
Theoretical background I

Woven fabric composite properties

The stiffness properties and thermal expansion coefficients of composites strongly
depend on the fibre orientation. A widely applied modelling technique for predicting
these thermo–elastic properties of laminates built from unidirectional plies is the
Classical Laminate Theory (CLT). The CLT is applied to flat plies in laminates
where the fibre distribution and arrangement is homogeneous at the ply level.
Weaves do not have a homogeneous fibre distribution, their fibres are concentrated
in yarns. Additionally, the yarns are undulated in the weave. Therefore, the CLT
cannot be applied directly to find the thermo–elastic properties of composites built
from woven fabric reinforced composite materials.

Here, a model is presented that accounts for the structure of the weave and the
fibre re–arrangement resulting from forming. It extends the CLT to account for the
inhomogeneous fibre distribution in the weave and the undulation of the yarns. The
model predicts the stiffness properties and thermal expansion coefficients of flat
laminates builtup from non–orthogonal woven fabric plies. The model is verified
with tensile tests and thermal expansion measurements on non–orthogonal weaves.
Two types of fabric weaves were verified, a plain weave and a 8H satin weave.

Review on thermo–elastic modelling

Several models have been developed to predict the in–plane thermo–elastic prop-
erties of various fabric weaves. In the early nineties, Ishikawa and Chou [9, 10]
developed three one–dimensional models for various types of orthogonal woven fabric
composites: the mosaic model, the crimp model, and the bridging model. At the
same time, the two–dimensional model of Naik and Shembekar [19, 20] described
the full geometry of plain weave fabric laminates. The model predicts the in–plane
elastic properties, based on the Classical Laminate Theory [23] and assuming a
mixed parallel–series arrangement of infinitesimal pieces. Based on this model,
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Falzon and Herzberg [12] considered the effect of the laminate configuration on the
strength and stiffness properties in 1996. Vandeurzen and Verpoest [27,28] developed
a Microsoft Excel c©application, TEXCOMP, that describes the three–dimensional
geometry of various fabric weaves. Based on this geometry, they developed a model
that predicts the three–dimensional elastic properties of fabric composites. At the
end of the nineties, Akkerman and De Vries [1] developed a two–dimensional model
for orthogonal fabric weaves. In 2000, Lamers et al. [17] extended this model
predicting the thermo–elastic properties of non–orthogonal, or skewed, weaves. The
model presented here is a refinement of this work by adapting the yarn shape,
resulting in better predictions of the weave properties. Recently, Hofstee et al. [14]
presented a similar CLT based model to predict the thermo–elastic properties of
thermo–formed skewed plain weaves.

Methodology

The weave is built from yarns, which consist of several thousands of fibres. The
yarns cross over and under each other in weave patterns, introducing a waviness,
or undulation, in the yarns. Undulated yarns are not orientated in the plane of the
composite, and thus contribute less to the planar stiffness of the composite than
yarns which remain in the plane. A geometrical model describes the weave pattern
and the resulting waviness.

The fibres and the resin are not homogeneously distributed in the weave. The
fibres are concentrated in the yarns and the matrix material is located in and
around the yarns, bonding the fibres and transferring load. As a result, the fibre
volume fraction is inhomogeneously distributed in the weave. It is generally accepted
that the fibre volume fraction significantly affects the properties of the composite
material. It is thus important to distinguish the geometry of the yarns in the
composite in order to find the thermo–elastic properties of the composite.

A so called top–down–bottom–up method is employed to predict the thermo–elastic
properties of a fabric reinforced composite (see figure 4). The method consists
of two parts: the geometrical sub–division of the composite, or geometrical
analysis, and the subsequent rebuilding of the weave with its thermo–elastic
properties, or thermo–elastic analysis. The geometrical analysis is performed first,
then the thermo–elastic analysis. Four structural levels are distinguished in the
top–down–bottom–up method: the macro, the meso, the mini and the micro level.

The macro level considers the complete laminate. The geometrical analysis
distinguishes the individual plies in the composite. It accounts for the lay–up of
the composite. This part of the analysis is treated in section . The thermo–elastic
analysis at the macro level (section ) utilises a CLT based homogenisation technique
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Figure 4: Top–down–bottom–up–method to predict the thermo–elastic properties of
composites.

to determine the composite properties.

The meso level accounts for the weave architecture of the individual plies (section
). Repetitive Volume Elements (RVE) are determined in the weave at this level.
These RVE’s are built from basic elements, the building block of any bi–axial
weave. The thermo–elastic properties of the individual fabric layers are determined
in section .

The mini level considers the basic elements of the weave. These building blocks
distinguish the areas of resin and yarns and account for the undulation of the yarns.
The geometrical description of the basic elements is covered in section . The thermo–
elastic counterpart is treated in section .

Micromechanics are applied to obtain the homogenised properties of the yarns,
combining the properties of fibres and resin at the micro level. The micro level
geometrical analysis is considered in section while the thermo–elastic analysis is
covered in section .
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Geometrical analysis

The geometrical analysis, the top-down part of figure 4, considers the geometrical
structure of the composite. The four levels, the macro, the meso, the mini and the
micro level are treated in the following sections.

Macro level geometrical modelling

The composite is builtup from a number of plies. The lay–up, or stacking
sequence, of these plies determines the structure of the composite. Symmetrical or
non–symmetrical stacking sequences are distinguished at this level. The thickness,
structure and orientation of the individual fabric layers are determined. Nesting of
the individual plies is not taken into account; the fabric composite is considered as
a flat ply with constant thickness.

Meso level geometrical modelling

The meso level considers the fabric ply and accounts for the weave architecture. The
two yarn families, the warp and the fill yarns, are arranged into a specific order that
identifies the weave pattern. RVE’s can be distinguished at the meso level since
the weave pattern is repetitive. These RVE’s are the smallest regions that still can
represent the weave, and are found in any two–dimensional weave.

The size of the RVE is determined by a specific number of warp and fill yarns for
each weave pattern. Examples of a plain weave RVE and a satin RVE are depicted
in figure 5.

The objective is to find building blocks within these RVE’s. These building blocks,
or basic elements (see section ), model the weaves structure in order to distinguish
areas of warp yarn, fill yarn and resin and account for the undulation in the yarns.
Three RVE’s for a plain weave are presented on the top part of figure 5. The plain
weave RVE is 2 by 2 yarns and has four yarn crossings. Similarly, an RVE for an
8H satin weave is shown on the bottom half of the figure. It is 8 by 8 yarns.

Focusing on the plain weave RVE, it is observed that the fill yarn passes under
and over the warp yarn respectively. The warp yarn passes over and under the fill
yarn. Both yarn families are constantly undulated. Four yarn crossings occur in one
plain weave RVE. Basic elements are used to represent these yarn crossings. Each
crossing is represented by four basic elements.

The crossings in the plain weave can be modelled by one type of basic element,
taking symmetry and anti–symmetry rules into account, as shown in figure 5. Both
the warp and the fill yarn are undulated in this basic element. The name of the
basic element type is A and is shown in black. Some of the A type basic elements
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Figure 5: Repetitive Volume Element representation of a plain weave and
an 8H satin glass weave by basic elements.

have a minus sign in figure 5, indicating that the fill yarns are on top. The plain
weave RVE is modelled by 16 basic elements.

An example of an 8H satin RVE, marked with the dotted line, with most fill yarns
on top is depicted in figure 5. Each fill yarn passes over seven warp yarns and then
under one warp yarn in an 8H satin weave. Each warp yarn passes over seven fill
and then under one fill yarn. The 8H satin RVE contains 64 crossings. Both the
warp yarn and fill yarn are straight in most of these crossings.

The 8H satin RVE is composed of 256 basic elements. Four different types of basic
elements can be distinguished: A, B, C and D. Both the warp and the fill yarn are
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undulated in basic element A. Both the warp yarn and fill yarn are straight in basic
element B. Basic elements C has a straight warp yarn and undulated fill yarn and
basic element D has a straight fill yarn and an undulated warp yarn.

Each RVE of any bi–axially woven fabric can be described with these four different
types of basic elements. The four basic element types and their yarn shape are listed
in table 1.

Table 1: Basic elements and their yarn shape

Basic element A B C D

Warp shape undulated straight straight undulated
Fill shape undulated straight undulated straight

The structure of the basic elements is modelled at the mini level in the next section.

Mini level geometrical modelling

Regions of warp yarns, fill yarns and pure resin can be distinguished in the fabric
composite. The basic elements represent the geometry of the fabric, as shown in
section . The regions of warp yarn, fill yarn and resin are bounded by the yarn
surfaces. These yarn surfaces are represented by geometrical shape functions for
each of these basic elements, similar to the work of Naik and Shembekar [19,20].

The yarn shape functions are defined by the yarn cross–sectional shape functions
and the yarn mid–line functions. First the cross–sectional shape functions of the
yarns are described, then the mid–line yarn functions. Finally, the description of
the yarn surfaces is presented.

Yarn cross–sectional shape

The cross–section of the yarns are approximated with an ellipsoidal shape, possibly
with a straight mid–section. The yarn cross–section is assumed to be constant
along the yarn axis. The thickness or height of the yarn is assumed to be half of
the thickness of the dry fabric, i.e. both fibre families have the same height in the
current implementation. The longitudinal axis of the warp yarn is in the direction
of the x–axis and the fill yarn is perpendicular to the warp yarn. A schematic
representation of warp yarn cross–sectional shape in the yz–plane is given in figure
6.
In figure 6, the length of the yarn is denoted with ly, the height with 1

2
hf and

the yarn’s straight part with lfy. The function s(y) describes the contour of the
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Figure 6: Cross–sectional shape of the warp yarn in the yz–plane.

right–top quarter of the yarn’s cross–section. It consists of a straight part and a
undulated part.

