
FeaTure

a Finite Element Analysis Toolkit for Use in a Research

Environment

release 0.5

Ton van den Boogaard

January 13, 2006

Copyright c© 2001, 2003, 2006 A.H. van den Boogaard, The Netherlands

Permission to use, copy, modify, and distribute this software and its documentation
for any purpose is hereby granted without fee, provided that the above copyright notice,
author statement and this permission notice appear in all copies of this software and
related documentation.

THE SOFTWARE IS PROVIDED “AS-IS” AND WITHOUT WARRANTY OF
ANY KIND, EXPRESS, IMPLIED OR OTHERWISE, INCLUDING WITHOUT LIM-
ITATION, ANY WARRANTY OF MERCHANTABILITY OR FITNESS FOR A PAR-
TICULAR PURPOSE.

IN NO EVENT SHALL THE COPYRIGHT OWNER BE LIABLE FOR ANY
SPECIAL, INCIDENTAL, INDIRECT OR CONSEQUENTIAL DAMAGES OF ANY
KIND, OR ANY DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE,
DATA OR PROFITS, WHETHER OR NOT ADVISED OF THE POSSIBILITY OF
DAMAGE, AND ON ANY THEORY OF LIABILITY, ARISING OUT OF OR IN
CONNECTION WITH THE USE OR PERFORMANCE OF THIS SOFTWARE.

1

Contents

I Tutorial 4

1 Introduction 5
1.1 Objectives of FeaTure . 5
1.2 Overview . 5
1.3 The release system . 6
1.4 Future plans . 6

2 The basic idea 8
2.1 Elements . 8
2.2 Nodes . 9
2.3 The Domain and Control classes . 9

II Reference manual 11

3 Domain classes 12
3.1 Domain . 12
3.2 IncDomain . 15

4 Control classes 17
4.1 Control . 17
4.2 IncrementalControl . 18
4.3 IncrementalIterativeControl . 19
4.4 Exception handling . 19

5 Node classes 20
5.1 Node . 20
5.2 IncNode . 22

6 Element classes 24
6.1 ElementBase . 24

7 Dof classes 27
7.1 helper class . 27
7.2 Dof . 28
7.3 incDof . 29
7.4 itincDof . 29
7.5 Global functions . 30

2

8 Material classes 31
8.1 The Material type and Material Point classes 31

8.1.1 Material type . 31
8.1.2 Material Point . 32

8.2 The Structural type and Structural Point classes 32
8.2.1 Structural type . 32
8.2.2 Structural Point . 33

9 Loads and Boundary Conditions 34
9.1 Load set class . 34
9.2 Nodal loads . 35
9.3 Prescribed Nodal values . 36
9.4 Pressure loads . 37

10 Matrix and Vector classes 38
10.1 Vector . 38
10.2 Matrix . 40
10.3 Additional functions for full matrices and vectors 42

10.3.1 Matrix and vector addition, subtraction and multiplication . . . 42
10.3.2 Triangular decompositions and multiplications 43
10.3.3 Eigenvalue problems . 45

10.4 Cartesian vectors . 45
10.4.1 CartVector . 45
10.4.2 Direction . 47
10.4.3 Location . 48

10.5 Transformation Matrix . 48
10.6 System Matrix classes . 50

10.6.1 SystemMat . 50
10.6.2 SparseSysMat . 50
10.6.3 SkySymMat . 52
10.6.4 DiagonalSysMat . 53
10.6.5 SkyNonSymMat . 54

10.7 System Vector . 54

11 Utility classes 56
11.1 PostProc . 56
11.2 StepSelect . 57
11.3 CollectArray . 58
11.4 Integration point data . 59

11.4.1 The IntLocs class . 59
11.5 Shape functions . 60

11.5.1 Shape . 60
11.5.2 Triangular . 61
11.5.3 Quadrilateral . 61
11.5.4 Hexagonal . 62
11.5.5 Concrete shapes . 62

11.6 Exceptions . 64

3

Part I

Tutorial

4

Chapter 1

Introduction

1.1 Objectives of FeaTure

The FeaTure toolkit provides a framework for finite element programming in C++.
It is a Finite Element Analysis Toolkit for Use in a Research Environment. Hence it
is not a finite element program itself. With the use of FeaTure it should be quite
straightforward to program a finite element program in an object oriented way, even
without knowing all details of C++. It is the intention of FeaTure that, while building
ones own FEM program using the supplied building blocks, it will be relatively easy
to exchange e.g. elements, material descriptions or control algorithms with others who
use the same building blocks.

To achieve this goal, it is necessary to define the behavior of the basic classes and
specially their interfaces. Here a delicate balance is needed between an interface that
is general enough to allow many different physical phenomena to be modeled and an
interface that uses names that are meaningful enough for an expert in a certain field
of application.

1.2 Overview

‘All classes are equal, but some classes are more equal than others’. The base classes
of the FeaTure framework are almost all abstract classes. Obvious classes in finite
element programming are elements and nodes. Together with the concept of degrees of
freedom (Dof class), these classes form a module.

System vectors and matrices typically represent a domain. This concept is repre-
sented by the Domain class. Usually algorithms at this level, like deriving the linear
solution, extracting buckling modes or performing a nonlinear transient analysis, do not
interfere directly with individual elements, but only with system vectors and matrices.
Therefore the Domain class interacts heavily with the Control class. Often the action
taken by the Domain class is performing a loop over all elements, performing action on
an element by element basis. The Control and Domain classes form a second module.

In most elements, material behavior plays an important role. The material is repre-
sented by two classes, the material type and the material point class. This distinction is
made to distinguish between the material parameters that represent a typical material
model and the data and algorithms that represent the behavior of one material point.
In the latter e.g. state variables can be supported. Defining these classes as a module,
separate from the elements, facilitates the development of material classes separately

5

in a prototyping system, without any knowledge of element behavior.
Additional classes are made available to ease the programming of finite element

codes. An indispensable concept is the linear algebra concept of matrices and vec-
tors. In fact they are used already in the base classes of domains, elements, control
algorithms and nodes. Several types of matrices and vectors can be distinguished e.g.
symmetric and non-symmetric matrices, sparse or dense matrices, vectors in 3-D geo-
metric descriptions and (large) vectors as system vectors. It can be expected that the
implementation of these classes highly influences the efficiency of the resulting FEM
code. Therefore it is necessary to utilize the optimization options like symmetry and
sparsity that the different types of matrices and vectors can give.

The design of FeaTure was influenced by a number of articles, published in the
open literature or on internet. The bibliography at the end of this manual presents an
overview of the articles I am aware of and that consciously or sub-consciously attributed
to the software. An application of FeaTure was published in [10].

1.3 The release system

As all software FeaTure is released every now and then, improving on old and intro-
ducing new bugs and other features. Since FeaTure is a framework, the interface to
application programs should be quite stable. Two maturity levels are defined in the
release system. The classes in level 1 are considered to be mature in the sense that their
public member functions are unlikely to change in the future. If a change is needed, a
new member function will be defined, leaving the old function unchanged (if possible).
FeaTure Classes that are not in level 1 are placed in level 2. A class should be at
least one year in level 2 with unchanged public member functions, before it can be
promoted to level 1. As intended with object oriented programs, the internals of level
1 classes can of course change completely, as long as the public interface remains the
same. (This maturity indexing will start when releasing version 1.0)

Together with the distribution of FeaTure other classes or even complete examples
of working finite element programs, built on FeaTure may be distributed. They do
not belong however to the FeaTure framework as such and can be changed or even
missing in a next release.

1.4 Future plans

Before announcing a 1.0 release the following plans should be realized:

1. improve this manual e.g. add more examples;

2. redesign output generating functions (post-processing, restart-data, printed out-
put) explore the use of pointers to member functions;

3. redesign the Dof class, to be more flexible in adding new types of Dofs;

4. make some iterative solvers available e.g. conjugate gradient;

5. set up a naming convention and implement this;

6. re-think the membership types (public, protected, private) of variables and func-
tions and the virtual or non-virtual declaration of functions;

6

7. ... improve the code based on your comments.

7

Chapter 2

The basic idea

In this chapter the basic relations between a number of essential classes are described.
The main classes, defining the behavior of one element are the ElementBase, Node
and Dof classes, relating elements, nodes and degrees of freedom. At system level, the
Domain and Control classes have important relations, while the Domain class primarily
performs tasks by iterating over all elements or nodes.

For efficient programming, a number of matrix and vector classes are defined. Main
classes are the general (dense) Matrix and Vector class, the transformation matrix
class TransformationMatrix, the three-dimensional Cartesian vector CartVect and the
(sparse) system matrix Sysmat.

All classes and functions, including the matrix and vector classes are defined in the
namespace FeaTure.

2.1 Elements

The base class ElementBase performs a number of actions that are equal for all
element types. It relies on some virtual member functions that are to be defined by
derived element classes. The base element determines the relation between the local
definitions in elements and the global definitions, in particular the potentially different
interpretation of local and global directions in the elements and in the nodes. For this
purpose a transformation matrix is set up to transform the local stiffness matrix and
local force vectors to the global directions and to transform the global (incremental)
displacements to the local displacements:

Kglobal = TTKlocalT

Fglobal = TTFlocal

Ulocal = TUglobal

where T is the transformation matrix. The transformation matrix transforms the
inherent local degrees of freedom of the element to the global degrees of freedom as
stored in the base element. The transformation matrix is stored efficiently and performs
the multiplications efficiently, e.g. it ‘knows’ if it is a unit diagonal matrix.

For the determination of the global stiffness matrix and the global internal force
vector, the ElementBase relies on the functions GetLocalStiff and GetLocalLHS.

To connect an element to the nodes, the function add dofs to nodes calls the
virtual function GetLocalDofs. This function returns all needed degrees of freedom

8

for each node. The set of dofs need not be the same for every node. The ElementBase
takes care that for every node the necessary degrees of freedom are generated if they
are not yet available. If previously processed boundary conditions or elements required
degrees of freedom in different directions (not necessarily orthogonal) only additional
degrees of freedom are generated, orthogonal to the already existing ones, that are
necessary to represent the current degree of freedom completely. In these cases the
transformation matrix will have values that differ from 0 and 1.

After that all degrees of freedom have been generated, the function GreateGlob-
alDofs is used to generate a set of pointers to global dofs that define the global dofs
to which this element is attached. Since pointers to dofs are used a later renumbering
(for efficient solution of the set of equations) does not influence this set.

Isoparametric elements can make use of the shape class to derive shape functions
and their derivatives and by generating locations of integration points.

2.2 Nodes

A node is an entity of the finite element model that is the owner of degrees of freedom.
It has a location in three-dimensional space and for external reference it has a node
number.

Two important functions are get dof and create dof. Both functions have Dof::Type

and Direction as arguments. The function get dof returns a set of degrees of freedom
and weight factors that together represent the required degree of freedom. If e.g. the
required dof is in the direction of the line represented by y = x with z = 0 and the
local degrees of freedom are defined in the x- and y-direction, then these two dofs will
be returned, both with a weight factor of 1

2

√
2. The function create dof only creates

additional degrees of freedom if the required degree of freedom can not be represented
by already available dofs. Newly created dofs are always orthogonal to existing dofs.

New dofs are created if a potential degree of freedom can not be generated within a
fraction of ε of the existing dofs. The fraction ε is 10−6 by default and can be changed
with the function set new dof limit.

