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Summary  

Hydrological models are widely used in the field of water management and are used, among 

other things, to support decisions which are made by water managers. One example of such 

a model that supports the decision making is the Flood Early Warning System (FEWS). By 

water board Drents Overijsselse Delta (WDOD), FEWS is used to forecast the discharge and 

water levels in the Overijsselse Vecht. This model consists of two sub-models, a 

hydrodynamic model, and a hydrological model. In this study there was looked at the 

hydrological model of the FEWS, the HBV model. Due to the increased resolution and 

availability of satellite data, the water board wants to know what the added value of this 

data could be for them. One of the questions of WDOD is whether the HBV model 

performance could be improved by assimilation of remotely sensed soil moisture data.  

In this study, 3 (out of 14) sub-catchments of the Overijsselse Vecht are investigated, namely 

the Ommerkanaal, Sallandse Wetering and the Dinkel. For these 3 sub-catchments, the 

following steps were executed. First, the HBV models of the 3 used sub-catchments were 

recalibrated. For this step, the parameter sensitivity was studied, from which the parameters 

for the calibration were selected. The calibration was done with a Monte Carlo simulation 

with 2.5 million runs. For all sub-catchments, the model performance did improve in 

comparison to the HBV models used in FEWS. 

The sensitivity analysis (different then the parameter sensitivity) for the initial conditions 

showed that the model is the most sensitive for the initial condition of the soil moisture, for 

2 out of the 3 sub-catchments. For the Dinkel, the sensitivity for the soil moisture was not 

the highest but still relatively large. Therefore, it was expected that changes in the initial 

condition of the soil moisture have an effect in the simulated discharge.  

Subsequently, the correlation between the HBV modelled soil moisture and the remotely 

sensed soil moisture content was investigated. For both the daily measured soil moisture 

content and the 3-day moving average, a good correlation was found for all of the 3 sub-

catchments, meaning there are similarities in the pattern of both datasets. The correlation 

between the 3-day moving average and the HBV modelled soil moisture was higher for all of 

the 3 sub-catchments because the peaks are smoothed. The values of the correlation 

coefficients are ranging from 0.85 for the Sallandse Wetering to 0.91 for the Ommerkanaal. 

The daily measured data is highly depending on the moment when the satellite passes over. 

If it has just rained, all the water is still in the top few centimetres of the soil, so the value is 

an overestimation of the real situation. Using the 3-day moving average instead dampens 

this effect and reflects the behaviour of the HBV modelled soil moisture better.  

The remotely sensed soil moisture delivered by VanderSat is in the unit of m3/m3 while the 

HBV soil moisture is in mm, therefore a transformation was needed. This is done by using 

two methods which linearly transformed the data. The transformed data was assimilated 

into the HBV model as initial condition for the soil moisture storage, which is one of the 

three storages the HBV model has. The other two initial conditions are made by a model run 

with a warm-up period of 1 year. With the assimilation the model forecasted a discharge for 

the next 5 day, with as input the measured precipitation and the potential evaporation.  



6 
 

The assimilation of remotely sensed soil moisture in the HBV model did not showed an 

improvement overall. There are a few exceptions in which the model with assimilation 

showed an improvement; this was sometimes the case when the peak flow occurred during 

a dry period. The approach of the HBV model without assimilation is to store the 

precipitation in the soil moisture, which will lead to a lower discharge. With the assimilation, 

in this case, there was a higher forecasted discharge, because the initial soil moisture is 

higher. In the rest of the cases, the HBV simulated soil moisture was performing better than 

the assimilated soil moisture. This can be explained if looked at the transformation done 

with the remotely sensed soil moisture, this transformation is not representing the pattern 

in the data, which is not linear.  

Out if this research a few recommendations are derived both for the water board and for the 

study.  One of which is to further research another transformation of the remotely sensed 

soil moisture content to the unit used in the HBV model. The method used is an 

oversimplification of the pattern which can be found in the data. Furthermore, the HBV 

model could have been calibrated with the use of remotely sensed soil moisture content as 

input. By already using the soil moisture data in the calibration the parameters could be 

adapted to the remotely sensed soil moisture content. This could improve the performance 

of the assimilation. Furthermore, the high correlation found in this study, between the 

remotely sensed soil moisture and HBV modelled soil moisture, could be a potential for the 

use of remotely sensed soil moisture in a other way in the HBV model or in other models. At 

last the recalibration of the model leads to an improvement of the simulated discharge and 

could therefore be done for the other sub-catchments of the Vecht in order to improve the 

model performance.  
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1 Introduction  
The introduction of this thesis is structured as follows: first, a general introduction will be 

given in section 1.1 which is about the problem that Water board Drents Overijsselse Delta 

(WDOD) wants to tackle. Subsequently, in section 1.2, the state of the art of the available 

methods to address this problem is presented. The difference between the state of the art 

and the problem of WDOD gives us the research gap, in section 1.3. Based on this research 

gap, the research aim, and research questions will follow in section 1.4. In section 1.5, the 

study area for this study is described. The last section (1.6) describes the outline of the 

report.  