The length of the straight part is defined using an undulation factor. The
undulation factor Uy relates the length of the straight part in the yarn’s cross–section
to the length ly by:

lfy = (1 − Uy)ly. (3)

The mathematical representations of s(y), while accounting for the undulation,
reads:

s(y) =

⎧⎪⎨
⎪⎩

1
4
hf if 0 ≤ y < lfy

1
4
hf

√(
1 − (y − lfy)2

ly
2Uy

2

)
if ly ≥ y ≥ lfy

(4)

The entire contour of the warp yarn’s cross–section is determined by combining
the symmetric and anti–symmetric parts of s(y). Similarly, a cross–section can be
defined for the fill yarns in the xz–plane. It reads:

s(x) =

⎧⎪⎨
⎪⎩

1
4
hf if 0 ≤ x < lfx

1
4
hf

√(
1 − (x − lfx)2

lx
2Ux

2

)
if lx ≥ x ≥ lfx

, (5)

where Ux is the undulation factor, lx is the length in the cross–section of the fill yarn
and lfx is the length of the straight part in the cross–section of the fill yarn.

Yarn mid–line shape

The yarn families pass under and over each other in the fabric, resulting in
undulation of the yarn families in their longitudinal direction. The height coordinate
of the centre of the cross–section from the yarn thus changes in its longitudinal
direction, as shown in figure 7.
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Figure 7: The warp yarn mid–line path. The fill yarn is not
sketched for the propose of clarity.

Yarn contact is assumed at the crossings of the two fibre families. The shape of
the mid–line path thus follows the cross–section of the other fibre family since the
yarns do not penetrate or separate. Three parts define the mid–line path: I the
straight part where the yarns are in contact; II the undulated part where the yarns
are in contact; III a straight part where the yarns are not in contact. A schematic
representation of the mid–line path function m(x) of the warp yarn is presented in
figure 8.
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Figure 8: Mid–line path of the warp yarn in the xz–plane. The zones
define the yarn mid–line.

In figure 8, ht is the total thickness of the ply, ltx is the length of the basic element
in the x–direction and ltrx is the length of the straight part if the yarns are not in
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contact. The three parts of the mid–line function m(x) are described by:

m(x) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mI(x) = 1
4
hf if 0 ≤ x < lfx

mII(x) = 1
4
hf

√(
1 − (x − lfx)2

lx
2Ux

2

)
if (ltx − ltrx) > x ≥ lfx

mIII(x) = 1
4
hf

x − ltx√
(ltx − lfx)2 − (lf − lfx)2

if ltx ≥ x ≥ (ltx − ltrx)

(6)

The subfunction mIII(x) in zone III, the straight part where the yarns are not in
contact, is derived by solving the length of the straight part ltrx. The mid–line
function m(x) is required to be smooth and continuous over the full length, so
the length ltrx is determined by applying a second order continuity condition at
x = ltx − ltrx:

mII(x = ltx − ltrx) = mIII(x = ltx − ltrx); (7)

∂mII(x)

∂x

∣∣∣∣
x=ltx−ltrx

=
∂mIII(x)

∂x

∣∣∣∣
x=ltx−ltrx

. (8)

The length ltrx follows from solving (8), it reads:

ltrx =
(ltx − llfx)

2 − (lfx − llfx)
2

ltx − llfx

. (9)

The length ltx of the basic element in the x–direction follows from the number of
yarns per unit of length in the weave. The length is defined by :

ltx =
1

2cx

, (10)

where cx is the number of fill yarn per unit of length, or fill count. Again, the
complete mid–line of the yarn can be described by combining symmetric and anti–
symmetric variants of m(x). Similarly, the mid–line function m(y) of the fill yarn
in the yz–plane is derived, it reads:

m(y) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

mI(y) = 1
4
hf if 0 ≤ y < lfy

mI(y) = 1
4
hf

√(
1 − (y − lfy)2

ly
2Uy

2

)
if (lty − ltry) > y ≥ lfy

mI(y) = 1
4
hf

y − lty√
(lty − lfy)2 − (lf − lfy)2

if lty ≥ y ≥ (lty − ltry)

, (11)

where lty is the length of the basic element in the y–direction and ltry is the length of
the straight part if the yarns are not in contact. The length ltry is derived similarly
to the length ltrx. It reads:

ltry =
(lty − llfy)

2 − (lfy − llfy)
2

lty − llfy

. (12)

13



The length of the basic element in the y-direction is calculated from:

lty =
1

2cy

, (13)

where cy is the warp count.

The basic elements A, B, C and D have straight and/or undulated yarns, as
shown in table 1. The mid–line path functions of each of the basic elements define
wether the yarn is undulated or straight. Setting Ux,y to zero results in straight yarn
paths in basic elements B, C and D.

Yarn surface functions

The yarn surface functions define the interfaces between regions of pure resin and
yarns in the basic elements. The height position of the yarn surface h is created by
a summation of the yarn mid–plane function m and the cross–sectional yarn shape
functions s. The yarn mid–plane functions and the yarn shape functions are defined
in perpendicular planes. The warp yarns are defined in the x–direction, the fill yarns
are defined in the y–direction. The surfaces of the two fibre families are defined by:

hW
T

e
(x, y) = me(x) + s(y)

hW
B

e
(x, y) = me(x) − s(y)

hF
T

e
(x, y) = −me(y) + s(x)

hF
B

e
(x, y) = −me(y) − s(x)

, (14)

where hW
T

e
(x, y) and hW

B
e
(x, y) define the warp top and bottom and hF

T
e
(x, y) and

hF
B

e
(x, y) define the fill top and bottom interface for basic element e. Six surfaces

define all interfaces when also defining the top and bottom plane. Combining
symmetric and anti–symmetric basic elements describes the RVE. The graphical
representation of the basic elements using the geometrical shape functions is
displayed in figure 9.

The yarn height is constant in the xy–plane with the given shape functions (14).
Therefore, the thickness in the undulated part differs from the thickness in the
straight part of the yarn, as depicted in figure 10.
The yarn thickness is constant over its length. However, this second order deviation
has no major effect on the resulting properties when the undulation angles remain
smaller than 20◦ [12].
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Figure 10: Yarn modelled with constant yarn height and constant yarn
thickness.

Ply thickness

The undulation of the yarns depends on the thickness of the composite ply. The
thickness of each fabric ply is determined by:

ht =
ρw

V C
f ρf

, (15)

where V C
f the composite fibre volume fraction and ρf the fibre density. ρw is the

areal density of the weave, which is usually supplied by the manufacturer.

Yarn fibre volume fraction

The yarn fibre volume fraction is required to determine the thermo–elastic properties
of the yarns. The size of the warp yarn, fill yarn and matrix regions determines the
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average fibre volume fraction in the yarn regions. Micromechanical models are used
to predict the material properties in the principal directions of the yarn (see section
).

The shape functions define the regions with pure matrix material and regions with
impregnated yarns (figure 9). The fibre volume fraction in the fibre bundles can be
determined from geometrical considerations. The yarn fibre volume fraction, V Y

f ,
can be related to the overall fibre volume fraction of the composite, by:

V Y
f =

ΩO

ΩY
V C

f , (16)

with ΩO as the overall or total volume of the basic element and ΩY as the yarn
volume. The superscript Y represents either the warp or fill yarn.

Shear transformation

The fabric is neither orthogonal nor uniformly deformed in many applications. Shear
deformations of the weave beyond 30◦ are not uncommon during the production of
composite products. The thermo–elastic properties need to be defined as a function
of the skew angle for the prediction of shrinkage and warpage. Skewed means a
shear deformation of the weave in this context, where the cross–over points in the
weave act as pivoting points. The skew angle equals the material shear angle θ.
The deformation is not pure shear since the thickness of the weave increases during
shearing.

2φ

y
y′

x

Figure 11: Shear transformation.

A transformation of the geometry is applied to incorporate the skew deformation,
transforming the orthogonal axes into skewed axes, as depicted in figure 11, or
mathematically described by:{

x′

y′

}
=

[
1 0

cos 2φ sin 2φ

]
·
{

x
y

}
(17)
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where x′ and y′ are the transformed axes and 2φ the enclosed fibre angle. The
area of the RVE decreases with increasing skew angle as a result of this in–plane
transformation. It was observed in the picture frame experiments (chapter ??)
that the composite thickness increases during shear deformation, while the volume
remained constant. The thickness of the fabric in deformed axes is related to the
initial thickness by:

h(x′, y′) =
h(x, y)

cos (2φo − 2φ)
, (18)

where h(x, y) is the thickness of the ply corresponding to the initial fabric angle 2φo.

Micro level geometrical modelling

The micro level geometrical modelling considers the microstructure of the yarns.
Each yarn usually contains of several thousand fibres and resin. The fibres in the
yarns are arranged along the yarn axis. Packing models idealise the arrangement of
the fibres in the yarns. Generally two fibre idealisation models are considered: the
square and the hexagonal packing. The square and hexagonal packing structures
are depicted in figure 12.

d

Figure 12: Square and hexagonal packing of fibres.