The initial location can be derived with the function get location and the cur-
rent location with get current location. For the graphical presentation of displace-
ments the location with exaggerated displacements can be derived with the function
draw location.

For the use in incremental-iterative algorithms, some special functions are provided
in the class IncNode.

2.3 The Domain and Control classes

A domain contains all elements, nodes, materials, loads and (other) boundary condi-
tions. The implementation, provided by FeaTure is a template that can use different
Element and Node classes. The domain owns the elements, nodes, etc. These objects
are deleted if the domain is deleted.

The functions that are available for a domain typically setup system vectors and
matrices, by iterating over all elements. These functions are used by the Control object.
Since in an incremental algorithm, the total displacements and for an incremental-
iterative algorithm also the incremental displacements are stored in the degrees of

9

freedom, the domain class is the link between the solution vector from the control
object and the storage in the degrees of freedom from the nodes.

The IncDomain class provides some extra functions for use in an incremental-
iterative algorithm.

Several Control classes are provided. The hierarchy of IncrementalControl and
IterativeIncrementalControl can be used as a basis for many specialized algorithms.
They do have facilities for intermediate stopping and later continuation of an analysis.

10

Part II

Reference manual

11

Chapter 3

Domain classes

In this chapter, the domain classes are described. The Domain class or its derived
classes are usually controlled by the Control classes. The domain classes contain the
elements and nodes and the control class manipulates the system vectors and matrices.

The domain classes presented here are template classes. They are used to contain
model data such as elements, nodes, materials, boundary conditions et cetera. The
template generalizes on the element and node classes that are to be stored. If these
classes are used, the header file domain.h must be included. If classes are derived from
the domain classes, also the definitions of the template functions must be included from
domain.cpp.

Two domain classes are described: the base class Domain and the derived class
IncDomain that is an extension for use in incremental and iterative algorithms.

3.1 Domain

A domain is an object that has knowledge of the (finite element) model. It contains the
elements and nodes, boundary conditions, load sets and the material types. A domain
is used by a Control object to perform actions on system matrices and vectors.

template <class Element, class Node>
class FeaTure::Domain

constructors and destructor

Domain()

Constructor for the Domain object.

˜Domain()

Destructor for the Domain object.

creating the model

int add element(const Element ptr)

12

Adds the element to the domain. The pointer is copied, not the element itself. The
element will be deleted upon destruction of the domain.

int add node(const Node ptr)

Adds the node to the domain. The pointer is copied, not the node itself. The node will
be deleted upon destruction of the domain.

int add load set(LoadSet∗ load)

Adds the loadset to the domain. The pointer is copied, not the load set itself. The
load set will be deleted upon destruction of the domain.

void set title(const std::string& text)

Gives this model a title.

void add material(Material type∗ mat)

Add the material type to the domain. The pointer is copied, not the material type
itself. The material type will be deleted upon destruction of the domain.

void add geometry(Geometry∗ geom)

Add the geometry to the domain. The pointer is copied, not the geometry itself. The
geometry type will be deleted upon destruction of the domain.

void make global dofs()

Gives all degrees of freedom a number, ranking them in the system vectors and matrices.
This function must be called if all degrees of freedom have been created.

query

Material type∗ get mat ptr(int matnr) const

Get the pointer to the material with reference number matnr. If not found, return 0.

Geometry∗ get geom ptr(int geomnr) const

Get the pointer to the geometry with reference number geomnr. If not found, return
0.

Node ptr get node ptr(int nodenr) const

Get the pointer to the node with reference number nodenr. If not found, return 0.

Element ptr get element ptr(int elmnr) const

Get the pointer to the element with reference number elmnr. If not found, return 0.

int get nr nodes() const

Return the number of nodes currently in the domain.

int get nr elements() const

Return the number of elements currently in the domain.

13

int get nr free() const

Return the number of (really free) degrees of freedom.

int get nr prescribed() const

Return the number of prescribed degrees of freedom.

int get nr fixed() const

Return the number of fixed (value=0) degrees of freedom.

bool need non symmetric() const

Returns true or false, depending on whether a non-symmetric matrix is (going to be)
set up.

preparing an analysis

void init system(SystemMat& system)

Initializes the system matrix. This can be used to initialize e.g. the storage system of
a sparse system matrix. It will iterate over all non-zero elements of the system matrix.
It depends on the matrix routine SystemMat::init what is done with this data.

analysis control

void make LHS(SystemVector& lhs) const

Generate the internal load vector, split in a part for the really free degrees of freedom
(free), the degrees of freedom that have a prescribed value (prescribed) and the
degrees of freedom that will always have a value of zero (fixed).

void make system(SystemMat& System, Vector& rhs)

Generate the system matrix and any possible contribution of the elements to the right-
hand-side vector (equivalent loads).

void make mass system(SystemMat& System, bool lumped)

Generate the system mass matrix. If lumped is true, a lumped mass matrix is gener-
ated.

void update system(SystemMat& System, Vector& rhs)

Update the system matrix with the current values. If necessary, contributions to the
right hand side can be added to rhs. The right hand side is added to the external load
vector.

void get load vector(SystemVector& load vector) const

Generates the load vector corresponding to all loads. The vector is split in a part
for the really free degrees of freedom (vec free), the degrees of freedom that have a
prescribed value (vec prescribed) and the degrees of freedom that will always have a
value of zero (vec fixed).

14

void set load size(int set, double size)

Sets the magnitude of load set set to the value size.

void add load size(int set, double size)

Increments the magnitude of load set set with a value of size.

virtual void print results(ostream& out) const

Prints model results for the end-of-current-step state.

Protected member functions

void make transmats()

Initializes the transformation of local to global degrees of freedom. The transformation
is usually represented by a transformation matrix. This function must be called after
all degrees of freedom have been numbered (by make global dofs

void create element dofs()

Runs over all elements to create the necessary degrees of freedom in the connected
nodes. This function must be called after the addition of elements and before the
analysis is started.

3.2 IncDomain

The incremental domain is derived from Domain and adds some functions to use in
incremental and iterative solution methods.

template <class Element, class Node>
class FeaTure::IncDomain:public FeaTure::Domain<Element,Node>

void finish increment()

Should be called if an increment is successfully finished. It will update the start values
of the domain (mostly within nodes and elements) with the end-of-step values of the
current increment. After this, the end-of-step values are undefined. This leaves open
the possibility to swap the start and end values instead of copying them. If start values
and increments are stored, the startvalues are updated and the increments are reset to
zero. Analysis data should be printed before the call to finish increment() because
for some data the incremental values are needed. Restart data can be stored after
finish increment() because only start of (new) increment data is needed.

void iteration update()

Iterates over all elements to update the elements and probably the material points to
the currently active displacement (increments).

void add increments to totals()

Adds the increments of all degree of freedom values to the total values. This should at
the end of an increment, e.g. after convergence of an iterative process.

15

void reset increments()

Sets the incremental values of all degrees of freedom to zero. This is done at the start
of an increment.

void add to increments(const Vector& free, const Vector& prescribed)

Add values contained in the vectors free and prescribed to the respective degrees of
freedom, by iterating over all nodes in this domain. The fixed dofs are left unchanged.

void add to increments(const Vector& free)

Add values contained in the vector free to the respective degrees of freedom, by iter-
ating over all nodes in this domain. The prescribed and fixed dofs are left unchanged.

void get incremental solution vector(Vector& increments free)

Returns in increments free the current incremental values of the really free degrees
of freedom.

void WriteRestartData(ostream& restart) const

Writes restart data to the restart stream.

void ReadRestartData(istream& restart)

Reads restart data from the restart stream.

16

Chapter 4

Control classes

The hierarchy of control classes control the analysis flow of a finite element analysis. It
includes a base class Control that can be used e.g. for a linear static analysis, a class
IncrementalControl for incremental algorithms e.g. for explicit transient algorithms
and a class IncrementalIterativeControl for incremental–iterative algorithms. The
control classes are templated on the type of domain class that is used.

If control classes are used, the header file control.h must be included. If classes
are derived from the control classes, also the definitions of the template functions must
be included from control.cpp.

4.1 Control

The Control class is an abstract class that can not be instantiated directly. It is a
template class to be able to use different types of Domains. Derived Control classes
can in this way use Domain features that are not available for the most basic domains.

template <class DomainT>
class FeaTure::Control

virtual ˜Control()

Virtual destructor.

virtual void solve(Domain& model, ostream& out, ostream& post)=0

A virtual function, that solves the actual problem by calling the virtual functions
initialize and continuate.

virtual void initialize(Domain& model, ostream& out)=0

A pure virtual function, to initialize an analysis. A call to this function must precede
the call to continuate.

virtual void continuate(Domain& model, ostream& out, ostream& post, int steps
)=0

A pure virtual function, to perform an already initialized analysis or continue an already
started analysis. The steps parameter determines the ‘amount of progress’ that must
be made e.g. the number of increments in an incremental analysis. With steps=-1, the

17

analysis will be performed untill the end. A call to initialize and continuate should
perform the required analysis.

void set basename(const std::string& filename)

Sets the basename for several output files.

void set postproc(const PostProc& post)

Copies a PostProc object into the control to specify what post processing data must
be written.

bool need post file()

A function, to determine whether a post-processing file is required.

4.2 IncrementalControl

template <class DomainT>
IncrementalControl::public Control<DomainT>

The IncrementalControl class can not be constructed by its own, but only through
derived classes. It defines an incremental procedure but not necessarily an iterative
procedure. The IncrementalControl class is a base class for the ExplicitControl and
the IncrementalIterativeControl class and provides much of their functionality.

void set increments(int set, double size, int steps)

Sets the number of steps for loadset set to be performed with magnitude size.

void set time increment(double dtime)

Sets the time increment to be used for one increment.

float get fraction executed(int flag)

Returns the fraction (from 0 to 1) that is executed. The fraction of what is specified
by the flag. At the moment only the fraction of number of steps is implemented. This
can be used e.g. to draw a progress bar.

void set Rayleigh damping(double alpha, double beta)

Sets the parameters alpha and beta for Rayleigh damping (if required).

void set max resize(int i)

Sets the maximum number of resizes (on divergence) before stopping.

bool is last()

Returns whether the current increment is the last increment. This can be used if e.g.
for the last step post processing data must be written.

void set restart(const std::string& filename)

18

Sets the name for the restart file if a restart is necessary.

void solve(Domain& model, ostream& out, ostream& post)

Performs the incremental solution process.

virtual bool continuate(Domain& model, ostream& out, ostream& post, int steps
)

A function to continuate a possibly stopped process for a number of steps.

virtual void WriteRestartData(Domain& model)

Writes data to a restart file so that the analysis can be continued from the current
increment on. The name depends on the name specified by set basename and the
current increment number.

virtual void ReadRestartData(Domain& model)

Read data from the restart file specified by set restart. After this the analysis can be
continued with continuate

void set restart select(const StepSelect& restart select)

Copies a StepSelect class into the control to specify the steps for which a restart file
must be made.

4.3 IncrementalIterativeControl

IncrementalIterativeControl::public IncrementalControl

This class is a base class for incremental–iterative procedures. It can not be instan-
tiated by itself.

˜IncrementalIterativeControl()

Destructor.

void set max iter(int maxiter)

Sets the maximum number of iterations allowed per increment.

void set unbalance crit(double eps)

Sets the convergence criterion on the norm of the unbalance vector.

void set iteration method(int method)

Sets the iteration method.

4.4 Exception handling

not converged error::public feature error

Error class, thrown if no convergence was reached in an iterative method.

divergence error::public not converged error

Error class, thrown if divergence occurred in an iterative method.

