Noise reduction of an electric motor

em

H.G. Tillema

University of Twente Twente Institute of Mechanics P.O. Box 217, 7500 AE Enschede, The Netherlands phone +31-(0)53-4892460, email hedzer.tillema@skf.com

Introduction

The demand for silent bearing applications, like gearboxes and electric motors, has resulted in a research project in cooperation with SKF on the development of a viscoelastic damping layer.

Objectives

The investigations aim to develop an effective damping layer mounted between the bearing and the surrounding structure.

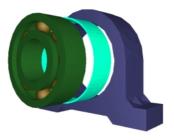


Figure 1 : Viscoelastic layer mounted between the bearing and the housing

The influence of material, design and mounting properties will be studied to optimize the layer.

Methods

An electric motor is considered as shown in figure 2.

Figure 2 : Model of the electric motor

The housings and the rotor of the application are modelled with FEM, whereas the ball bearings are represented by spring-damper models [1]. A finite element formulation using Maxwell elements was developed to model viscoelastic components. The equations of motion are written in a linearized form in the discretized time domain. $[M]{\ddot{x}}_{n+1} + [C]{\dot{x}}_{n+1} + [K]{x}_{n+1} = {F} - {H}_{n+1}$ (1)

where $\{H\}_{n+1}$ contains the historical forces in the viscoelastic material. To save computation time, the FEM models are reduced with the Component Mode Synthesis technique.

Results

A harmonic analysis was performed on the electric motor with two viscoelastic layers mounted between the bearing and the end shields. A radial force was applied on the middle of the rotor, representing an electromagnetic excitation.

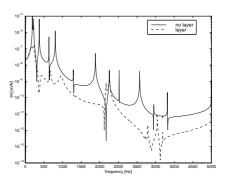


Figure 4 : FRF of top of the housing in vertical direction

It is seen that vibrations of the housing are reduced significantly by adding a viscoelastic layer to the system.

Conclusions and further research

By using thin viscoelastic layers in a rolling bearing application, radiating sound from the housings can be reduced as vibrations of the rotor are isolated. In order to optimize the isolation effectiveness a general layer design strategy will be developed. Additionally, experiments will be carried out on the real electric motor for validation and demonstration.

References

1. Wensing, J.A. (1998) On the dynamics of ball bearings, PhDthesis, University of Twente, Enschede.