The packing structure also determines the theoretical maximum fibre volume
fraction when assuming circular fibre cross–sections. When the fibres have a
diameter d the maximum volume fraction for the square packing is:

Vf =
1
4
πd2

d2
=

π

4
≈ 0.785. (19)

The maximum fibre volume fraction for the hexagonal packing is:

Vf =
1
8
πd2

1
4

√
3d2

=
π

2
√

3
≈ 0.907. (20)

The maximum fibre volume fraction in the square packing is 13% lower than the
maximum fibre volume fraction in the hexagonal packing.
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Thermo–elastic analysis

The mechanical analysis, the bottom–up part in figure 4, considers the thermo–elastic
properties of the composite. The four levels: micro, mini, meso and macro level are
treated in the following sections.

Micro level thermo–elastic modelling

Mechanical modelling at the micro level considers the thermo–elastic properties of
the yarns and the resin. The resin is assumed isotropic, and its thermo–elastic
properties are therefore straightforward to derive. The properties of the yarns are
derived by micromechanical modelling.

Micromechanical models predict the elastic properties and the thermal expansion
coefficients of UD materials. The micromechanical models account for anisotropy in
the constituents, the composition and the internal microstructure (fibre size, shape,
and packing geometry) to predict the macroscopic properties of the UD material.

Two types of predictions will be examined: models that predict the elastic
properties and models that predict the linear thermal expansion coefficients. An
extensive survey on these model was published by Whitney and McCullough [29].
However, splitting the models into two types does not imply that the models are
based on a different theoretical approach. The predictions from, for example,
the rule–of–mixtures models for elastic properties are based on exactly the same
approach as the rule–of–mixtures models for the prediction of the linear thermal
expansion coefficients.

Elastic properties models

The use of the simple iso–stress and iso–strain models as the rule–of–mixtures models
[29] is widely applied, although they are known to underestimate the transverse
properties of the composite. More advanced non–uniform stress or strain field energy
based models such as the Composite Cylinder Assemblage (CCA) model by Hashin
[13] or the Chamis models [8] are also used by several authors. The use of semi–
empirical models, such as the Puck model [21] or Halpin–Tsai models [29], is also
widely spread.

A micromechanical model was selected based on a UD composite study. An
E–glass/epoxy composite with a fibre volume fraction of 55% was selected in order
to perform this study. The material parameters of the constituents was obtained
from literature [6,22]. The measured values of the elastic and thermal properties of
the composite are also obtained in the literature [11]. The best fitting models for
the UD material were the rule–of–mixtures model in the longitudinal fibre direction
and the Composite Cylinder Assemblage (CCA) model in the transverse to the fibre
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direction. The results of the two models are combined to predict the UD properties
in the longitudinal and transverse direction.

Coefficient of thermal expansion models

Similarly to the elastic properties models, many models to predict the thermal
expansion are available in literature. Again, the simple iso–stress and iso–strain
based rule–of–mixtures [29] models can be applied to find the linear thermal
expansion coefficients of UD materials. Other models such as the Schapery model
[25], the models proposed by Rosen and Hashin [24], the Chamberlain model [5], or
the Schneider model [26] can also be found in literature.

The micromechanical models are selected based on a similar study as the elastic
properties models in section . The rule–of–mixtures model fitted the literature data
[11] best in the longitudinal fibre direction. The Schapery model approximated the
transverse thermal expansion coefficients best. Two models are combined to predict
the thermal expansion coefficients in the longitudinal and transverse direction.

Mini level thermo–elastic modelling

The thermo–elastic properties of the basic elements are calculated using the
geometrical representation of the weave from section . The properties of the basic
elements are subsequently used to determine the RVE thermo–elastic properties.
First, the elastic properties of the basic elements are derived, then the thermal
behaviour of the basic elements are determined.

Elastic properties

It is assumed that the CLT [23] is applicable to each of the basic elements. The
CLT is based on the Kirchhoff plate theory, which assumes plane stress and zero
transverse shear. The strain profile through–the–thickness {ε(z)} of thin plates is
given by:

{ε(z)} = {εo} + z{κ}, (21)

where {εo} and {κ} are the mid–plane strain and curvature of the plate and z the
height coordinate. The stress profile {σ(z)} follows automatically by multiplying
equation (21) with the elastic in–plane stiffness matrix [Q(z)]:

{σ(z)} = [Q(z)] · {ε(z)}. (22)

The load and moment vector Ni and Mi result from the integration of the stress
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profile from equation 22 through–the–thickness, as:

{N} =

∫ hT

hB

{σ(z)} dz =

∫ hT

hB

[Q(z)] · {ε(z)} dz

=

∫ hT

hB

[Q(z)] · ({εo} + z{κ}) dz

{M} =

∫ hT

hB

{σ(z)} z dz =

∫ hT

hB

[Q(z)] · {ε(z)} z dz

=

∫ hT

hB

[Q(z)] · (z{εo} + z2{κ}) dz

, (23)

where hB is the bottom and hT is the top coordinate of the ply. Writing equation
23 in matrix form results in:{

N
M

}
=

∫ hT

hB

[
Q(z) Q(z) z
Q(z) z Q(z) z2

]
·
{

εo

κ

}
dz (24)

As a result, the constitutive equation for the CLT based mechanical properties for
a ply is: {

Ni

Mi

}
=

[
Aij Bij

Bij Dij

] {
εo

j

κj

}
, where i, j = 1, 2 or 6 (25)

with

(Aij, Bij, Dij) =

hT∫
hB

Qij(z) (1, z, z2) dz (26)

in which hB is the bottom coordinate, and hT is the top coordinate of the ply.
[Q(z)] is piecewise constant through–the–thickness for laminates builtup from

unidirectional (UD) plies. Additionally, for UD plies, [Q(z)] is independent of the in–
plane coordinates x and y and the height coordinates of each ply remains constant.
The integral from equation (26) can be solved straightforwardly.

Here, the boundaries for integration in equation (26) are determined by the yarn
surface functions in the basic element. Additionally, the yarns are undulated. The
homogenised properties of the warp yarn, fill yarn and resin were derived in section
. As a result, [Q(z)] is piecewise constant in the thickness direction for any position
(x, y) in the basic element.

The warp yarns, fill yarns and resin each have an in–plane stiffness matrix. The
resin is isotropically; the resin in–plane stiffness matrix [QR] is constant over the
basic element. The warp yarn and fill yarn are rotated in the plane and undulated
in the basic element.
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The in–plane stiffness matrix of the yarn [QY ], where the suffix Y stands for warp
or fill respectively, is defined in xyz–coordinates and obtained from an in–plane
rotation of the [Q̃Y ] stiffness matrix by [23]:

[QY ] = [T ]−1 · [Q̃Y ] · [R] · [T ] · [R]−1, (27)

where [Q̃Y ] is defined in the ply 123–coordinates, which lie in the yarn directions.
[R] is the Reuter matrix and [T ] is the in–plane rotation matrix:

[T ] =

⎡
⎣ cos2ζ sin2ζ 2 sin ζ cos ζ

sin2ζ cos2ζ −2 sin ζ cos ζ
− sin ζ cos ζ sin ζ cos ζ cos2ζ − sin2ζ

⎤
⎦ , (28)

where the angle ζ is defined by the in–plane orientation of the yarn to the xyz–
coordinates. [Q̃Y ] is derived from the in–plane elastic constants of each ply with
undulated yarns as:

[Q̃Y ] =

⎡
⎣ Q11 Q12 0

Q21 Q22 0
0 0 Q66

⎤
⎦ =

⎡
⎣ E1

1−ν12ν21

ν12E2

1−ν12ν21
0

ν21E1

1−ν12ν21

E2

1−ν12ν21
0

0 0 G12

⎤
⎦ , (29)

Here, E is the modulus, G is the shear modulus and ν is the Poisson’s ratio.
However, the yarns are undulated in the basic elements. The in–plane elastic

contribution of the yarns are a function of the local yarn angle � in each basic
element e, which is the first derivative of the yarn mid–line functions:

�(x)e = arctan

(
∂m(x)e

∂x

)

�(y)e = arctan

(
∂m(y)e

∂y

). (30)

The effective in–plane elastic constants of the warp and fill yarns can be described
using the undulation angles �(x)e and �(y)e of these yarns as [12]:

E1(�) =

[
cos4�

El

+ (
1

Glt

− 2νlt

El

) cos2� sin2� +
sin4�

Et

]−1

E2(�) = Et

ν12(�) = E1(�)

[
cos2� νlt

El

+
sin2� νtt

Et

]

G12(�) =

[
cos2�

Glt

+
sin2�

Gtt

]−1

, (31)
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Here, the suffix l and t represent longitudinal and transverse direction respectively.
Accounting for the boundaries of the shape functions, substituting these into

equation (26), and subsequent integration for each of the areas, results in:

Ae
ij(x, y) = QR

ij

[
hW

T

e
(x, y) − hT (x, y) + hB(x, y) − hF

B

e
(x, y)

]
+

QW
ij (�(x)e)

[
hW

B

e
(x, y) − hW

T

e
(x, y)

]
+

QF
ij(�(y)e)

[
hF

B

e
(x, y) − hF

T

e
(x, y)

]
(32a)

Be
ij(x, y) = 1

2
QR

ij

[
hW

T

e
(x, y)2 − hT (x, y)2 + hB(x, y)2 − hF

B

e
(x, y)2

]
+

1
2
QW

ij (�(x)e)
[
hW

B

e
(x, y)2 − hW

T

e
(x, y)2

]
+

1
2
QF

ij(�(y)e)
[
hF

B

e
(x, y)2 − hF

T

e
(x, y)2

]
(32b)

De
ij(x, y) = 1

3
QR

ij

[
hW

T

e
(x, y)3 − hT (x, y)3 + hB(x, y)3 − hF

B

e
(x, y)3

]
+

1
3
QW

ij (�(x)e)
[
hW

B

e
(x, y)3 − hW

T

e
(x, y)3

]
+

1
3
QF

ij(�(y)e)
[
hF

B

e
(x, y)3 − hF

T

e
(x, y)3

]
, (32c)

where the subscript R, W and F denote resin, warp and fill, respectively, and
superscript e denotes the type of basic element (A, B, C or D). [QR] is derived by
substituting the resin modulus, Poisson’s ratio and shear modulus into 29.