19

Chapter 5

Node classes

A node has a location in 3D space and a node number. It can contain degrees of
freedom. Degrees of freedom must be added to a node explicitly. If a node is deleted,
also the degrees of freedom of this node are deleted. Usually a number of nodes are
‘owned’ by a domain (object) and an element (object) contains copies of pointers to the
nodes that are connected to that element. The Node class is a base class. The derived
class IncNode is adapted to use in an incremental (and possibly iterative) algorithm.

5.1 Node

The Node class is a concrete class. If this class is used, the header file nodes.h must
be included.

Node()

Default constructor. The node number is set to ‘0’, the coordinates are not initialized.

Node(int nodenr)

Node constructor. The node number is set to nodenr, the coordinates are not initial-
ized.

Node(int nodenr, double x, double y, double z)

Constructor of a Node with reference number nodenr and initial location (x,y,z).

˜Node()

Node destructor. Deletes all attached degrees of freedom.

void set nr(int nr)

Sets the node number to nr.

int get nr() const

Returns the node number.

void add dof(Dof ptr plus dof)

Adds plus dof unconditionally to the set of degrees of freedom for this node. The
pointer to the dof is copied, not the dof itself.

20

Dof ptr get dof(int idof) const

Returns the pointer to the degree of freedom that was stored as number idof (starting
with 0). An exception is thrown if idof is larger than the maximum stored dofs - 1.

void get dof(Dof::Type phys type, Direction dir, dof sets∗ SystDofs) const

Returns a combination of degrees of freedom that represent the type phys type and
direction dir in SystDofs.

void set location(Location loc)

Initializes or resets the location of the node with loc.

void set location(double x, double y, double z)

Initializes or resets the location of the node to (x,y,z).

Location get location() const

Returns the location of the node as stored. This is probably the initial location, unless
the location is updated during the analysis.

void get location(double& x, double& y, double& z) const

Returns the location of the node as stored in (x,y,z). This is probably the initial
location, unless the location is updated during the analysis.

void get current location(double& x, double& y, double& z) const

Returns the current location in (x,y,z) i.e. the initial location plus total displacements
plus incremental displacements. The values are valid after the moment that the iterative
displacements are added to the increments, but before that the increments are added
to the total displacements.

void draw location(double& x, double& y, double& z, double magnif) const

Returns in x,y,z the initial location plus the total displacements multiplied with mag-
nif. This can be used to make an exaggerated displacement plot.

int create dof(dof fixed fix type, Dof::Type phys type, const Direction& dir)

This function takes care that a degree of freedom with type fix type and Dof::Type
(e.g. prescribed rotation) and direction dir for this node exists. It only creates the dof
(or only the missing direction) is it not already exists.

void make global dofs(int& nr free, int& nr fixed, int& nr prescribed)

This function gives the consecutive degrees of freedom for this node the following free
dof numbers. The dof numbers are used for the global system vectors and matrices.
The arguments nr free, nr fixed and nr prescribed are the current maxima on input
and are incremented as needed.

void add to rhs(load type type, Direction dir, double magn, SystemVector& rhs)
const

Add a contribution to the load vector for the free degrees of freedom that correlate with
the type and direction as specified. If necessary e.g. a displacement is decomposed in

21

contributions to several degrees of freedom. If the load is not fully transferred to one
or more dofs a warning is printed.

void add to prescribed(Dof::Type type, Direction dir, double magn) const

As add to rhs but now for prescribed dofs. The load is added to get correct reaction
forces.

CartVector get total displacement() const

Returns the total displacement of the current node as a Cartesian vector. If no dis-
placement dofs are present (0,0,0) is returned.

double get temperature() const

Returns the temperature of the current node. If no temperature dof is present it returns
0.

virtual void WriteRestartData(ostream& restart) const

Writes restart data for this node. Must be compatible with ReadRestartData. Since
this function is virtual its implementation can be redefined.

virtual void ReadRestartData(istream& restart)

Reads restart data for this node. Must be compatible with WriteRestartData. Since
this function is virtual its implementation can be redefined.

5.2 IncNode

The IncNode class is derived from the Node class. This class can be used in incremental
and iterative algorithms.

IncNode()

Default constructor. The node number is set to ‘0’, the coordinates are not initialized.

IncNode(int nodenr)

IncNode constructor. The node number is set to nodenr, the coordinates are not
initialized.

IncNode(int nodenr, double x, double y, double z)

Constructor of a IncNode with reference number nodenr and initial location (x,y,z).

˜IncNode()

IncNode destructor. Deletes all attached degrees of freedom.

void add increments to totals()

Add the increments of dof values to the total values for this node. The increments are
not reset to 0, to be able to print the increments before the next increment starts.

void reset increments()

Resets all incremental dof values for this node to zero.

22

void add to increments(const Vector& free, const Vector& prescribed)

Iterates over the Dofs for this node and adds the corresponding values in free and
prescribed to the incremental values of the Dofs. Corresponding values means: the
value of free[dofnr-1] if the dof is really free or prescribed[dofnr-1] if the dof is
prescribed.

void add to increments(const Vector& free)

Iterates over the Dofs for this node and adds the corresponding values in free to the
incremental values of the Dofs.

void get incremental solution vector(Vector& free) const

Returns the incremental solution vector in free (also if this vector is not explicitly
stored).

CartVector get incremental displacement() const

Returns the incremental displacement of the current node as a Cartesian vector. If no
displacement dofs are present (0,0,0) is returned.

double get temperature increment() const

Returns the temperature increment of the current node. If no temperature dof is present
it returns 0.

23

Chapter 6

Element classes

The ElementBase class is an abstract class. If this class is used, the header file
elembase.h must be included.

Elements are usually ‘owned’ by a domain (object). An element contains pointers
to nodes and pointers to degrees of freedom, but does not own these objects (so they
are not deleted if the element is deleted).

More interesting elements are presented in the demo. In the future some of them
could migrate to this place.

6.1 ElementBase

This class is a base class for all element types. It is an abstract class and can not be
constructed by itself.

virtual ˜ElementBase()

Destructor.

virtual void iteration update()=0

Pure virtual function that is called at the end of an iteration, to let the element update
itself with the current iterative values.

virtual void finish increment()=0

Pure virtual function that is called at the end of a (successful) increment, to let the
element update itself and get ready for the next increment.

virtual void AddNodalPostContribution() const

static void SetTimeIncrement(double dtime)

Static function to set the current time increment. Need only be called once if the time
increment changes.

static void SetPostItem(PostItem post)

virtual bool symmetric() const=0

24

Pure virtual function to specify whether a symmetric (true) or a nonsymmetric (false)
stiffness matrix will result. Probably this depends on the material and the algorithm
used.

int get nr() const

Returns the reference number of this element.

void add dofs to nodes() const

Adds the necessary degrees of freedom to the nodes of the element. The ‘necessary’
dofs are taken from the protected pure virtual function GetLocalDofs() that must be
supplied for every derived concrete element type.

void CreateGlobalDofs()

Searches for the dof numbers, corresponding to the local dofs as specified by the pure
virtual function GetLocalDofs() and initializes the transformation matrix between
the local and global dofs.

Vector GetGlobalLHS() const

Returns the internal load vector in global degrees of freedom. This function fully
depends on the pure virtual function GetLocalLHS and transforms the local to the
global vector.

void PutLHS in Global(SystemVector& lhs) const

This function adds the contribution of the element internal load vector to the system
internal load vectors.

void InitStiff in Global(SystemMat∗ System) const

Initializes the storage for a system matrix System for all combinations of element
global degrees of freedom.

void PutStiff and RHS in Global(SystemMat∗ System, Vector& rhs) const

Calculates the element system matrix and adds the contribution to the system matrix
System. If needed also a contribution to the load vector for the really free degrees of
freedom is added to rhs.

void PutStiff in Global(SystemMat∗ System, Vector& rhs) const

Calculates the element system matrix and adds the contribution to the system matrix
System.

void InitMass in Global(SystemMat∗ System, bool lumped) const

Initializes the storage for a mass matrix System. If lumped is true, storage for a
lumped mass matrix is initialized.

void PutMass in Global(SystemMat∗ System, bool lumped) const

Calculates the element mass matrix and adds the contribution to the system matrix
System. If lumped is true, a lumped mass matrix is calculated.

void AddPres2Load(int surface, double magnitude, SystemVector& load) const

25

Calculates the contribution to the load vectors of a pressure on one of the faces of an
element (surface) with pressure magnitude.

void WriteRestartData(ostream& restart) const

Write data for this element to restart, to be able to restart from the current increment
onwards.

void ReadRestartData(istream& restart)

Read data for this element from restart, to be able to restart from the saved increment
onwards.

26

Chapter 7

Dof classes

The Dof classes represent the concept of degrees of freedom. Usually the Dof objects
are created and owned by Node objects. The element objects contain copies of pointers
to degrees of freedom.

First a helper class for creating sets of Dofs is described, then the base class Dof,
followed by incDof and itincDof for use in incremental and iterative incremental
algorithms respectively. Finally some global routines are presented that are of special
interest for Dof classes.

The classes and functions described in this chapter are declared in the header file
dofs.h.

7.1 helper class

class FeaTure::dof sets
The dof sets class contains sets of global degrees of freedom and contributions of

that global dof.

dof sets()

Default constructor.

dof sets(const dof sets& in set)

Copy constructor.

˜dof sets()

Destructor.

void add set(Dof ptr p, double fraction)

Adds the pointer to Dof p with a contribution fraction to the set of dofs.

int nr of dofs()

Returns the number of global dofs, contained in this set.

Dof ptr dof(int i)

Returns the pointer to the dof, stored as number i.

double contribution(int i)

Returns the contribution of the global dof, stored an number i.

27

7.2 Dof

enum Dof::Type { u, r, t }

Public enumeration to represent the type of degree of freedom (displacement, rotation,
temperature).

enum Load{ f, m, q }

Public enumeration to represent the type of nodal load (force, moment, flux).

enum dof fixed{ prescribed, fixed, free dof }

Public enumeration to represent the value type of the dof. A fixed dof will never get
a value different from 0, a prescribed dof will get a prescribed value and is not really
free and a free dof will get a value depending on the response of the system.

If many dofs are fixed, it can be efficient to use the knowledge about this, to avoid
many useless multiplications by zero.

Dof()

Default constructor.

void set direction(Direction dir)

Sets the direction of this degree of freedom to dir (only for dofs of vector type, like
displacements and rotations).

void set Dof::Type(Dof::Type phys type)

Sets the type of the dof, e.g. ‘u’ for displacement, ‘r’ for rotation and ‘t’ for temperature.

void set dof fixed(dof fixed fix type) Direction get direction() const

Sets the freedom type of the dof to ‘free’, ‘fixed’ or ‘prescribed’. The difference between
fixed and prescribed is that a fixed degree of freedom will always have a value of ‘0’
and a prescribed degree of freedom can have a non-zero value. This difference can be
used to facilitate an efficient implementation.

Dof::Type get dof type() const

Returns the type of this dof.

int get global dof() const

Returns the global dof number for reference in system matrix and vector.

void set global dof(int dofnr)

Sets the global dof number for reference in system matrix and vector.

void print() const

Prints the type of dof (free, fixed, prescribed) and the global number. This routine is
just for debugging purposes.

bool is vector() const

28

Returns true if this dof represents a vector, false otherwise.

bool is scalar() const

Returns true if this dof represents a scalar, false otherwise.

bool is free() const

Returns true if this dof is really free, false otherwise.

bool is fixed() const

Returns true if this dof is fixed, false otherwise.

bool is prescribed() const

Returns true it this dof is prescribed, false otherwise.

