effect of higher applied load which is chosen at 30% of the breaking 

load from [29], there is no change in the adhesive contacts apart from affecting the load 



Adhesive nanofiber contacts in electrospun nanoyarns 

D-10 

 

between nanofibers in contact; change in load results only in a larger Hertzian contact 

area, which is a characteristic of a JKR contact. 

 

Fig. 3: The effect of the number of nanofibers in a nanoyarn and nanofiber radius on       

(a) angle between the fibers, ζskew, (b) Tabor parameter, μ, (c) contact area, and (d) pull-off 

force, W. 

 

4.3 The effect of the nanofiber twisting speed (ω1) 

The effect of a higher nanofiber twisting speed ω1 of 5π/6 is shown in Fig. 4. Higher ω1 is 

shown to result in higher ζskew, lower μ values, smaller contact area and lower pull-off 

force. Higher ω1 results in more nanofiber sections to be twisted, hence it increases the 

ζskew between adjacent nanofibers. At n = 7 for higher ω1 and at n > 3 for higher ω2, the 

contact area and the pull-off force cannot be predicted as the ζskew is too low for the JKR 

elliptical contact, similar to the situation at n = 7 of previous results in Fig. 3. 
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Fig. 4: The effect of nanofiber twisting speed on (a) angle between the fibers, ζskew, (b) 

Tabor parameter, μ, (c) contact area, and (d) pull-off force, W. 

 

4.4 The effect of the nanoyarn reeling speed (ω2) 

The effect of nanoyarn reeling speed, ω2 is investigated next on adhesive nanofiber 

contacts in electrospun nanoyarns; higher ω2 of π/3 is compared to the ω2 value from 

Table 2. It is shown in Fig. 5 that a higher ω2 results in lower ζskew, higher µ, larger contact 

area and greater pull-off forces. The effect of higher ω2 on adhesive nanofiber contacts in 

electrospun nanoyarns are available only for n = 3. For a higher number of nanofibers, the 

corresponding ζskew values are lower than the limit of the JKR elliptical contact, hence no 

adhesive prediction can be made. When results from both ω1 and ω2 are compared, the 

effect of ω2 is shown to be the opposite of ω1. 

 



Adhesive nanofiber contacts in electrospun nanoyarns 

D-12 

 

 

Fig. 5: The effect of nanoyarn reeling speed on (a) angle between the fibers, ζskew, (b) 

Tabor parameter, μ, (c) contact area, and (d) pull-off force, W. 

 

4.3 Significance of the presence of adhesion in fiber contacts within hierarchical 

structures 

Obviously, the adhesive force can be ignored at high load, as the adhesive load is smaller 

than the applied load. In this case, the contact can be regarded as a non-adhesive contact. 

Following the limit set in the adhesion map for circular contacts in [32] as a way of 

differentiating between adhesive contacts and non-adhesive contacts, the significance of 

the presence of adhesion between nanofibers in electrospun nanoyarns is determined 

using the ratio of the pull-off force to the total load, given as 

 |
𝑊𝐽𝐾𝑅

𝑊𝑡𝑜𝑡𝑎𝑙
| < 0.05 (14) 

Setting the maximum limit to 0.05, it means that the contact is regarded as adhesive when 

the pull-off force is more than five percent of the total load. Wtotal is given as: 

 𝑊𝑡𝑜𝑡𝑎𝑙 = 𝑊𝐽𝐾𝑅 + 𝑊𝑓 (12) 
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Fig. 6 shows the result of the ratio between WJKR/Wtotal for all the parameters that 

have been analysed previously. The majority of the contacts have ratios higher than 0.05, 

indicating that adhesion is indeed significant in those contacts. However, as the number of 

nanofibers increases, the nanoyarn becomes packed; the nanofibers are almost parallel to 

each other and have really low ζskew. Hence, the JKR model cannot predict accurately the 

adhesive behaviour of these contacts.  

 

 

Fig 6: The force ratio for all parameters. 

 

5. Discussion 

Results show that for a low-order hierarchical structure such as electrospun nanoyarns, 

the presence of adhesion is indeed very significant in the contact between nanofibers. 

Compared to microfibers, nanofibers have higher tendency to deflect when nanoyarns are 

disturbed from outside sources such as air flow. Adjacent fibers in the nanoyarn may 

deflect and stick to each other as they are easily bent. As a result, adhesion-induced fiber 

collapse varies the connectivity and topology of the fiber network, and can lead to 

nonlinear behaviour and even larger adhesion area in the nanoyarns [33]. Adhesion-

induced fiber collapse can also reduce the superior properties of nanoyarns that are based 

on their unique fibrous geometries. Hence, it is important to acknowledge the significant of 

the presence of adhesion especially for nanofiber contacts in nanoyarns. 
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6. Conclusions 

The significance of the presence of adhesion between nanofibers in electrospun 

nanoyarns is investigated in this paper. Load and contact properties of the nanofiber 

contacts in electrospun nanoyarns are obtained using the SWHS geometrical model, 

which then become the input for the JKR elliptical model. Electrospinning properties such 

as nanofiber radius, the number of nanofibers in a nanoyarn, nanofiber twisting speed and 

nanoyarn reeling speed are shown to influence adhesion at the nanofiber level. It has been 

shown that, in most cases, adhesion between nanofibers in electrospun nanoyarns cannot 

be ignored.  
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Appendix A 

  𝑐𝑜𝑒𝑓 = tan(90 − 180/𝑛) (A-1) 

 𝑅1 = 4𝑑𝑆√( 𝑐𝑜𝑒𝑓
2 + 1) .𝑆2 − (𝜋 𝑐𝑜𝑒𝑓𝑑)

2
/⁄ 5 2⁄  (A-2) 

 𝛼1 = tan;1(𝑆 2𝜋𝑅1⁄ ) (A-3) 

 

 𝛽 =  tan;1(2𝜋𝑅1/𝑆) (A-4) 

 𝑡 =  𝛽 𝜔2⁄  (A-5) 

 

Appendix B 

 𝑒2𝑫(𝑒) =  𝑲(𝑒) − 𝑬(𝑒) (B-1) 

 𝑩(𝑒) =  𝑲(𝑒) − 𝑫(𝑒) (B-2) 

 𝑒2𝑪(𝑒) =  𝑫(𝑒) − 𝑩(𝑒) (B-3) 

 𝑒2 = 1 − (𝑏 𝑎⁄ )2 (B-4) 
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