The average CLT stiffness matrices for each basic element can now be obtained
using the two–dimensional woven fabric model [19, 20]. The model can predict
an upper and lower boundary for the CLT stiffness matrices by assuming in–plane
iso–strain or iso–stress conditions, respectively called the Parallel-Parallel (PP) and
the Series-Series (SS ). The upper boundary is predicted by:

(
A

e,PP

ij , B
e,PP

ij , D
e,PP

ij

)
=

1

lWt lFt

lFt∫
0

lWt∫
0

(
Ae

ij, Be
ij, De

ij

)
dxdy (33)

The [abhd]e,PP compliance matrix can be obtained by substituting [A]e,PP , [B]e,PP

and [D]e,PP in the CLT constitutive equation (25) and inverting the resulting
[ABD]e,PP stiffness matrix. [h] equals [b]T in the [abhd] matrix. The lower boundary
for the stiffness is obtained via the compliance matrix form:

(
ae,SS

ij , b
e,SS

ij , d
e,SS

ij

)
=

1

lWt lFt

lFt∫
0

lWt∫
0

(
ae

ij, be
ij, de

ij

)
dxdy. (34)

The [ABD]e,SS stiffness matrix is obtained by inverting [abhd]e,SS. The integrals
from equations 33 and 34 are evaluated numerically using Gauss–Legendre quadra-
ture [3].
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Thermal properties

The thermal properties of the basic elements are determined under the same
assumptions as the mechanical properties of the basic elements. The equations
for the thermal forces then become:{

Ñ e
i

M̃ e
i

}
= −∆T

{
N

e

i

M
e

i

}
, (35)

in which

N
e

i =

hT∫
hB

qe
i (x, y) dz, M

e

i =

hT∫
hB

qe
i (x, y) z dz, (36)

and
q(x, y)e

i = Qe
ij(x, y) αj(x, y). (37)

Here, {α(x, y)} contains the thermal expansion coefficients with respect to the xyz–
coordinate system of the warp or fill yarn or the matrix material. {α(x, y)} is
obtained by in–plane rotation of {α123}, similarly to the rotation of the in–plane
stiffness matrix, it reads:

{α(x, y)} = [R] · [T ]−1 · [R]−1{α123}, (38)

where

α123
1 = αl cos2� + αt sin2�

α123
2 = αt

α123
12 = 0

, (39)

where αl and αt are the thermal expansion coefficients in the longitudinal and
transverse direction of the yarn respectively. The thermal expansion coefficients
of the warp and fill yarn depend on the fibre volume fraction and are determined
using the rule–of–mixtures model and the model of Schapery [25].

The thermally induced forces and moments are determined by substituting Qij

by qi in part a and b of equation (32) respectively. When assuming no external force
the resulting thermal strain and curvature for the basic elements are:{

ε̃o,e

κ̃e

}
= −∆T

[
ae b

e

h
e

d
e

]
·
{

N
e

M
e

}
. (40)

A lower and upper boundary can also be predicted for the thermal strain and
curvature. They are determined by substituting the [abhd] compliance matrix
following from an iso–strain or iso–stress configuration into equation (40). The
in–plane thermal strain and curvature coefficients per ◦C{εo}e and {κ}e are:{

εo,e

κe

}
=

[
ae b

e

h
e

d
e

]
·
{

N
e

M
e

}
. (41)
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Meso level thermo–elastic modelling

The unit cell properties are determined in the meso level using the basic elements
properties of section . Two approaches are distinguished here, the averaging
approach and the Finite Element (FE) approach.

Averaging approach

The thermo–elastic properties of the weave are determined by volume averaging
of the properties of all basic elements in the RVE. A lower and an upper bound
of the basic element properties were obtained, using an iso–strain and iso–stress
configuration respectively. Similar assumptions can be applied for the averaging
approach, resulting in four possible combinations. Two combinations are based on
an iso–strain assumption in the RVE, the other two assume an iso–stress in the
RVE. However, the assumption of iso–stress leads to an severe underestimation of
the stiffness properties of the fabric weave and is therefore not used in this analysis.

All basic elements have an equal volume. As a result, the average thermo–elastic
properties of the RVE are determined by:

[A]R =
1

mt

(
ma[A]

a
+ mb[A]

b
+ mc[A]

c
+ md[A]

d
)

[B]R =
1

mt

(
ma[B]

a
+ mb[B]

b
+ mc[B]

c
+ md[B]

d
)

[D]R =
1

mt

(
ma[D]

a
+ mb[D]

b
+ mc[D]

c
+ md[D]

d
), (42)

where m represents the number of basic elements. The subscript t indicates total and
a, b, c and d stand for the type of basic element. The RVE’s lower and upper stiffness
bound can be determined by averaging the basic element PP or SS configuration,
respectively.

The thermal loading vector is derived similarly to the CLT stiffness matrices. The
volume averaged thermal loading vectors read:

{Ñ}R =
1

mt

(
ma{Ñ}a + mb{Ñ}b + mc{Ñ}c + md{Ñ}d

)
{M̃}R =

1

mt

(
ma{M̃}a + mb{M̃}b + mc{M̃}c + md{M̃}d

). (43)

Finite Elements approach

An FE approach can be used, alternatively to the averaging approach, leading to
closer bounds for the unit cell stiffness.
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Equations (21) and (22) are substituted in the equation of virtual work, containing
the volume integral of the element stiffnesses and displacements and the surface
integral of the applied forces:

δΠ =

∫
A

∫
h

{δεo + zδκ}T · {[Q] · {εo + zκ}}dzdA−
∫
Γ

δv · t dΓ ≡ 0 (∀δε, δκ), (44)

Here, A is the area, h is the thickness, δεo and δκ are the virtual strains and
curvatures, δv the virtual displacements and rotations, t the tractions and Γ is the
boundary. The body forces are assumed to be zero. The FE representation then
uses:

{δεo} = [Bm] · {δu}, {εo} = [Bm] · {u}
{δκ} = [Bb] · {δφ}, {κ} = [Bb] · {ϕ}

(45)

where Bm and Bb contain the first derivatives of the FE trial functions of,
respectively, the element displacements, {u}, and rotations, {ϕ}. The virtual
displacements and rotations are denoted by {δu} and {δϕ}, respectively. Thus,
an FE formulation is found, symbolically written as:

∫
A

[
Bm 0
0 Bb

]T

·
[

A B
BT D

]
·
[
Bm 0
0 Bb

]
dA ·

{
u

ϕ

}
= {F}, (46)

where {F} contains the prescribed nodal forces.
The Discrete Kirchhoff Triangle (DKT) element with three in–plane integration

points is used to solve the FE problem [4, 7]. Each basic element is represented by
four finite elements. The thermo–elastic basic element properties, derived in section
, are used in each of the FE elements. The plain weave RVE is described with
4 × 4 basic elements, resulting in a mesh of 64 elements. The 8H satin weave is
computationally less attractive. The RVE of an 8H satin weave is described with
16× 16 of these quadrilaterals, resulting in a mesh of 1024 elements. The FE mesh
for a basic element is depicted in figure 13.

Elementary loading conditions are applied to the FE mesh, resulting in deforma-
tions of the FE mesh. Six loading and corresponding deformation sets are required
to filter the mechanical properties of the RVE. The RVE is based on periodicity
in the weave. Therefore, periodicity must also be preserved in the deformed RVE.
Constraint equations on the sides of the RVE are used to guarantee the periodicity.

To this end, a linear relation is prescribed between the difference in nodal
displacements and rotations of the opposite RVE sides and the nodal displacements
and rotations of the RVE corner nodes. The actual constraint equations can be
explained using figure 14.
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Figure 13: Representation of a basic element by four FE
elements.
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Figure 14: Constraints on the sides of the RVE.

All degrees of freedom Ue and Uw, i.e. all separate nodal displacements u and
rotations ϕ, of two opposite nodes e and w at the east and west side respectively, of
the RVE are constrained by:

Ue − Uw =
l2

l1 + l2
∆UN − l1

l1 + l2
∆US

∆UN = U4 − U3

∆US = U2 − U1

(47)

in which the subscripts N , S, E and W refer to North, South, East and West,
respectively. The subscript 1, 2, 3 and 4 indicate the corner nodes of the RVE. For
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the north and south side the constraints are similar:

Un − Us =
l4

l3 + l4
∆UE − l3

l3 + l4
∆UW

∆UE = U3 − U2

∆UW = U4 − U1

(48)

The deformations within the RVE can deviate from the overall deformations. Six
degrees of freedom must be suppressed in order to prevent rigid body displacements
or rotations of the RVE. Now, any constant stress gradient field can be described
by only applying loads on the corner nodes of the FE model.