7.3 incDof

Degree of freedom class for incremental analysis, derived from Dof. The solution value
of a Dof is considered to be the incremental value.

incDof :public Dof

incDof()

Default constructor.

void set total(double value)

Sets the total value of this dof to value.

void add to total(double value)

Adds value to the total value of this dof.

double get total() const

Returns the total value of this dof.

7.4 itincDof

Degree of freedom class for iterative incremental analysis. Derived from incDof. The
solution in the Dof part is considered to be the iterative increment.

itincDof :public incDof

itincDof()

Default constructor.

void set increment(double value)

29

Sets the incremental value to value.

void add to increment(double value)

Adds value to the incremental value.

void add increment to total()

Adds the incremental value to the total value.

double get increment() const

Returns the incremental value.

7.5 Global functions

bool is vector load(Dof::Load type)

Returns true if the load type type is a vector valued type (e.g. a force), false otherwise.

bool is scalar load(Dof::Load type)

Returns true if the load type type is a scalar valued type (e.g. a production), false
otherwise.

void print load type(Dof::Load type, ostream& out)

Prints a shortname for the load type, e.g. ‘f’ for force and ‘m’ for moment.

bool is vector dof(Dof::Type phys type)

Returns true if phys typ is a vector type of dof, e.g. a displacement, false otherwise.

bool is scalar dof(Dof::Type phys type)

Returns true if phys typ is a scalar type of dof, e.g. a temperature, false otherwise.

void print dof type(Dof::Type type, ostream& out)

Prints a shortname for the dof type, e.g. ‘u’ for displacement and ‘r’ for rotation.

Dof::Type conjugate type(load type type)

Returns the dof type conjugate to the load type type, e.g. a displacement to a force
or a rotation to a moment.

typedef itincDof∗ Dof ptr

30

Chapter 8

Material classes

All concrete material classes come in pairs: a Material Type and a Material Point.
The Material Type defines the material model with its parameters. An element has
only one material type. The Material Point contains the actual implementation of the
algorithm and the possibly history dependent (state) variables.

The classes and functions described in this chapter are declared in the header file
material.h.

8.1 The Material type and Material Point classes

8.1.1 Material type

Material type()

Default constructor.

Material type(int mat nr)

Constructor for Material type, sets the reference number to mat nr.

˜Material type()

Destructor.

int set density(double rho)

Sets the density for this material.

double get density() const

Returns the density for this material.

virtual Material Point∗ new Material Point(StressType st)=0

Pure virtual function, returns a pointer to a new Material Point. In this way material
points can be created e.g. in the integration points by calling the Material type. Every
derived class should implement this function in its own way.

virtual bool symmetric() const=0

Pure virtual function to indicate whether a symmetric or non-symmetric stiffness matrix
will be derived.

31

int get nr() const

Returns the reference number of this material.

8.1.2 Material Point

Abstract class for generation of material points.

virtual ˜Material Point()

Virtual destructor.

virtual void finish increment()=0

Pure virtual function to indicate that an increment is finished. The material point
should prepare itself for the next increment.

virtual void GetRestartData(CollectArray& data) const=0

Get all relevant data from array data to be able to restart from this data. Should
correspond to PutRestartData.

virtual void PutRestartData(const CollectArray& data)=0

Assemble all relevant data in an array data to be able to restart from the current point
on. Should correspond to GetRestartData.

static void SetTimeIncrement(double dtime)

8.2 The Structural type and Structural Point classes

This couple of classes is intended for structural analysis. They are derived virtual
public from Material type and Material Point respectively. This makes it possible to
derive a thermal class set also and later derive a thermo-mechanical class from both
the Structural and Thermal classes.

8.2.1 Structural type

Structural type()

Default constructor.

˜Structural type()

Destructor.

virtual bool NeedExpandStrain(StressType st) const

If the material model needs an expanded strain, the thickness strain is added to the
strain vector, even for plane strain and plane stress situation. The same applies to the
stress vector.

32

8.2.2 Structural Point

Structural Point:public virtual Material Point

Structural Point(StressType st)

protected constructor. The StressType st defines the structural behavior of the Point:
uniaxial, plane strain, plane stress, axisymmetric or full 3D solid.

virtual Matrix get D mat() const =0

Pure virtual function. Should return the material stiffness matrix D = ∂σ

∂ε
.

Vector get D times iso unit(double eps iso=1.0) const

virtual void set strain increment(const Vector& strain increment)=0

Sets the strain increment.

virtual Vector get stress() const =0

Returns the current stress (at the end of an increment). The size of the stress vector
is the minimum needed for the applicable stress state (e.g. size=3 for plane stress and
plane strain).

virtual Vector get xp stress() const

Returns the current expanded stress (at the end of an increment). The size of the stress
vector is the minimum needed for the applicable stress state (e.g. size=4 for plane stress
and plane strain).

virtual double get eps plast eq(bool& has epq) const

Returns the equivalent plastic strain.

void get D and stress correction(Matrix& D,
Vector& stress correction) const

Gets the material stiffness matrix and if necessary a stress correction that is taken into
account in the load vector.

virtual double get expansion coefficient() const

33

Chapter 9

Loads and Boundary Conditions

The classes and functions described in this chapter are declared in the header file
loads.h.

9.1 Load set class

A load set determines a collection of loads that can be incremented or decremented
only as a complete set. A load set is referenced by a set number.

LoadSet()

Default constructor.

LoadSet(int nr)

Constructor with initialization of number of the set.

˜LoadSet()

Destructor.

int get nr() const

Returns the reference number of the set.

void set nr(int nr)

Sets the reference number of this load set to nr.

void add load(Nodal Loads∗ load)

Adds a Nodal Loads object to this load set.

void add load(Nodal Prescribed∗ load)

Adds a Nodal Prescribed object to this load set.

void add load(Pressure Loads∗ load)

Adds a Pressure Loads object to this load set.

void get load vector(SystemVector& load vec) const

34

Returns the external load vector, build up from the loads of this load set, taking the
current multiplication factor into account.

void set load size(double size)

Sets the magnitude of this load set to size.

void add load size(double size)

Increments the magnitude of this load set by size.

void print(ostream& out) const

Prints the input to the out stream. This function is virtual, so you can override it with
your own version.

void WriteRestartData(ostream& restart) const

Writes restart data to the restart stream.

void ReadRestartData(istream& restart)

Reads restart data from the restart stream.

9.2 Nodal loads

A nodal load is a load of the ‘force’ type, that directly related to the right-hand side
of the matrix equations. A Nodal Loads object contains a load on a set of nodes,
possibly in a set of directions.

Nodal Loads()

Default constructor.

Nodal Loads(int nrloads, Load dir* lods, int nrnodes, NodePtr* nods)

Constructor which prepares for a load on a set of nodes in a number of directions.

˜Nodal Loads()

Destructor.

void add load(Dof::Load type, Direction dir, double mag)

Adds a load of size mag of a particular type and in a particular direction dir to this
object.

void add load(Dof::Load type, double mag)

Adds a scalar load of size mag of a particular type to this object.

void add node(NodePtr node);

Adds a node to the selection of nodes to which this object applies.

int get nr loads() const

Returns the number of loads in this object.

35

Dof::Load get type(int load nr) const

Returns the type of load number nr in this object.

Direction get dir(int load nr) const

Returns the direction of load number nr in this object.

double get magnitude(int load nr) const

Returns the magnitude of load number nr in this object.

int get nr nodes() const

Returns the number of nodes in this object.

NodePtr get node(int node nr) const

Returns a pointer to the node, specified by node nr in this object.

void print(std::ostream& out) const

Prints an overview of this nodal load object.

void add to rhs(SystemVector& rhs) const

Adds the contribution of this nodal load object to the right-hand side vector.

9.3 Prescribed Nodal values

A prescribed load is a load of the ‘displacement’ type, that directly prescribes the value
of a primary nodal variable.

Nodal Prescribed()

Default constructor.

Nodal Prescribed(int nrloads, Load dir* lods, int nrnodes, NodePtr* nods)

Constructor which prepares for an equal load on a set of nodes in a number of directions.

˜Nodal Prescribed()

Destructor.

void add load(Dof::Type type, Direction dir, double mag)

Adds a prescribed load of size mag of a particular type and in a particular direction
dir to this object.

void add load(Dof::Type type, double mag)

Adds a scalar prescribed load of size mag of a particular type to this object.

void add node(NodePtr node);

Adds a node to the selection of nodes to which this object applies.

int get nr loads() const

36

Returns the number of loads in this object.

Dof::Type get type(int load nr) const

Returns the type of load number nr in this object.

Direction get dir(int load nr) const

Returns the direction of load number nr in this object.

double get magnitude(int load nr) const

Returns the magnitude of load number nr in this object.

int get nr nodes() const

Returns the number of nodes in this object.

NodePtr get node(int node nr) const

Returns a pointer to the node, specified by node nr in this object.

void print(std::ostream& out) const

Prints an overview of this prescribed nodal load object.

void add to prescribed(double inc size) const

Adds the prescribed nodal value times inc size to the nodes, which will pass it on to
the respective degrees of freedom.

9.4 Pressure loads

A pressure load describes a force per unit area perpendicular to an element surface.

Pressure Loads()

Default constructor.

˜Pressure Loads()

Destructor.

void add load(Element ptr elmptr, int surface, double pres)

Adds a pressure load of size pres to the defined surface of the element elmptr to this
object.

void set factor(double fac)

Sets a multiplication factor with which all pressures will be multiplied, before they are
added to the load vector.

void add factor(double fac)

Increments a multiplication factor with which all pressures will be multiplied, before
they are added to the load vector.

void add to vec(SystemVector& load vec) const

Adds the contribution of this pressure load object to the load vector.

37

Chapter 10

Matrix and Vector classes

FeaTure relies on a number of classes that represent the concepts of matrices and
vectors. The most general matrix and vectors classes the dense matrix and vector
classes Matrix and Vector. All classes are defined for double precision arithmetic.
For special purposes some other matrix and vector classes are defined within FeaTure.
For vectors in 3-dimensional space it was found that the general vector has too much
overhead. The CartVector (Cartesian vector) contains 3 double precision variables
and does not use dynamic memory allocation internally. From this base class the
Direction and Location classes are derived. Simple addition, subtraction and scalar
multiplication are defined for the Cartesian vectors.

For transformations between local and global coordinates a transformation matrix
can be defined. The TransformationMatrix class can be very efficient because it
uses only a flag in case it is a unit diagonal matrix. The SystemMat classes are used
for storage of the system matrix.

The dense matrices and vectors use both indices with a 0 offset as with a 1 offset.
Here 0 offset means that the first item is indexed 0 and the last item n-1 (if n is the
size). This is the traditional C-style indexing and is used when square brackets are used
e.g. A[0][4], indicates the matrix element that is usually named A15 in mathematics.
Offset 1 is the traditional Fortran-style (and linear algebra style). The first item is 1
and the last item is n. This indexing can be used with parenthesis e.g. A(1,5) for a
matrix and b(3) for a vector.

10.1 Vector

The Vector class is declared in ftmatrix.h

class FeaTure::Vector

Vector()

Constructs an empty vector.