Forces and moments are applied at the four corner nodes of the RVE to create six
elementary load cases. The three in–plane loadcases are: tension in the global x–
direction, tension in the y–direction and simple shear in the xy–direction. The three
out–of–plane loading conditions are: bending in the global y–direction, bending in
the global x–direction and pure twist in the global xy–direction.

The displacements and the reaction forces of the four corner nodes are used to
determine the stress and strain state, which are related by the [abhd] compliance
matrix. The components of this compliance matrix can be determined directly from
the six elementary loadcases.

The thermal properties of the woven fabric composite are determined by
pre–stressing the basic elements with the thermally induced element forces and
moments from equation (35). The FE model (again subjected to the condition of
periodicity) then gives the resulting nodal displacements and rotations of the four
corner nodes. These, in turn, lead to the thermal expansion and bending coefficients
of the corresponding continuum.

Macro level thermo–elastic modelling

The homogenised RVE properties of the fabric are determined in section . These
CLT based properties are relative to the mid–plane of the ply. Stacking of the
individual plies results in an offset of each ply to the mid–plane of the composite.
This offset has to be accounted for since it affects the CLT properties. The following
exercise is performed to derive expressions to account for the offset.

Deriving an expression for the offset The contribution of the individual layers
to the composite properties can be derived from the definitions of [A], [B] and [D]
in equation (26). Evaluating equation (26) as a ply with homogeneous properties
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result in:

[A] = (hT − hB)[Q]

[B] = 1
2
(hT

2 − hB
2)[Q]

[D] = 1
3
(hk

T

3 − hk
B

3
)[Q]

(49)

Adding an offset ho to the height coordinates of the ply hT and hB, and substituting
these limits in equation (26) followed by integration over the height coordinate
results in:

[A]o = (hT − hB)[Q] = [A]

[B]o = ho(hT − hB)[Q] + 1
2
(hT

2 − hB
2)[Q] = ho[A] + [B]

[D]o = ho
2(hT − hB)[Q] + ho(hT

2 − hB
2)[Q] + 1

3
(hT

3 − hB
3)[Q]

= ho
2[A] + 2ho[B] + [D]

, (50)

where [A]o, [B]o and [D]o account for the offset ho. Similarly, expressions for the
loading vectors {N}o and {M}o can be derived. It involves the integration of {σ(z)}
over the height coordinate.

Macro level contribution of the plies The distance between the centre of the
composite and the centre of the individual fabric layer is denoted with hk

o , where
k is the ply index. The properties of the individual fabric layer are defined in the
xy–coordinate system. However, the individual plies are orientated off–axis in the
composite. Rotation of the plies by substituting [A]R, [B]R, [D]R for [Q] in equation
27 accounts for the ply orientation. The contribution of each individual layer to the
composite properties is:

[A]C =
m∑

k=1

[A]R,k

[B]C =
m∑

k=1

(
hk

o [A]R,k + [B]R,k
)

[D]C =
m∑

k=1

(
hk

o

2
[A]R,k + 2hk

o [B]R,k + [D]R,k
)

(51)

where the superscript C denotes composite, the superscript R indicates RVE and
m is the number of fabric layers in the composite. The thermal properties of the

composite are derived similarly to those of the individual layers. Rotation of {Ñ}R

and {M̃}R
accounts for the ply orientation. The composite thermal loading vectors
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{Ñ}C and {M̃}C are described as:

{Ñ}C =
m∑

k=1

{Ñ}R,k

{M̃}C =
m∑

k=1

(
hk

o{Ñ}R,k
+ {M̃}R,k

) (52)

Woven fabric model verification

The thermo–elastic properties of fibre reinforced thermoplastic composites were
measured in order to validate the model. Symmetric laminates were manufactured
from glass fibre reinforced poly(phenylene sulphide) (PPS) 8H satin weave (Ten
Cate Cetex c©SS303). All specimens were made by compression moulding, using a
Fontijne plate press. The fibre volume fraction in the orthogonal fabric composites
was approximately 50%. It was determined prior to compression moulding from the
mass fractions of the constituents. The manufacturing technique used for producing
the skewed specimens resulted in an increase of the volume fraction with increasing
skew angle.

Mechanical testing

Tensile tests were performed using a Zwick type 1445 machine with a 10 kN load
cell. Four layered symmetrically builtup specimens with orthogonal weaves, skewed
weaves and orthogonal weaves with a Quasi Isotropic (QI) lay–up were tested.
The specimens were prepared according to the ASTM D3039–76 protocol [2]. The
dimensions of the specimens were 25 mm wide and 250 mm long. The thickness
of the specimens was approximately 0.9 mm but varied due the skew angle of the
laminates.

The skewed weave specimens were manufactured by placing a dry weave into a
shear frame, similar to the picture frame. The areal density of the skewed weave
increases since the area of the skewed weave is smaller than the area of the orthogonal
weave. A layer of resin foil was placed between the fabric layers. The skewed samples
were subsequently moulded in the plate press. The skew angles of the fabric were
set at 10◦, 20◦ and 30◦. The fibre volume fraction of the skewed specimens is higher
than the fibre volume fraction of the orthogonal specimens since the same foil is
used for manufacturing. The fibre volume fraction is determined by the following
relation:

Vfs =
Vf

(1 − sin 2φ)Vf + sin 2φ
(53)
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The specimens with orthogonal weaves were tested in the 0◦, 45◦ and 90◦ direction
with respect to the major principal axis of the material. The specimens with skewed
weaves were measured in their bias directions, as depicted in figure 15.

F1

F1

F1

F1

F2F2 F2 F2

F3

F3

skewed weavesorthogonal weaves

Figure 15: Loading directions for the orthogonal and skewed
specimens.

The QI specimens were tested in one direction. The load was directly obtained
from the tensile testing machine, while the strain was measured using a clip–on
extensiometer. Five tests were performed per type of specimen. The velocity of the
tensile testing rig was 1 mm/min. The tests were performed at room temperature.
The results will be presented in section , showing a11, the first component of the
[abhd] compliance matrix.

Thermal testing

The thermal expansion coefficients of the material were measured in a Thermal
Mechanical Analysis (TMA) machine. Basically, the TMA consists of two
parts: a high–precision temperature controlled oven, and an accurate displacement
measurement device. The test set–up in the TMA is given in figure 16.

The specimen is placed between the probe and the support. Both the probe and
the support are made from quarts, a material with a very low thermal expansion.
The probe moves vertically and is connected to a Linear Variable Differential
Transformer. The whole set–up is placed into a temperature controlled oven and
the vertical displacement of the probe is measured as a function of the temperature.
The probe loads the specimen with 0.1 N to ensure contact during the measurement.
The linear thermal expansion is acquired from the temperature versus displacement
curve when the initial thickness is measured.

The symmetrically builtup sixteen layer specimens with a dimension of 29.5 ×
9 × 4 mm3 were placed vertically onto the support of the TMA. The samples were
dried in a vacuum oven for 3 weeks at a temperature of 50 ◦Cprior to testing to
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Figure 16: Set–up in TMA for measuring thermal expansion.

eliminate moisture–induced expansion. The thermal cycle, to which the specimen
was subjected, is shown in figure 17.
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Figure 17: Thermal profile of TMA for measuring thermal expansion.

The TMA cycle program contains seven parts. The first three parts make up
one dummy temperature cycle, resulting in less deviation between the individual
experimental results. The ramp–up for measuring the thermal expansion was set
slow enough to ensure a homogeneous temperature distribution within the specimen.
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The results of the thermal expansion measurements will be presented in section .

Results and discussion

Some input parameters are required for modelling the thermo–elastic properties of
the weaves. The properties for the 8H satin and the plain weave are obtained from
the datasheet from the manufacturer and listed in table 2.

Table 2: Properties of the modelled weaves

property 8H satin Plain

warp count 1/m 2280 960
fill count 1/m 2200 1050

areal density kg/m2 0.3 0.3

The PPS resin material properties are supplied by the manufacturer [18]. The
properties of the isotropic E–glass fibres is obtained from literature [22]. An overview
of the material input parameters is given in table 3.

Table 3: Properties of the constituents in the composite

property E-glass PPS

Young’s modulus GPa 72.4 3.7
Poisson’s ratio - 0.23 0.37

lin. thermal expansion 1/K 5E-6 51E-6
density kg/m3 2540 1350

The height of the fabric hf , the width of the yarns lfx and lfy and the undulated
lengths of the yarns Ux and Uy were determined with microscopy investigations of
the weaves.

The yarn shape in the plain weave can be fitted with an ellipsoid shape. Most
yarn shapes in the cross–section of the plain weave are similar, see figure 18. Little
nesting occurred in this weave. However, the yarn shape in the 8H satin weave
cross–section are quite dissimilar. Extreme differences in the shape of the yarn,
yarn height and width are observed. Nesting of the individual plies is clearly visible
in these micrographs.

Optical measurements of the yarns cross–section resulted in the additional
parameters. The results are expressed in percentages of the total ply height ht
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Figure 18: micrographs of the cross–section of a four layered orthogonal plain
weave and 8H satin weave.

Table 4: Additional parameters for the woven fabric model.

weave hf lfx lfy Ux Uy

plain 95 85 85 100 100
8H satin 97 90 90 60 60

and total width of the yarns lx, ly. The experimental error in these additional
parameters is significant.

Mechanical

The experimental results and the modelled results for the unskewed specimens are
shown in figure 19. The results are presented in the a11 compliance form. A higher
a11 value indicates a weaker material response.

The laminate is rotated over an angle of 90 ◦ in the model, illustrating the effect of
rotation on the a11 properties. Four types of models were used for each weave: the SS
and PP configuration in the averaging approach and the SS and PP configuration
in the FE approach. Tensile tests were performed in the fibre directions (0◦ and 90
◦) and the bias direction (45 ◦).

The measured a11 values is not affected significantly by the weave type. In the fibre
directions the PP configurations predict these values nicely. The SS configurations
overestimate the a11 values significantly.

A small change in the measured, and modelled, values is determined at the 0◦ and
90◦ axis. Since both weaves are not completely regular, a small difference is observed
in the 0◦ and 90◦ values. Equal results are expected if the weaves are completely
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Figure 19: Modelled and experimental values for the a11 compliance property of
8H satin and plain weave composites. The enclosed fibre angle of the
4 layered orthogonal composites is denoted in the legend.

regular.
The PP or the SS configuration predict different results for the plain weave.

A difference of approximately 25% is observed between these configurations. The
effect of the approach is small; the averaging approach and the FE approach predict
nearly the same values in case of the plain weave for the PP configuration or the
SS configuration. This is caused by the homogeneity of the plain weave. Plain
weaves consist of A–type basic elements only. The strain and stress fields in the FE
approach are therefore nearly homogeneous, resulting in similar predictions as the
averaging approach.

The results for the satin weave are affected significantly by the PP and the
SS configuration. The difference in the results for the averaging approach is
approximately 40% for this weave. The averaging and the FE approach slightly
affect the predicted results for the satin 8H weave. The results from the PP and SS
configuration for the averaging approach were further apart for this weave than for
the plain weave. This is caused by the less homogeneous basic element distribution of
the satin weave; it consists of all basic element types, resulting in a less homogeneous
strain and stress field in the FE approach.

The effects of skew deformation on the thermo–elastic properties are shown by
performing tensile tests in the bias directions. The results for the plain weave tests
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are depicted in figure 20.
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Figure 20: Modelled and experimental values for the a11 compliance property of
plain weave composites. The enclosed fibre angle of the 4 layered skewed
composites is denoted in the legend.

The measured a11 values and the predicted results for the PP configuration with
the averaging approach are shown in figure 20. Again, a11 is presented as a function
of the rotated angle of the complete laminate. The a11 properties of skewed plain
weave are affected by the enclosed fibre angle of the weave. A smaller angle results
in a significantly lower a11 value for the material, i.e. the material behaves stiffer.
The model overestimates the measured values when the enclosed fibre angle is small.
No explanation is found for the overestimation and further investigation of this topic
is recommended.

The results for the QI-lay–up laminates are shown in figure 21. The model
overestimates the experimental values. Again, the best predictions are obtained
with the PP configuration with the averaging approach. The experimental plain
weave a11 property is smaller than those of the 8H satin weave.

The averaging approach predicts the properties more quickly than the FE
approach since it does not require to solve the nodal degrees of freedom of the
FE mesh. The computing time of the FE approach grows with the size of the unit
cell.

The resin material is assumed to be linearly elastic in this analysis. The resin
material has however visco–elastic properties. The effect of visco–elasticity on the
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Figure 21: a11 property of 8H satin and plain weave 4 layered QI composites.

composite behaviour requires further investigation.

Thermal

The modelled values of the thermal expansion for the unskewed specimens are
compared with the measured thermal expansion in figure 22. The thermal expansion
was modelled for plain weaves using the averaging approach. A small difference
between the measured, and modelled, values is found at the 0◦ and 90◦ axis for the
in–plane thermal expansion. This difference is caused by the irregularity of the plain
weave.

Good agreement between the experimental values and the modelled results is
obtained for the orthogonal laminates in both the 0◦ and the 90◦ direction. The
SS configuration overestimates the experimental values in both cases. The better
predictions are obtained with the PP configuration.

The models predict the coefficients of thermal expansion for QI laminates less
well. Both modelled values are outside the experimental error values. Again, the
PP configuration predicts the experimental values significantly better.

The affect of skew deformation on the thermal expansion of plain weaves was
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Figure 22: Thermal expansion for an orthogonal plain weave
composites and a QI builtup composite.

not experimentally determined. The in–plane thermal expansion of the 8H satin
weaves was also not measured. Experiments to validate the model for both weaves
is recommended.

Conclusion

A model was presented to determine the in–plane thermo–elastic properties of woven
fabric laminates. It provides a good correlation with the experimental results for a
plain weave and an 8H satin weave when a uniform state of basic element strain is
used (upper bound for the stiffness). In case a uniform state of basic element stress
is assumed (lower bound for the stiffness), the laminate stiffness is underestimated.

The bounds for the iso–strain and iso–stress are quite far apart. The difference
between the predictions of uniform strain and stress models can be reduced by using
an finite element approach. However, applying this FE approach does not increase
the accuracy of the model.

The model shows good agreement for the prediction of the thermal expansion of
orthogonal weaves in the fibre direction. The thermal expansion of QI laminates
is less well predicted but acceptable. As with the elastic properties, the iso–strain
configuration predicts the experimental values best.
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Recommendations

A few recommendations are suggested for the model to predict the thermo–elastic
properties of laminates builtup from non–orthogonal weaves.

The presented model is only validated for in–plane tensile tests and thermal
expansion measurements. However, the model presented here predicts the complete
ABD stiffness matrix and the thermal expansion–curvature vector. This stiffness
matrix includes bending stiffness, represented by the D–matrix and the tension
bending coupling, which is accounted for by the B–matrix. Bending tests are
recommended in order to validate the predicted D–matrix by model. It is also
recommended to extend the validation of the thermal expansion–curvature vector.

The RVE is idealised by a combination of basic elements. The yarn’s cross–
section, undulation and other geometrically derived properties are defined in these
basic elements. Microscopic investigations revealed large differences between the
individual yarn geometries. Nesting was also observed in these micrographs. It is
recommended to investigate the effect of these differences.

The unidirectional properties of the yarns are predicted by micromechanical
models. A large variety of micromechanical models is available in literature.
The individual models predict differences up to 100%, especially in the transverse
direction. The properties of the yarns, with a high volume fraction, are not
experimentally determined and the micromechanical model is therefore not verified.
Further work is this area is recommended.
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Theoretical background II

UD micromechanics

The next pages contain the theory behind the UD micromechanical models used
in U20MM. The part was written within the Brite-Euram project Precimould (BE
97-4351).
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Review on micromechanical modelling 
Appendix 

1 Introduction 

In order to predict the thermoelastic properties of continuous fibre reinforced anisotropic 
composites, micromechanical models are used. The models predict the composite properties 
from the composite components, the orientation of these components, and the relative 
distribution of these components. Many of these micromechanical models take the micro 
structural properties of the matrix material and the fibre material into account to predict the 
anisotropic properties of the composite material (the fibre shape and the stacking of the 
individual fibres).  
From the various micromechanical models available in the literature, only a few are 
examined. The examined models differ from purely analytical models to semi-empirical 
models. 
 



2 Micromechanical modelling 

In this chapter, a brief explanation of the theory of micromechanical modelling is done, 
including an examination of the major effects on the resulting thermoelastic properties of the 
composite material. After determining the major effects, various micromechanical models are 
examined.  
 

2.1 Micro-structural approach of composites 

In anisotropic composite materials, such as unidirectional fibre reinforced composites, the 
resulting properties can be described using “combining rules”. In these “combining rules”, the 
composition, the component properties, and the internal microstructure (fibre size, shape, and 
packing geometry) are terms to predict the macroscopic properties. However, in order to 
develop these “combining rules” a microscopic view at the composite material is necessary. In 
this microscopic view the regions of the composite components should be large enough to be 
treated as homogeneous continua. 
In the micromechanical approach, an internal stress (or strain) field is assumed, that does not 
contradict the macroscopic stress (or strain) field. The macroscopic stress-strain filed is 
defined by a load-deformation pattern, imposed on the boundaries of the composite. The 
internal stress-strain field, resulting from the macroscopic stress-strain field, acts on both 
phases and their boundaries in the microstructure. 
The major effects on the internal stress-strain field can be distinguished as  
1. The relative magnitudes of the properties of the two components. 
2. The size, shape, and relative orientation of the two phase regions. 
3. The packing geometry of the phase regions. 
A brief examination of these effects will be done in the next paragraphs. 
 

2.1.1 The relative magnitudes of the component properties 
The internal stress-strain field is influenced by the relative properties of the two components. 
Large relative differences between properties of the two components result in large 
differences in the internal stress-strain field.  
To clarify this, the following example is shown: 
Combining stiff fibres in a weak matrix results in a stress-strain field that differs from a stress-
strain field where the relative difference between fibre and matrix properties are less large. 
 

2.1.2 The size, shape and relative orientation of the two phases 
The size, shape, and relative orientation of the two-phase regions have influence on the 
internal stress-strain field resulting form the macroscopic stress-strain field.  
The relative amounts of the components obviously influence the resulting stress-strain filed. 
The shape of the phases, influenced by each other, also have influence on the internal stress-
strain field. Combining, for example, square or circular fibres in a composite obviously 
influences the resulting internal stress-strain field. Also, the orientations of the phases have 
influence on the resulting stress-strain field. Even the phases them selves can have non-
isotropic properties. 
 

2.1.3 Packing geometry of the phase regions 
The fibres in a composite can be packed in numerously ways. The fibre distribution can be 
homogeneous or non- homogeneous. The way fibres are distributed therefore have influence 
on the internal stress-strain field. 