Vector(size t N)

Constructs an uninitialized vector of size N.

Vector(size t N, double val)

Constructs a vector of size N, filled with values val.

38

Vector(const Vector& a)

Copy constructor.

explicit Vector(const Matrix& A)

Constructor that copies a matrix A, that must have only 1 column.

˜Vector()

Destructor.

Vector& operator=(const Vector& a)

Assignment operator.

size t size() const

Returns the number of rows.

double& operator[](size t i)

Reference to the i-th element (zero-based).

const double& operator[](size t i) const

Const reference to the i-th element (zero-based).

double& operator()(size t i)

Reference to the i-th element (one-based).

const double& operator()(size t i) const

Const reference to the i-th element (one-based).

void clear()

(Re)sets the values of this vector to zero.

void resize(size t N)

(Re)sets the size of this vector to N.

Vector add SubVec(int row, const Vector& SubVec)

Adds sub-vector SubVec starting at position row (1-based).

double norm() const

Returns the Euclidean norm of this vector:

‖v‖ =

√

√

√

√

n
∑

i=1

v2
i

void print row(std::ostream& os) const

Prints this vector on stream os as a row.

39

Vector& operator∗ =(const double& a)

Multiplies this vector with scalar a.

Vector& operator+ =(const Vector& a)

Adds a to this vector.

Vector& operator− =(const Vector& a)

Subtracts a from this vector.

10.2 Matrix

The matrix class is declared in ftmatrix.h.

class FeaTure::Matrix

Matrix()

Default constructor for an empty matrix.

Matrix(size t M, size t N)

Constructs an uninitialized (M,N) matrix.

Matrix(int M, int N, double val)

Constructs an (M,N) matrix of which all elements have the value val.

Matrix(const Matrix& A)

Copy constructor; initializes this matrix with a Matrix A.

Matrix(const Vector& a)

Initializes this matrix with vector a. The size of the matrix will become (n,1), where n
is the size of the vector.

˜Matrix()

Destructor.

Matrix& operator=(const Matrix& a)

Assignment operator.

size t size1() const

Returns the number of rows.

size t size2() const

Returns the number of columns.

double∗ operator[](size t i)

Return a pointer to the first element of row i (zero-based), such that A[i][j] will refer
to Aij . In this case index j is not checked to be in the range of the matrix columns.

40

const double∗ operator[](size t i) const

Return a const pointer to the first element of row i (zero-based), such that A[i][j] will
refer to Aij . In this case index j is not checked to be in the range of the matrix columns.

double& operator()(size t i,size t j)

Reference to the i, j-th element (one-based).

const double& operator()(size t i, size t j) const

Const reference to the i, j-th element (one-based).

void clear()

Fills this matrix with zeros.

void resize(size t M, size t N)

(Re)sets the size of this matrix to (M,N).

Matrix without rowcol(size t rowcol) const

Returns a matrix that is identical to this matrix, but without the row and column
number rowcol (1-based).

Matrix add SubMat(size t row, size t col, const Matrix& SubMat)

Adds SubMat as a sub-matrix to this matrix, starting at position (row,col) (1-based).

double determinant()

Returns the determinant for this matrix if it is a square matrix of maximum 3 rows
and columns. If the matrix is not square or too large it throws an error. This routine
should be generalized in the future, without affecting the efficiency for small matrices.

Matrix inv() const

Returns the inverse of this matrix if it is a square matrix, otherwise throws an error.
The matrix is inverted using the method described at page 171 of ’Introduction to
numerical analysis’ by J. Stoer and R. Bulirsch. For large matrices, this is a costly
operation.

Matrix& operator∗ =(const double& a)

Multiplies this matrix with scalar a.

Matrix& operator+ =(const Matrix& A)

Adds A to this matrix.

Matrix& operator− =(const Matrix& A)

Subtracts A from this matrix.

std::ostream& operator<<(std::ostream& s, const Vector& A)

Puts vector A on the output stream s as a column. The setw() manipulator can be
used to set the width for each vector-element.

41

std::ostream& operator<<(std::ostream& s, const Matrix& A)

Puts matrix A on the output stream s. The setw() manipulator can be used to set
the width for each matrix-element.

10.3 Additional functions for full matrices and vectors

10.3.1 Matrix and vector addition, subtraction and multiplication

The following functions between Matrix and Vector objects are defined. They are
declared in ftmatrix.h.

double inner product(const Vector& A, const Vector& B, double v=0)

Returns the inner product added to the initial value v + ATB.

Matrix mult(const Matrix& A, const Matrix& B)

Returns R = AB.

Vector mult(const Matrix& A, const Vector& B)

Returns r = AB.

Matrix tmult(const Matrix& A, const Matrix& B)

Returns R = ATB.

Vector tmult(const Matrix& A, const Vector& B)

Returns r = ATB.

Matrix tmult(const Vector& A, const Matrix& B)

Returns R = ATB.

void Add sAtBA(Matrix& C, double s, const Matrix& A, const Matrix& B)

Optimized function for the triple matrix product summation C = C + sATBA. Typi-
cally used for numerical integration of the stiffness matrix.

Matrix operator˜ (const Vector& A)

Returns the transpose of vector A as a Matrix (row-vector).

Matrix operator˜ (const Matrix& A)

Returns the transpose of matrix A: result = AT.

Vector operator+(const Vector& A, const Vector& B)

Return the result of A + B.

Matrix operator+(const Matrix& A, const Matrix& B)

Return the result of A + B.

Vector operator+(const Matrix& A, const Vector& B)

42

Returns the result of A + B if the matrix A has same size as vector B.

Vector operator+(const Vector& A, const Matrix& B)

Returns the result of A + B if the matrix B has same size as vector A.

Vector operator−(const Vector& A, const Vector& B)

Return the result of A−B.

Matrix operator−(const Matrix& A, const Matrix& B)

Return the result of A−B.

Vector operator−(const Matrix& A, const Vector& B)

Return the result of A−B if the matrix A has the same size as vector B.

Vector operator−(const Vector& A, const Matrix& B)

Return the result of A−B if the matrix B has the same size as vector A.

Vector operator∗(const Vector& A, const double& B)

Returns vector A ∗ B (B is a scalar).

Vector operator∗(const double& A, const Vector& B)

Returns vector A ∗ B (A is a scalar).

Matrix operator∗(const Matrix& A, const double& B)

Returns A ∗ B (B is a scalar).

Matrix operator∗(const double& A, const Matrix& B)

Returns matrix A ∗B (A is a scalar).

Matrix operator∗(const Matrix& A, const Matrix& B)

Returns matrix A ∗B.

Vector operator∗(const Matrix& A, const Vector& B)

Returns vector A ∗ B.

Matrix operator∗(const Vector& A, const Matrix& B)

Returns the result of A ∗ B only if matrix B has only 1 row (error otherwise).

10.3.2 Triangular decompositions and multiplications

void LDLtDecomposition(Matrix∗ Ap)

Calculates the LDLT decomposition of the symmetric matrix A. The lower left part
of A(i, j) with j < i is substituted by L(i, j). The diagonal A(i, i) is substituted by the
diagonal D(i, i). The upper right part of A(i, j) with j > i is left unchanged.

void LDLtSubstitution(const Matrix& LDLt, Vector∗ xp)

43

Solve x from LDLTx = b, were b is initially stored in x. The set of equations is
efficiently solved as:

Ly = b

Dz = y

LTx = z

void CholeskyDecomposition(Matrix∗ Ap)

Calculates the Cholesky decomposition A = LLT of the symmetric matrix A. The
lower left part of A(i, j) with j ≤ i is substituted by L(i, j). The upper right part of
A(i, j) with j > i is left unchanged.

void CholeskySubstitution(const Matrix& LDLt, Vector∗ xp)

Solve x from LLTx = b, were b is initially stored in x. The matrix L is a lower left
triangular matrix and Lij is not used for i < j.

Ly = b

LTx = y

void PostMultLowerTInv(Matrix∗ Ap, const Matrix& L)

Calculate R = AL−T where L is a lower left triangular matrix and return the result in
Ap. The part Lij with i < j is not used.

void PreMultLowerInv(const Matrix& L, Matrix∗ Ap)

Calculate R = L−1A where L is a lower left triangular matrix and return the result in
Ap. The part Lij with i < j is not used.

void PreMultLowerTInv(const Matrix& L, Matrix∗ Ap)

Calculate R = L−TA where L is a lower left triangular matrix and return the result in
Ap. The part Lij with i < j is not used.

Matrix PreMultLower(const Matrix& L, const Matrix& A)

Return R = LA where L is a lower left triangular matrix. The part Lij with i < j is
not used.

Matrix PostMultLowerT(const Matrix& A, const Matrix& L)

Return R = ALT where L is a lower left triangular matrix. The part Lij with i < j is
not used.

Matrix PreMultLowerT(const Matrix& L, const Matrix& A)

Return R = LTA where L is a lower left triangular matrix. The part Lij with i < j is
not used.

44

10.3.3 Eigenvalue problems

void householder(Matrix∗ A, Matrix∗ V=0)

Transforms the symmetric matrix A into a tridiagonal matrix. If V equals 0, the
transformation matrix is not calculated, else V on exit contains the orthogonal trans-
formation such that the tridiagonal matrix T is obtained from: T = VTAV.

void symmetricQR(Matrix∗ Tp, Matrix∗ V=0)

Transforms the symmetric tridiagonal matrix Tp into a diagonal matrix. If V equals
0, the transformation matrix is not calculated, else V on exit contains the orthogonal
transformation such that the diagonal matrix D is obtained from: D = VTAV. If V
already contained a matrix from a previous transformation e.g. a Householder transfor-
mation, the matrix V contains the combined transformation on output. The columns
of V contain the eigenvectors corresponding to the eigenvalues in the same column of
D, which is stored in Tp on exit.

int SturmSequence(const Matrix& A, double shift=0)

Calculates the number of sign changes in the calculation of subdeterminants of matrix
A − µI, where µ is the eigenvalue shift. The Sturm sequence number corresponds to
the number of eigenvalues less than µ.

void GenEigen(Matrix∗ Ap, Matrix∗ Bp, Vector∗ lambda, Matrix∗ Vp=0)

Determines the eigenvalues λi and eigenvectors vi (if Vp 6= 0) of the generalized eigen-
problem:

(A− λB)v = 0

The eigenvectors are stored as columns in matrix Vp.

void InverseIteration(const Matrix& A, Vector* xp, double* lambda)

Perform inverse iteration on matrix A with starting vector xp. The result is the lowest
eigenvalue lambda and corresponding eigenvector xp.

10.4 Cartesian vectors

10.4.1 CartVector

The CartVector class is declared in the header file cartvect.h. This class is an efficient
implementation of Cartesian vectors in 3-dimensional space. It is especially useful as
base class of the Direction and Location class.

class CartVector

CartVector()

Default constructor.

CartVector(const CartVector& vec)

Copy constructor.

CartVector(double x, double y, double z)

45

Constructor, initializes the vector with (x,y,z).

double& operator[](int i)

Zero-based reference to coordinate i.

const double& operator[](int i) const

Zero-based const reference to coordinate i.

double& operator()(int i)

One-based reference to coordinate i.

const double& operator()(int i) const

One-based const reference to coordinate i.

void print() const

Prints the vector.

CartVector add(const CartVector& src2) const

The addition of src2 and this vector is returned.

CartVector selfadd(const CartVector& src2)

The vector src2 is added to this vector and this vector is returned.