Some examples of fibre distribution are shown in figure 1. Depending on the fibre packing, 
different results for the mechanical properties of the composite can be measured. Therefore, to 
obtain accurate results for predicting the composite properties, micromechanical models 
should take the fibre packing into account. 

 
figure 1: Unidirectional fibre packing geometry 

 
As shown in figure 1, each fibre packing geometry has its own fibre volume fraction. The 
theoretically maximum fibre volume fraction for circular fibres is calculated in the next 
paragraph. 
 

2.1.4 Maximum possible fibre volume fraction 
For the homogeneously distributed circular fibres, the theoretical maximum fibre volume 
fraction can be calculated. The maximum value for the fibre volume fraction depends on the 
fibre packing geometry. The theoretically possible fibre volume fractions of two types of 
packing geometry are examined in this paragraph, the fibre volume fraction for the square 
packed fibres and the hexagonal fibres. 
In figure 2, the maximum amount of circular fibres is packed into a composite.  

 
figure 2: Maximum fibre volume fraction in packing geometries 



 
The mathematically representation of the fibre volume fraction of the packing geometries 
shown in figure 2, are given in the equations below. Equation 2-1 gives the maximum fi
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2.2 Micromechanical models 

Two types of predictions will be examined; models that predict the elastic properties and 
models that predict the linear thermal expansion coefficient. However, splitting the models 
into two types does not imply that the models are based on another theoretical approach. The 
predictions from, for example, the Rule of Mixtures models for elastic properties are based
exactly the same approach as th
th
 

2.2.1 Models for elastic properties 
In this section, models that predict the elastic properties of continuous fibre reinforced 
composite materials are examined. The models that will briefly be discussed here are the Rule
of Mixtures models, Composite Cylinder Assemblage (CC
P

2.2.1.1 Rule of Mixtures models 
The Rule of Mixture models, based on the mechanics of materials approach [1], are the two 
most basic models available for prediction of the composite properties from the properties of 
the matrix material, the fibre material and the fibre volume fraction. It does not take the fibre 
shape or the fibre distribution into account. The models assume perfect bonding between the 
matrix material and the fibre material. The matrix mater
orthotropic and can be simplified to the isotropic case. 
The models can either assume uniform strain on each of the components (parallel model) or 
uniform
level.  
In the fibre direction a uniform strain is assumed and perpendicular to this direction
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table 1: Elastic properties using Rule of Mixtures models 
 
The “longitudinal” Rule of Mixtures model generally gives very good predictions in the fibre 

irection (longitudinal modulus and Poisson ratio). Transverse to the fibre direction, the d
“transverse” Rule of Mixtures model underestimates the properties of the composite material 

in-plane shear modulus). 
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called the Composite Cylinder Assemblage. The 
model gives the exact properties for EcL, GcLT, νcLT, and close bounds for EcT and GcTT. The 
resulting equations are shown in table 2. 
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2.2.1.2 CCA model 
This model, based on the self-consistent field (or em
microstructure of the composite. The method is based on transversely isotropic composite 
materials. The method however deals in a more realistic way with the internal stresses in a 
composite than the micromechanical approach [1]. 
By embedding continuos fibres in a concentric matrix, Hashin [3, 4] formulated and solved 
the mathematical solutions for this model, 
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table 2: Elastic properties using Composite Cylinder Assemblage model 
 



The CCA model predicts the same values for the composite properties in the fibre direction as 
the Rule of Mixtures model.  Transverse to the fibre direction, the CCA model should predict 
the composite properties better than the Rule of Mixtures model. 
 

2.2.1.3 Chamis  
Chamis [5] has summarised the elastic properties for transversely isotropic unidirectional 
continuous fibre reinforced composites based on the elastic properties of the constituents. 
Assuming transversely isotropic composite properties, five independent composite properties 
can be described. The same five properties can be found when assuming a hexagonal packing 
geometry of the fibres in the composite (hexagonal symmetry) [6].  
In general, his work can be applied in the two directions perpendicular to the fibre direction. 
He treats the fibre as an anisotropic material, while he assumes the matrix to be isotropic. 
Again perfect bonding between the matrix and the fibre is assumed.  
The resulting equations are shown in table 3. 
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table 3: Elastic properties using Chamis models 
 
As the Rule of Mixtures model and the CCA model, the models summarised by Chamis 
predict the same values for the composite longitudinal properties. Transverse to the fibre 
direction the models should predict better values for the composite properties than the Rule of 
Mixtures model. 
 

2.2.1.4 Puck 
Puck also derived some models to predict elastic properties of unidirectional fibre reinforced 
composites, based on the properties of its constituents [7]. His work is based on glass fibre 
reinforced composites and therefore, the Puck model assumes isotropic material properties 
from the fibre material, as well as the matrix material. The results are shown in table 4.  
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table 4: Elastic properties using Puck models 
 
The Puck model is originally derived for glass fibre reinforced composites. The model 
therefore is based on isotropic materials. The predicted results in the fibre direction are again 
the same as those predicted using the Rule of Mixtures model. 
 

2.2.1.5 Halpin-Tsai 
Halpin and Tsai derived a semi-empirical relationship that relates “series-coupled” and 
“parallel-coupled” models using a scale factor. This scale factor can be used to ‘fit’ the model 
to the experimental value for a property.  
The model can be directly derived from the mechanics of materials approach, as shown by 
McCullough []. The general form of the relationship is shown in equations 2-3. 
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In equation 2-3, Pc is the resulting composite property, Pm is the associating matrix property 
and Pf is the associating fibre property. The parameter ξ is the reinforcing factor, a measure of 
the “reinforcing efficiency” of the composite material system. This “reinforcing efficiency” 
can be used to fit the model to the experimental value. When the “reinforcing efficiency” is 
zero, the model converges to the “series-coupled” model, which equals the “transverse” Rule 
of Mixtures. However, if the “reinforcing efficiency” is infinitely, the Halpin-Tsai model 
converges to the “parallel-coupled” model, which equals the “longitudinal” Rule of Mixtures. 
Also the model can be scaled for any fibre arrangements, fibre shape, or bonding efficiency 
between fibre and matrix by this “reinforcing efficiency”. 
The most commonly used equations for conservative estimations of continuous fibre 
reinforced composites are shown in table 5. 
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table 5: Elastic properties using Halpin-Tsai models 
 
Using the “reinforcing efficiency” factor, the Halpin-Tsai equations can be fitted to any 
experimental value. The models can be modified to fit the Rule of Mixtures, and predict 
accurate results in the fibre direction. Transverse to the fibre directions, the model can either 
be stiffened of weakened to fit the experimental values. 
 

2.2.2 Models for linear thermal expansion properties 
In this section, models that predict the thermal properties of continuous fibre reinforced 
composite materials are examined. The models that will briefly be discussed here are the Rule 
of Mixtures models, the Shapery model, the Chamis and CCA models, the Schneider model 
and the Chamberlain models. 
 



2.2.2.1 Rule of Mixtures models 
These models predict the linear thermal expansion coefficient in the fibre direction and 
transverse to the fibre direction. The methods are based on the mechanics of materials 
approach and give results similar to those described in paragraph 2.2.1.1. The results obtained 
with these models are shown in table 6: 
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table 6: Thermal expansion using Rule of Mixtures models 
 
The “longitudinal” Rule of Mixtures model generally gives reasonable approximations for the 
linear thermal expansion coefficient in the fibre direction. Transverse to the fibre direction 
however, the “transverse” Rule of Mixtures model predicts the linear thermal expansion 
coefficient less good. 
 

2.2.2.2 Shapery 
Based on energy principles, Shapery [8] derived models for the prediction of the linear 
thermal expansion coefficient for composite materials. In his work, he confirms the validity of 
the “longitudinal” Rule of Mixtures. For the transverse direction, he derived a linear thermal 
expansion coefficient depending on the longitudinal expansion coefficient. 
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table 7: Thermal expansion using Shapery models 
 
The Shapery models predict in the fibre direction the same value as the “longitudinal” Rule of 
Mixtures model and gives a reasonable approximation for the linear thermal expansion 
coefficient. Transverse to the fibre direction, the Shapery model should predict better 
approximations for the linear thermal expansion coefficient than the Rule of Mixtures model. 
 

2.2.2.3 Chamis and CCA 
The results from the Chamis models for predictions of the linear thermal expansion 
coefficient correspondent with the results obtained with the CCA models for the linear thermal 
expansion coefficient derived by Hashin and Rosen. The resulting equations are shown in 
table 8. 
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table 8: Thermal expansion using Chamis models 
 
The Chamis model predicts in the fibre direction the same value as the “longitudinal” Rule of 
Mixtures model and gives a reasonable approximation for the linear thermal expansion 
coefficient. Transverse to the fibre direction, the Chamis model should predict better 
approximations for the linear thermal expansion coefficient than the Rule of Mixtures model. 
 

2.2.2.4 Schneider 
Schneider derived some models for the prediction of the linear thermal expansion coefficient 
for continuous fibre reinforced composites [9]. His work however, is based on glass fibre 
reinforced composites. Therefore, the Schneider model assumes isotropic material properties 
from the fibre material, as well as the matrix material. The results of his wok are shown in 
table 9. 
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table 9: Thermal expansion using Schneider models 
 
The Schneider model is originally derived for glass fibre reinforced composites. The model 
therefore is based on isotropic materials. In the fibre direction the Schneider model predicts 
the same value as the Rule of Mixtures model.  
 



2.2.2.5 Chamberlain 
Chamberlain [10] derived equations for the linear thermal expansion coefficient, based on 
carbon reinforced unidirectional composites. He assumed transversely isotropic fibres in an 
isotropic matrix material. He derived two results for the transverse linear thermal expansion 
coefficient, depending on the packing geometry of the fibres in the composite. The packing 
geometries he dealt with are the hexagonal and the square packing geometry. The results of 
his work are shown in table 10. 
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table 10: Thermal expansion using Chamberlain models 
 
In the fibre direction the Chamberlain model predicts the same value as the Rule of Mixtures 
model. The model has been successfully used for experimental verification with carbon 
reinforced composites by Rogers et al. [11]. 
 



3 Comparison between models and measured values 

In this chapter, a comparison between a reference material and the micromechanical models is 
made. First the reference material is presented, and then the comparison is made. 
 

3.1 Reference material 

To verify the micromechanical models, measurements of unidirectional composite materials 
are necessary. As a reference, a unidirectional composite consisting of E-glass [12] and Epoxy 
[13]  (properties shown in table 11) is chosen. The measured values of the elastic and thermal 
properties of the composite are found in the literature [14] and shown in table 11. 
 
Material property Unit E-Glass Epoxy Composite 
Fibre Volume Fraction  [%] 100 0 55 
Longitudinal modulus  [Gpa] 72.4 3.24 39 
Transverse modulus  [Gpa] 72.4 3.24 8.6 
In-plane Shear modulus  [Gpa] 30.2 1.27 3.8 
In-plane Poisson ratio  0.2 0.276 0.28 
Longitudinal linear thermal expansion coefficient [1/K] 5E-6 66E-6 7.0E-6 
Transverse linear thermal expansion coefficient  [1/K] 5E-6 66E-6 21E-6 

table 11: Properties of E-Glass, Epoxy and E-Glass/Epoxy composite 
 
As shown in table 11, E-Glass and Epoxy are isotropic materials. In real-life applications 
however, carbon fibres are often implemented as a reinforcing material. Carbon fibres 
however are non-isotropic and the transverse properties of fibres are hard to determine. Often, 
micromechanical models are used to determine these transverse fibre properties. Therefore, to 
verify the results of the micromechanical models, isotropic materials are used. 
 

3.2 Comparison between the models and the reference composite 

In this paragraph, the micromechanical models are compared with a reference material. The 
micromechanical models are programmed in a C++ micromechanical ATL COM application 
[15]. By doing so, these micromechanical models are available for use in various applications.  
Not all the elastic properties have been verified in this review, unfortunately for some of the 
modelled properties no verifying measurements were available. 
First the predicted elastic properties will be verified, then the predicted thermal properties. 
 

3.2.1 Comparison of elastic properties 
In this paragraph, the predicted elastic properties will be compared with the reference 
properties of an E-Glass/Epoxy composite material. The verified elastic properties are EcL, EcT,  
νcLT and GcLT. All properties will be examined in their respective order. 
 

3.2.1.1 Comparison of EcL 
In this paragraph, the predicted longitudinal modulus EcL is compared with an experimental 
value for EcL. In figure 3 the composite longitudinal modulus is shown as a function of the 
fibre volume fraction.  
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figure 3: Longitudinal modulus 

From figure 3, it is clear that all models predict the same longitudinal modulus. The predicted 
modulus is slightly higher than the experimental value for the composite longitudinal 
modulus. 
 

3.2.1.2 Comparison of EcT 
In this paragraph, the predicted transverse modulus EcT is compared with an experimental 
value for EcT. In figure 4 the composite transverse modulus is shown as a function of the fibre 
volume fraction.  
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figure 4: Transverse modulus 

From figure 4, it becomes clear that the Composite Cylinder Assemblage (CCA) model 
predicts the best value for the transverse modulus compared with the experimental value. The 
CCA model slightly over estimates the value, while the Rule of Mixtures model 
underestimates the experimental value. The other models, Chamis, Halpin-Tsai and Puck 
increasingly overestimate the experimental value for the composite transverse modulus. 
 



3.2.1.3 Comparison of GcLT 
In this paragraph, the predicted in-plane modulus GcLT is compared with an experimental value 
for GcLT. In figure 5 the composite in-plane shear modulus is shown as a function of the fibre 
volume fraction. 
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figure 5: In-plane shear modulus 

From figure 5, it becomes clear that the Composite Cylinder Assemblage (CCA) model 
predicts the best value for the in-plane shear modulus compared with the experimental value. 
The CCA model slightly over estimates the value, while the Rule of Mixtures model 
underestimates the experimental value. The other models, Chamis, Halpin-Tsai and Puck 
increasingly overestimate the experimental value for the composite in-plane shear modulus. 
 

3.2.1.4 Comparison of νcLT 
In this paragraph, the predicted in-plane Poisson constant νcLT is compared with an 
experimental value for νcLT. In figure 6 the composite in-plane Poisson constant is shown as a 
function of the fibre volume fraction. 
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figure 6: In-plane Poisson constant 

From figure 6, it becomes clear that all the models give approximately the same prediction. 
The models underestimate the experimental value for the in-plane Poisson constant. 
 

3.2.2 Comparison of thermal properties 

In this paragraph, the predicted thermal properties (αcL and αcT) will be compared with the 
reference properties of an E-Glass/Epoxy composite material.  
 

3.2.2.1 Comparison of αcL 
In this paragraph, the predicted longitudinal linear thermal expansion coefficient αcL is 
compared with an experimental value for αcL. In figure 7 the composite longitudinal linear 
thermal expansion coefficient is shown as a function of the fibre volume fraction. 
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figure 7: Longitudinal linear thermal expansion coefficient 

From figure 7, it is clear that all models predict the same longitudinal linear thermal 
expansion coefficient. The predicted value is slightly higher than the experimental value for 
the composite longitudinal linear thermal expansion coefficient. 
 

3.2.2.2 Comparison of αcT 
In this paragraph, the predicted transverse linear thermal expansion coefficient αcT is 
compared with an experimental value for αcT. In figure 8 the composite transverse linear 
thermal expansion coefficient is shown as a function of the fibre volume fraction. 



Transverse linear thermal expansion coefficient

0.0E+00

1.0E-05

2.0E-05

3.0E-05

4.0E-05

5.0E-05

35 40 45 50 55 60 65 70 75 80 85

Fibre Volume Fraction [%]

al
ph

a 
[1

/K
]

Shapery
ChamisTherm
Rule of Mixtures Therm
Chamberlain Hexagonial
Chamberlain square
Schneider
CCA
Measured value

 
figure 8: Transverse linear thermal expansion coefficient 

From figure 8, it becomes clear that the Chamberlain (hexagonal packing) model predicts the 
best value for the transverse linear thermal expansion coefficient compared with the 
experimental value. The Chamberlain (hexagonal packing) model slightly over estimates the 
value, while the Chamberlain (square packing) model underestimates the experimental value. 
The other models, CCA, Chamis, Schneider, Rule of Mixtures and Shapery increasingly 
overestimate the experimental value for the composite transverse linear thermal expansion 
coefficient. 
 



4 Conclusions 

After verifying the predicted properties with the measured properties of the composite 
material, the following can be concluded. 
 
1. All properties, elastic and thermal, in the fibre direction are predicted exactly the same 

with all models. The prediction is a slight overestimation of the experimental value. 
2. The elastic properties, transverse to the fibre direction, are predicted best with the CCA 

model. The model slightly overestimates the experimental value. 
3. The in-plane elastic properties, in-plane shear modulus and Poisson constant, are 

predicted most accurate using the CCA model. The model again slightly overestimates the 
properties with respect to the experimental value. 

4. The transverse linear thermal expansion coefficient is best predicted with the 
Chamberlain hexagonal model. The model slightly overestimates the experimental value. 

 
 
 



5 List of symbols 

 
Symbol Description 

 
Vf overall fibre volume fraction 
Vf max maximum fibre volume fraction 
Vm matrix volume fraction 
EcL longitudinal composite modulus 
EcT transverse composite modulus 
GcLT in-plane composite shear modulus 
GcTT transverse composite shear modulus 
νcLT in-plane composite Poisson ratio 
νcTT transverse composite Poisson ratio 
αcL longitudinal composite linear thermal expansion coefficient 
αcT transverse composite linear thermal expansion coefficient 
Ef fibre modulus 
Gf fibre shear modulus 
νf fibre Poisson ratio 
EfL longitudinal fibre modulus 
EfT transverse fibre modulus 
GfLT in-plane fibre shear modulus 
GfTT transverse fibre shear modulus 
νfLT in-plane fibre Poisson ratio 
νfTT transverse fibre Poisson ratio 
αf fibre linear thermal expansion coefficient 
αfL  longitudinal fibre linear thermal expansion coefficient 
αfT  transverse fibre linear thermal expansion coefficient 
Em matrix modulus 
Gm matrix shear modulus 
νm matrix Poisson ratio 
EmL longitudinal matrix modulus 
EmT transverse matrix modulus 
GmLT in-plane matrix shear modulus 
GmTT transverse matrix shear modulus 
νmLT in-plane matrix Poisson ratio 
νmTT transverse matrix Poisson ratio 
αm matrix linear thermal expansion coefficient 
αmL longitudinal matrix linear thermal expansion coefficient 
αmT transverse matrix linear thermal expansion coefficient 
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