CartVector sub(const CartVector& src2) const

Returns this vector minus src2.

CartVector selfsub(const CartVector& src2)

Subtracts src2 from this vector and returns this vector.

CartVector mul(double val) const

Returns the multiplication of val and this vector.

CartVector selfmult(double scalar)

Multiplies this vector by scalar and returns it.

void getValues(double& x, double& y, double& z)

Returns the coordinates of this vector in x,y,z.

double dot(const CartVector& vec2) const

Returns the dot product of this vector and vec2.

double normsq() const

Returns the square of the Euclidean norm of this vector.

double norm() const

Returns the Euclidean norm of this vector.

46

friend CartVector outer(const CartVector& a, const CartVector& b)

Returns the outer product a× b (not a member function).

The following friend functions perform the obvious operations by calling the member
functions described above.

friend ostream& operator<<(ostream& os, const CartVector& vec)

friend CartVector operator+(const CartVector& a, const CartVector& b)

friend CartVector operator+=(CartVector& a, const CartVector& b)

friend CartVector operator-(const CartVector& a, const CartVector& b)

friend CartVector operator−=(CartVector& a, const CartVector& b)

friend CartVector operator∗(const CartVector& a, double b)

friend CartVector operator∗(double b, const CartVector& a)

friend double operator∗(const CartVector& a, const CartVector& b)

10.4.2 Direction

The Direction class is declared in the header file cartvect.h. This class is derived
from the CartVector class and always contains a normalized vector, representing a
direction. Normalized, means that the Euclidean norm of the vector is 1.

class Direction:public CartVector

Direction()

Default constructor. This one leaves the data uninitialized and should be avoided if
possible. If used, the vector should be initialized shortly after creation.

Direction(const Direction& dir)

Copy constructor.

Direction(const CartVector& vect)

Constructor that initializes with the normalized version of vect.

47

void set dir(double x, double y, double z)

Sets the direction to (x,y,z) and normalizes the vector if not yet done.

void get dir(double& x, double& y, double& z) const

Returns the direction in x,y,z.

void print() const

Prints the direction to standard output.

10.4.3 Location

The Location class is declared in the header file cartvect.h.

class Location:public CartVector

Location(double x=0, double y=0, double z=0)

Initializes the location with the vector x,y,z.

Location(const CartVector& vect)

Initializes the location with the vector vect.

void set location(double x, double y, double z)

Sets the location to x,y,z.

void get location(double& x, double& y, double& z) const

Returns the location to x,y,z.

void print() const

Prints the location to the standard output.

10.5 Transformation Matrix

The TransformationMatrix class is a separate matrix class that can perform the
actions that are usually required for coordinate transformations (pre-multiplying with
the transpose and post-multiplying with full matrices and multiplication with vectors).
It can perform these actions efficiently. Often the transformation matrix is just a unit
diagonal matrix or a permutation matrix. In these cases multiplication is trivial (unit
matrix) or concerns just a replacement of rows and/or columns (permutation). Even
in the general case, only the non-zeros are stored and used in multiplications.

The TransformationMatrix class is declared in transmat.h.

class FeaTure::TransformationMatrix

TransformationMatrix()

Default constructor.

˜TransformationMatrix()

Destructor.

48

void setUnit(int dim)

Sets this matrix to be a unit diagonal matrix of dimension dim. No dynamic memory
allocation will take place and multiplication just ‘pipes’ through the vector or matrix
that is multiplied. A unit diagonal matrix can also be deduced from a sparse matrix
(see setSparse()).

void setPermutation(int dimen1, int dimen2, int∗ perm)

Sets this matrix to be a permutation matrix of size (dimen1,dimen2). A permutation
matrix only contain the values 0 and one value of 1 in every row. The integer array
perm contains for each row the column number that has the value 1. A permutation
matrix can also be deduced from a sparse matrix (see setSparse()).

void setSparse(int dimen1, int dimen2, int nz)

Sets the matrix (initially) to be a general sparse matrix of dimension (dimen1,dimen2)
with nz number of nonzeros. This number of nonzeros is needed to initialize the storage
efficiently and it will be used to evaluate the matrix after nz numbers have been added
by put(i,j,val). If the matrix appears to be a unit matrix or a permutation matrix
during evaluation, the storage scheme and functions are optimized for that.

void put(int i, int j, double val)

Put the value val at location (i,j) (1-indexed). Only put non-zero values in the matrix.
Non-initialized values are automatically recognized as zero.

double get(int i, int j) const

Returns the value of Tij regardless of the storage scheme (1-indexed).

Vector<double> mult(const Vector<double>& v) const

Returns the multiplication of this matrix by vector v: r = Tv.

Vector<double> tmult(const Vector<double>& v) const

Returns the multiplication of the transpose of this matrix by vector v r = TTv.

Matrix<double> preTmult postMult(const Matrix<double>& M) const

Returns the matrix result of M pre-multiplied with the transposed of this matrix and
post-multiplied with this matrix R = TTMT.

Subscript num rows() const

Returns the number of rows in this matrix.

Subscript num cols() const

Returns the number of columns in this matrix.

Global functions

ostream& operator<<(ostream& s, const TransformationMatrix& A);

Puts the transformation matrix A on the output stream s.

49

Vector<double> operator∗(const TransformationMatrix& A,
const Vector<double>& B)

Multiplies the transformation matrix A with vector B.

10.6 System Matrix classes

The classes in this section are specially designed to work with system matrices effi-
ciently. The storage schemes and solution algorithms take the sparsity of the matrix
into account.

10.6.1 SystemMat

The SystemMat class is declared in sysmat.h.

virtual ˜SystemMat()

Destructor.

virtual void init(int row, int col)=0

Pure virtual function that reserves a storage place for matrix element A(row,col). This
function can be used by derived classes and should be called for all non-zero elements
before the elements are really added to the matrix.

virtual void set zero()=0

Pure virtual function that sets all elements of the matrix to zero.

virtual void add(int row, int col, double value)=0

Pure virtual function that increments the matrix element (row,col) with value. Do not
forget to use set zero() before starting to fill the matrix.

virtual void print(char∗ name) const=0

Pure virtual function to print this matrix with name as header.

virtual void solve(const Vector& rhs, Vector& x)=0

Pure virtual function to solve the linear set of equations given by Ax = rhs where A
is this system matrix.

10.6.2 SparseSysMat

The SparseSysMat class is declared in sysmat.h. This matrix is derived from a com-
pressed sparse row storage defined in sprsmat.h. Two multiplications are defined for
the base class with a Vector and with a Matrix:

Vector operator∗(const CR Matrix& A, const Vector& x)

Defines the multiplication of the compressed row matrix with a vector.

Matrix operator∗(const CR Matrix& A, const Matrix& X)

Defines the multiplication of the compressed row matrix with a matrix.

50

class FeaTure::SparseSysMat:public FeaTure::SystemMat, public FeaTure::CR Matrix

The SparseSysMat class derived publicly from SystemMat and CR Matrix.

SparseSysMat()

Default constructor.

SparseSysMat(Subscript N, bool symm=false)

Constructor for a (square) system matrix of size N. If symm is true then only the
lower triangular part has to be stored.

SparseSysMat(const SparseSysMat& S)

Copy constructor.

˜SparseSysMat()

Destructor.

void init(int row, int col)

This function only checks whether (row,col) fits within this matrix (1-indexed). The
matrix-elements can be added at will.

void set zero()

Sets all the matrix elements to zero.

void add(int row, int col, double value)

Increments matrix element (row,col) with value.

void add(const SparseSysMat& A, double s=1.0)

Adds to this matrix the matrix A multiplied by s.

M = M + sA

void print(char∗ name) const

Print this matrix with header name.

void solve(const Vector& rhs, Vector& x)

Solves the set of equations Ax = rhs. At this moment a direct skyline solver is used.
In the future more solvers should be made available.

A non-member function subspace iteration exists to derive the lowest eigenvalues
and corresponding eigenvectors of a symmetric SparseSysMat matrix.

void subspace iteration(SparseSysMat& A, const SparseSysMat& B, Vector∗ lambda,
Matrix∗ V, bool init=true)

51

Solves the generalized eigen problem

(A− λB)v = 0

The number of columns in V defines the dimension of the subspace, the number of rows
should be equal to the dimension of A and B. If init is true, the first starting vector
will be initialized with the diagonal elements of B and the other vectors as unit vectors
with value +1 on the row (i) with the smallest ratios of the diagonal elements of A and
B (Aii/Bii). If init is false, V should be initialized with independent starting vectors.
On exit, lambda contains the eigenvalues and V the eigenvectors.

10.6.3 SkySymMat

The SkySymMat class is defined in sysmat.h.

class FeaTure::SkySysMat:public FeaTure::SystemMat

This class uses a skyline storage format for symmetric matrices, storing only the lower
left triangular part.

SkySymMat()

Default constructor.

SkySymMat(int size)

Constructs a symmetric skyline matrix of size size.

SkySymMat(int size, int∗ p)

Constructs a symmetric skyline matrix of size size and for each row a first non-zero
element as indicated by p (0-indexed).

SkySymMat(const SkySymMat& S)

Copy constructor.

˜SkySymMat()

Destructor.

void init(int row, int col)

Initializes element (row,col) in the storage scheme. This function generates the storage
for the row-elements after (and including) the first non-zero element in the row. This
storage scheme must be available before the first items are really stored.

void set zero()

(Re)sets the matrix to zero.

void add(int row, int col, double value)

Adds value to the matrix element (row,col). This function is ignored if row<col.

void print(char∗ name) const

Print this matrix with name as header.

void solve(const Vector& rhs, Vector& x)

Solve the linear set of equations given by Ax = rhs by a Cholesky decomposition.

52

10.6.4 DiagonalSysMat

The DiagonalSysMat class is declared in sysmat.h.

class FeaTure::DiagonalSysMat:public FeaTure::SystemMat

This class can only store diagonal elements of a matrix. It can be used advantageously
for e.g. a lumped mass matrix.

DiagonalSysMat()

Default constructor.

DiagonalSysMat(int size)

Constructs a diagonal matrix of given size.

DiagonalSysMat(const DiagonalSysMat& D)

Copy constructor.

˜DiagonalSysMat()

Destructor.

void init(int row, int col)

Checks whether (row,col) is legal for this matrix, i.e. row=col and 1 ≤ row ≤ size
(1-indexed).

void set zero()

(Re)sets this matrix to zero.

void add(int row, int col, double value)

Adds value to matrix element (row,col), the element is checked to be in the legal
range.

void print(char∗ name) const

Prints this matrix with name as header.

void solve(const Vector& rhs, Vector& x)

Solve the linear set of equations given by Ax = rhs.

void selfmult(double s)

Multiplies this matrix with the scalar s.

void mult(const Vector& x, Vector∗ b) const

Returns the multiplication of itself with vector x in b:

Ax = b

53

10.6.5 SkyNonSymMat

The SkyNonSymMat class is declared in nonsym.h.

class FeaTure::SkyNonSymMat:public FeaTure::SystemMat

This class uses a skyline storage scheme for nonsymmetric matrices with a symmetric
storage structure i.e. if Aij is stored, also Aji is stored, but they do not have to have
the same value.

SkyNonSymMat()

Default constructor.

SkyNonSymMat(int n)

Constructs a sparse square matrix of size n.

˜SkyNonSymMat()

Destructor.

void init(int row, int col)

Initializes the matrix element (row,col) (1-indexed). Space is reserved for the row
starting at the first non-zero element to the diagonal and the corresponding column
elements. This function must be called for at least all rows with their first non-zero
element, before the matrix is really stored.

void set zero()

(Re)sets this matrix to zero.

void add(int row, int col, double value)

Adds value to the element (row,col) of this matrix (1-indexed).

void print(char∗ name) const

Print this matrix with the header name.

void solve(const Vector& rhs, Vector& x)

Solve the linear set of equations given by Ax = rhs.

10.7 System Vector

A vector that contains three Vector subvectors that refer to the free, fixed and pre-
scribed degrees of freedom.

SystemVector()

Default constructor.

SystemVector(size t nr free, size t nr prescribed, size t nr fixed)

Constructor that initializes the number of free, prescribed and fixed degrees of freedom.

54

SystemVector(const SystemVector& A)

Copy constructor.

˜SystemVector()()

Destructor.

void resize(size t nr free, size t nr prescribed, size t nr fixed)

Resizes the length of the subvectors. The contents are not re-initialized, use clear for
that subsequently.

void clear()

Resets the values of all subvectors to zero.

SystemVector& operator+=(const SystemVector& A)

System vector addition.

SystemVector& operator−=(const SystemVector& A)

System vector subtraction.

SystemVector& operator∗=(double s)

Scalar system vector multiplication.

double& operator()(const Dof& d)

Returns a reference to the value in the system vector, referred to by the degree of
freedom d. The d.o.f. can be free, prescribed or fixed. The value can be changed e.g.:
V(d) += 1.5.

const double& operator()(const Dof& d) const

Returns a const reference to the value in the system vector, referred to by the degree
of freedom d. The d.o.f. can be free, prescribed or fixed.

const Vector& free()const

Returns a const reference to the vector with free degrees of freedom. A non-const
version is not supplied, to be able to change the data storage later.

const Vector& prescribed()const

Returns a const reference to the vector with prescribed degrees of freedom. A non-const
version is not supplied, to be able to change the data storage later.

const Vector& fixed()const

Returns a const reference to the vector with fixed degrees of freedom. A non-const
version is not supplied, to be able to change the data storage later.

55

Chapter 11

Utility classes

11.1 PostProc

A class for selection of post processing data and step numbers.

enum PostItem { coordinates, stresses, eps plast eq }

PostProc()

Default constructor.

˜PostProc()

Destructor.

void add step(int step)

Add step number step for post processing.

void add all steps()

All steps should generate post processing data.

void add last step()

The last step must generate post processing data.

bool process(int step, bool is last) const

Returns true if this step needs post processing. The argument is last indicates whether
this step is the last in a sequence.

bool any selected() const

Returns true if at least one item and one step was selected.

void set displa()

Select displacements to be written.

void set inddis()

Select incremental displacements to be written.

56

void set temp()

Select temperatures to be written.

void set inctemp()

Select incremental temperatures to be written.

void set stress()

Select stresses to be written.

void set epspeq()

Select equivalent plastic strains to be written.

bool need displa() const

Returns true if the displacements are to be written.

bool need incdis() const

Returns true if the incremental displacements are to be written.

bool need temp() const

Returns true if the temperatures are to be written.

bool need inctemp() const

Returns true if the incremental temperatures are to be written.

bool need stress() const

Returns true if the stresses are to be written.

bool need epspeq() const

Returns true if the equivalent plastic strains are to be written.

11.2 StepSelect

StepSelect()

Default constructor.

˜StepSelect()

Destructor.

void add step(int step)

Add step number step for processing.

void add all steps()

All steps should be processed.

void add last step()

57

The last step must be processed.

bool is selected(int step, bool is last) const

Returns true if this step must be processed. The argument is last indicates whether
this step is the last in a sequence.

bool any selected() const

Returns true if at least one step was selected.

11.3 CollectArray

A class for collecting and retracting double precision scalars, Vector and Matrix objects
to be stored e.g. for a restart. The file collect.h contains the declarations of the
CollectArray class.

class FeaTure::CollectArray::public std::vector<double>

CollectArray()

Default constructor.

CollectArray(int size)

Constructor that reserves storage for size items.

˜CollectArray()

Destructor.

void reset()

Resets the array. Subsequent reading from the array will start at the beginning.

void add(double value)

Add value to the array.

void add(Vector vector)

Add vector to the array.

void add(Matrix matrix)

Add matrix to the array.

double extract() const

Extracts the next double precision scalar from the array.

void extract(Vector& v) const

Extracts the next Vector v from the array.

void extract(Matrix& m) const

58

Extracts the next Matrix m from the array.

std::ostream& operator<<(std::ostream& s, const CollectArray& A)

Puts array A on the output stream s.

std::istream& operator>>(std::istream& s, CollectArray& A)

Reads array A from the input stream s.

11.4 Integration point data

The file intpoint.h contains the declarations of the class IntLocs for defining a set of
integration point locations and weight factors and the declaration of the routines Gauss
and Hammer for one-dimensional and triangular integration rules respectively.

void FeaTure::Gauss(int ip, int nip, double& xi, double& weight)

This routine returns the natural coordinate xi (between -1 and 1) and the corresponding
weight factor for a nip-point Gauss integration rule.

void FeaTure::Hammer(int ip, int nip, double& L1, double& L2, double& L3,
double& weight)

This routine returns the natural coordinates (area coordinates) L1, L2 and L3 (where
L1 + L2 + L3 = 1) of a triangular area and the corresponding weight factor for a
nip-point integration rule according to Hammer.

11.4.1 The IntLocs class

class FeaTure::IntLocs

IntLocs()

Default constructor.

IntLocs(const IntLocs& il)

Copy constructor.

IntLocs(int nr)

Constructor that reserves space for nr integration points.

˜IntLocs()

Destructor.

void set nr intpt(int nr)

Sets the number of integration points to nr.

int get nr intpt() const

Returns the number of integration points in this set.

59

void set values(int ip, Vector coor, double weight)

Returns the natural coordinates of integration point ip from this set in coor and its
weight factor in weight

Vector get coor(int ip) const

Returns the natural coordinates of integration point ip from this set.

double get weight(int ip) const

Returns the weight factor of integration point ip from this set.

11.5 Shape functions

The declarations of the class shape and its derivatives is contained in the file shape.h.
These classes are intended to be used in numerically integrated continuum elements.
They contain, among others, functions to get the interpolation vector and the matrix
with derivatives to the local coordinates.

11.5.1 Shape

The Shape class is an abstract class that only contains pure virtual functions. The
actual implementation must be defined in the derived classes.

virtual ˜Shape()

Destructor for the Shape objects.

virtual Matrix get N vec(const Vector& natcor) const=0

Returns the interpolation vector N for the particular shape at location natcor (in
natural coordinates).

virtual Matrix getPartialDerivatives(const Vector& natcor) const=0

Returns the vector of partial derivatives of the shape functions to the applicable natural
coordinates e.g. ∂N

∂ξ
and ∂N

∂η
for a quadrilateral shape at location natcor (in natural

coordinates). The first row contains the derivatives to the first natural coordinate, the
second row to the second etc.

virtual IntLocs get int locs() const=0

Returns a set of natural coordinates, representing the locations of all integration points.

virtual int get nr int points() const=0

Returns the number of integration points for the actual shape.

virtual IntLocs get int locs face(int face nr) const=0

Returns a set of natural coordinates, representing the locations of integration points in
face (or edge for 2D) number face nr of the actual shape. This can be used e.g. for
the analysis of face loads.

virtual Matrix dVdA(int face nr) const=0

60

Returns a matrix that relates the natural volume coordinates to the natural area co-
ordinates on face number face nr (or the area coordinates to the line coordinates for
2D). This can be used e.g. for the analysis of face loads.
Example:
For a triangle the derivatives of an item to L1 and L2 along an edge can be translated
to the derivatives to the edge coordinate ξ by post-multiplication with dVdA:

∂φ

∂ξ
=

∂φ

∂L
· ∂L

∂ξ
·

Where in this case dVdA represents ∂L

∂ξ
.

11.5.2 Triangular

class FeaTure::Triangular::public FeaTure::Shape

Specification for a triangular shape.

˜Triangular()

Destructor.

IntLocs get int locs() const

Returns the natural coordinates L1, L2 and L3 and the corresponding weight factors
for a triangular region.

int get nr int points() const

Returns the total number of integration points for this shape. The total number can
be given during initialization.

Matrix dVdA(int face nr) const

Relates the directions of the local coordinates L1, L2 and L3 to the coordinate ξ along
edge number face nr. The faces (edges actually) are numbered counter clockwise,
starting from node 1.

IntLocs get int locs face(int face nr) const

Returns the location of integration points along edge number face nr.

11.5.3 Quadrilateral

class FeaTure::Quadrilateral::public FeaTure::Shape

Specification for a quadrilateral shape.

˜Quadrilateral()

Destructor.

IntLocs get int locs() const

Returns the natural coordinates ξ and η and the corresponding weight factors for a
quadrilateral region.

61

int get nr int points() const

Returns the total number of integration points for this shape. The total number can
be given during initialization.

Matrix dVdA(int face nr) const

Relates the directions of the local coordinates ξ and η to the coordinate ξ ′ along edge
number face nr. The faces (edges actually) are numbered counter clockwise, starting
from node 1.

IntLocs get int locs face(int face nr) const

Returns the location of integration points along edge number face nr.

11.5.4 Hexagonal

class FeaTure::Hexagonal::public FeaTure::Shape

Specification for a hexagonal shape.

˜Hexagonal()

Destructor.

IntLocs get int locs() const

Returns the natural coordinates ξ, η and ζ and the corresponding weight factors for a
hexahedral region.

int get nr int points() const

Returns the total number of integration points for this shape. The total number can
be given during initialization.

Matrix dVdA(int face nr) const

Relates the directions of the local (volume) coordinates ξ, η and ζ to the (area) coor-
dinates ξ′ and η′ along face number face nr. The face numbers are numbered: 1 if
η = −1, 2 if η = 1, 3 if ζ = −1, 4 if ξ = 1, 5 if ζ = 1 and 6 if ξ = −1.

IntLocs get int locs face(int face nr) const

Returns the location of integration points along face number face nr.

11.5.5 Concrete shapes

A number of actual shape classes are derived from the previously defined intermediate
classes. Only the derivation and the constructors are described below, because the
classes further only define the specific behavior of previously declared virtual functions.
The constructors require the definition of the selected integration scheme.

class FeaTure::Tri lin:public FeaTure::Triangular

Three noded triangular element with a linear interpolation function. The nodes are
numbered counter-clockwise.

62

Tri lin(int intscheme)

Constructor, defining the number of integration points.

class FeaTure::Tri quad:public FeaTure::Triangular

Six noded triangular element with a quadratic interpolation function. The nodes are
numbered counter-clockwise.

Tri quad(int intscheme)

Constructor, defining the number of integration points.

class FeaTure::Tri quad alt:public FeaTure::Triangular

Six noded triangular element with a quadratic interpolation function. The nodes are
numbered counter-clockwise for all corners first and then for all midside nodes.

Tri quad alt(int intscheme)

Constructor, defining the number of integration points.

class FeaTure::Quad lin:public FeaTure::Quadrilateral

Four noded quadrilateral element with a bi-linear interpolation function. The nodes
are numbered counter-clockwise.

Quad lin(int nxi, int neta)

Constructor, defining the number of integration points in ξ and η direction respectively.

class FeaTure::Quad quad:public FeaTure::Quadrilateral

Eight noded quadrilateral element with a quadratic (serendipity) interpolation function.
The nodes are numbered counter-clockwise.

Quad quad(int nxi, int neta)

Constructor, defining the number of integration points in ξ and η direction respectively.

class FeaTure::Quad quad alt:public FeaTure::Quadrilateral

Eight noded quadrilateral element with a quadratic (serendipity) interpolation function.
The nodes are numbered counter-clockwise for the corner nodes, followed by the midside
nodes.

Quad quad alt(int nxi, int neta)

Constructor, defining the number of integration points in ξ and η direction respectively.

class FeaTure::Hex lin:public FeaTure::Hexagonal

Eight nodes hexahedral element (cube) with a tri-linear interpolation function. The
nodes are numbered in the base plane first (ζ = −1), counter clockwise, looking from
the positive ζ-direction, followed by the top plane (ζ = 1).

Hex lin(int nxi, int neta, int nzeta)

Constructor, defining the number of integration points in ξ, η and ζ direction respec-
tively.

63

11.6 Exceptions

In the file ftexcept.h, a number of classes are defined for use with exception handling.
The base-exception for FeaTure is

class FeaTure::feature error:public exception

Since feature error is derived from the standard exception: exception exceptions
from FeaTure and standard exceptions can be catched with catch(const exception&

e). The FeaTure exceptions can also be catched separately by catch(const fea-

ture error& e) or even more specific catches. The control class has two exception
classes for specific use (section 4.4).

feature error(const std::string& what arg)

The constructor for the base exception.

const char∗ what const()

Returns the message with which the exception was generated.
A number of derived classes are used for specific errors. Below, they are defined by

showing their constructors:

file error(const std::string& what arg)

Derived from feature error to indicate some error in file opening, reading or writing.

program error(const std::string& what arg)

Derived from feature error to indicate some program error. Program errors are con-
sidered to be errors that should not occur in final releases of programs. They can be
compared with well known assert macros.

not implemented error(const std::string& what arg)

Derived from program error to indicate a not yet implemented feature.

dimension error(const std::string& what arg)

Derived from program error e.g. to indicate non-matching vector or matrix dimensions.

matrix error(const std::string& what arg)

Derived from feature error for runtime matrix errors e.g. when an inverse matrix is
calculated from a singular matrix.

not found(const std::string& what arg)

Derived from feature error for exceptions that indicate that a requested item is not
found in the model.

64

Bibliography

[1] J. Besson and R. Foerch. Large scale object-oriented finite element code design.
Comput. Methods Appl. Mech. Engrg., 142:165–187, 1997.

[2] G. Booch. Object-Oriented Analysis and Design with Applications. Ben-
jamin/Cummings, 2nd edition, 1994.

[3] Y. Dubois-Pèlerin and Th. Zimmermann. Object-oriented finite element program-
ming: III. an efficient implementation in C++. Comput. Methods Appl. Mech.

Engrg., 108:165–183, 1993.

[4] D. Eyheramendy and Th. Zimmermann. Object-oriented finite elements: II. a
symbolic environment for automatic programming. Comput. Methods Appl. Mech.

Engrg., 132:277–304, 1996.

[5] X. A. Kong and D. P. Chen. An object-oriented design for FEM programs. Comput.

Struct., 57:157–166, 1995.

[6] Ph. R. B. Devloo. PZ: An object oriented environment for scientific programming.
Comput. Methods Appl. Mech. Engrg., 150:133–153, 1997.

[7] R. Pozo. Template numerical toolkit for linear algebra: High performance program-
ming with C++ and the standard template library. http://math.nist.gov/tnt.

[8] J. Smart, R. Roebling, V. Zeitlin, R. Dunn, et al. Reference manual for wxWindows
2.2: a portable C++ and Python GUI toolkit. http://www.wxwindows.org, 2000.

[9] Bjarne Stroustrup. The C++ Programming Language. Addison-Wesley, Reading
etc., 3rd edition, 1997.

[10] A. H. van den Boogaard, N. van Vliet, and J. Huétink. Object oriented design of
a thermo-mechanical fem code. In S. R. Idelsohn, E. Oñate, and E. N. Dvorkin,
editors, Computational Mechanics, New Trends and Applications, Barcelona, 1998.
CIMNE.

[11] L. Walterthum and J. C. Gelin. Design of an object oriented software for the
computer aided simulation of complex forming processes. In Shen and Dawson,
editors, Simulation of Materials Processing: Theory, Methods and Applications,
pages 507–512, Rotterdam, 1995. Balkema.

[12] Th. Zimmermann, Y. Dubois-Pèlerin, and P. Bomme. Object-oriented finite ele-
ment programming: I. governing principles. Comput. Methods Appl. Mech. Engrg.,
98:291–303, 1992.

65

[13] Th. Zimmermann and D. Eyheramendy. Object-oriented finite elements: I. princi-
ples of symbolic derivations and automatic programming. Comput. Methods Appl.

Mech. Engrg., 132:259–276, 1996.

66

Index

add, 46, 50–54, 58
add all steps, 56, 57
add dof, 20
add dofs to nodes, 25
add element, 12
add factor, 37
add geometry, 13
add increment to total, 30
add increments to totals, 15, 22
add last step, 56, 57
add load, 34–37
add load set, 13
add load size, 15, 35
add material, 13
add node, 13, 35, 36
Add sAtBA, 42
add set, 27
add step, 56, 57
add SubMat, 41
add SubVec, 39
add to increment, 30
add to increments, 16, 23
add to prescribed, 22, 37
add to rhs, 21, 36
add to total, 29
add to vec, 37
AddNodalPostContribution, 24
AddPres2Load, 25
any selected, 56, 58

CartVector, 45
CholeskyDecomposition, 44
CholeskySubstitution, 44
clear, 39, 41
CollectArray, 58
conjugate type, 30
continuate, 17, 19
contribution, 27
Control, 17
create dof, 21
create element dofs, 15

CreateGlobalDofs, 25

determinant, 41
DiagonalSysMat, 53
Direction, 47
divergence error, 19
Dof, 28
dof, 27
Dof::dof fixed, 28
Dof::Load, 28
Dof::Type, 28
Dof ptr, 30
Domain, 12
dot, 46
draw location, 21
dVdA, 60–62

ElementBase, 24
extract, 58

FeaTure::Gauss, 59
FeaTure::Hammer, 59
finish increment, 15, 24, 32

GenEigen, 45
get, 49
get coor, 60
get current location, 21
get D and stress correction, 33
get D mat, 33
get D times iso unit, 33
get density, 31
get dir, 36, 37, 48
get direction, 28
get dof, 21
get dof type, 28
get element ptr, 13
get eps plast eq, 33
get expansion coefficient, 33
get fraction executed, 18
get geom ptr, 13
get global dof, 28

67

get increment, 30
get incremental displacement, 23
get incremental solution vector, 16, 23
get int locs, 60–62
get int locs face, 60–62
get load vector, 14, 34
get location, 21, 48
get magnitude, 36, 37
get mat ptr, 13
get N vec, 60
get node, 36, 37
get node ptr, 13
get nr, 20, 25, 32, 34
get nr elements, 13
get nr fixed, 14
get nr free, 14
get nr int points, 60–62
get nr intpt, 59
get nr loads, 35, 36
get nr nodes, 13, 36, 37
get nr prescribed, 14
get stress, 33
get temperature, 22
get temperature increment, 23
get total, 29
get total displacement, 22
get type, 36, 37
get weight, 60
get xp stress, 33
GetGlobalLHS, 25
getPartialDerivatives, 60
GetRestartData, 32
getValues, 46

Hex lin, 63
householder, 45

incDof, 29
IncDomain, 15
IncNode, 22
IncrementalControl, 18
IncrementalIterativeControl, 19
init, 50–54
init system, 14
initialize, 17
InitMass in Global, 25
InitStiff in Global, 25
inner product, 42
IntLocs, 59
inv, 41

InverseIteration, 45
is fixed, 29
is free, 29
is last, 18
is prescribed, 29
is scalar, 29
is scalar dof, 30
is scalar load, 30
is selected, 58
is vector, 28
is vector dof, 30
is vector load, 30
iteration update, 15, 24
itincDof, 29

LDLtDecomposition, 43
LDLtSubstitution, 43
LoadSet, 34
Location, 48

make global dofs, 13, 21
make LHS, 14
make mass system, 14
make system, 14
make transmats, 15
Material Point, 32
Material type, 31
Matrix, 40
mul, 46
mult, 42, 49, 53

need displa, 57
need epspeq, 57
need incdis, 57
need inctemp, 57
need non symmetric, 14
need post file, 18
need stress, 57
need temp, 57
NeedExpandStrain, 32
new Material Point, 31
Nodal Loads, 35
Nodal Prescribed, 36
Node, 20
norm, 39, 46
normsq, 46
not converged error, 19
nr of dofs, 27
num cols, 49
num rows, 49

68

operator∗, 50
operator∗ =, 40, 41
operator+ =, 40, 41
operator− =, 40, 41
operator<<, 41, 42, 59
operator>>, 59
operator(), 39, 41
operator=, 39, 40
operator[], 39–41
outer, 47

PostItem, 56
PostMultLowerT, 44
PostMultLowerTInv, 44
PostProc, 56
PreMultLower, 44
PreMultLowerInv, 44
PreMultLowerT, 44
PreMultLowerTInv, 44
Pressure Loads, 37
preTmult postMult, 49
print, 28, 35–37, 46, 48, 50–54
print dof type, 30
print load type, 30
print results, 15
print row, 39
process, 56
put, 49
PutLHS in Global, 25
PutMass in Global, 25
PutRestartData, 32
PutStiff and RHS in Global, 25
PutStiff in Global, 25

Quad lin, 63
Quad quad, 63
Quad quad alt, 63

ReadRestartData, 16, 19, 22, 26, 35
reset, 58
reset increments, 16, 22
resize, 39, 41

selfadd, 46
selfmult, 46, 53
selfsub, 46
set basename, 18
set density, 31
set dir, 48
set direction, 28

set displa, 56
set Dof::Type, 28
set dof fixed, 28
set epspeq, 57
set factor, 37
set global dof, 28
set increment, 29
set increments, 18
set inctemp, 57
set inddis, 56
set iteration method, 19
set load size, 15, 35
set location, 21, 48
set max iter, 19
set max resize, 18
set nr, 20, 34
set nr intpt, 59
set postproc, 18
set Rayleigh damping, 18
set restart, 18
set restart select, 19
set strain increment, 33
set stress, 57
set temp, 57
set time increment, 18
set title, 13
set total, 29
set unbalance crit, 19
set values, 60
set zero, 50–54
setPermutation, 49
SetPostItem, 24
setSparse, 49
SetTimeIncrement, 24, 32
setUnit, 49
size, 39
size1, 40
size2, 40
SkyNonSymMat, 54
SkySymMat, 52
solve, 17, 19, 50–54
SparseSysMat, 50
StepSelect, 57
Structural Point, 33
Structural type, 32
SturmSequence, 45
sub, 46
subspace iteration, 51
symmetric, 24, 31

69

symmetricQR, 45
SystemMat, 50
SystemVector, 54

tmult, 42, 49
TransformationMatrix, 48
Tri lin, 62
Tri quad, 63
Tri quad alt, 63

update system, 14

Vector, 38

what, 64
without rowcol, 41
WriteRestartData, 16, 19, 22, 26, 35

70