1.1 Aim water board 
Water board Drents Overijsselse Delta (WDOD) is responsible for water safety, sufficient 

water, and clean water. Therefore, the protection of their service area against floods is one 

of their responsibilities. To fulfil this task, they want to be able to forecast the water levels in 

the Overijsselse Vecht, which lies partly in the area managed by WDOD. They use a Flood 

Early Warning System (FEWS), which is based on a hydrodynamic and hydrological model of 

the Vecht. This system provides the water board with the necessary information about the 

water levels in the Vecht for five days in advance. Based on this information, decisions such 

as the build-up of temporary dikes or evacuation of cattle from the floodplains can be made.   

In FEWS, two components can be distinguished: the hydraulic model, which describes the 

movement of the water in the Vecht and the hydrological model, which describes the runoff 

of rainfall into the Vecht. The hydraulic model used in FEWS is a separate Sobek model, and 

the hydrological model is based on a model called Hydrologiska Byråns 

Vattenbalansavdelning (HBV) (Bergström & Forsman, 1973). Because the Vecht catchment 

has been divide into 14 sub-catchments, the hydrological model of FEWS is divided into 14 

HBV models. The sub-catchments are shown in Figure 1 and Table 1 in section 1.5.  

The water board would like to have a forecast which predicts the water levels in the Vecht as 

accurately as possible. The current model can become more accurate by decreasing different 

uncertainties that are present in the current model. One of them is the fact that the model is 

based on an initial soil moisture content, which is not always reflecting the actual state of 

the soil at that moment. Given the fact that in the model, the discharge out of a sub-

catchment is partly determined by the amount of water present in the soil, there could be an 

error in the generated runoff by the model. This could result in differences between the 

actual and forecasted water levels.  

In recent years, new methods and products to use satellite data have become available for 

the water board. One of these data products offers information about soil moisture, which 

creates the possibility to add extra information to the hydrological part of the model (Zhuo & 

Han, 2016). Therefore, this study will look at the use of satellite soil moisture data for 

assimilation of soil moisture in the hydrological part of the model, the HBV model. One of 

the possibilities to provide information about the initial condition of the soil moisture 

content is the use of satellite products. There are different satellite products available which 

could give information about the soil moisture; the satellite products used in the study are 
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supplied by VanderSat. There is chosen for the satellite products of VanderSat because the 

product is very user friendly.  

1.2 State of the art 
Soil moisture data collected from satellites have many hydrological and agricultural 

applications, such as water level management and crop yield optimization. According to Van 

der Velde et al. (2018), for this reason, several studies have focused on the development of 

methods for estimating soil moisture from satellite data. 

Specific attention is paid to the microwave range of the spectrum emitted by the satellite, 

because of the ability to see through clouds, vegetation, and parts of the soil. In general, the 

longer the wave, the deeper into the soil can be looked at, and the less the signal is 

influenced by vegetation. For soils, the maximum penetration depth is approximately a 

quarter of a wavelength (Schmugge, 1983). This means that with radiation in the L-band (1.4 

GHz, 21.4 cm wavelength), the frequency band that is most sensitive to water, the soil 

moisture content of the top five centimetres of the soil can be determined. Sentinel 

satellite-1A and 1B ensure that large parts of the Netherlands have an image available every 

two days with a pixel size of 10 x 10 meters. Although Sentinel-1 is not specifically designed 

as a soil moisture satellite, there is evidence that these observations can also be used to 

obtain soil moisture information (Benninga et al., 2018). VanderSat uses a variety of 

satellites to produce the soil moisture product delivered by them (VanderSat, 2020), which 

are based on the principal describe above.  

Hydrological models are often used to support operational water management, for example, 

for flow forecasting. The soil moisture maps based on satellite data offer additional 

information that can be used to reduce uncertainties in the model. A way to combine soil 

moisture products with a hydrological model is data assimilation (Renzullo et al., 2014). With 

this method, the state variables (such as soil moisture content and groundwater level) in the 

model are adjusted based on observations from satellite data or field measurements. The 

purpose of this is to limit deviations from reality. This gives water managers a more reliable 

representation of the actual situation within a management area and enables them to 

respond better to local problems. The interesting thing about data assimilation is that it 

improves not only the model outcome of the assimilated state variable, but it could also 

improve the calculated water fluxes, such as current evaporation, groundwater 

replenishment, and river discharge.  

A lot of studies have been done about assimilating soil moisture data into the HBV model. 

Different methods of data assimilation are available. A lot of these studies are using a 

technique called a Kalman filter. For example in a study done by Komma et al. (2008), a 

Kalman filter is used in combination with a flood forecasting system. With the use of a 

Kalman filter, the soil moisture is updated at real-time. The result of this data assimilation 

was positive for both a short lead time of a few hours but also for a two days lead time. The 

Kalman filter is a data assimilation method which is challenging to implement in the model. 

Alternatively, the method of direct insertion could also be used as done, for instance, by 

López et al. (2016). In this method the simulated data is replaced by the observed data. 
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Several studies have been done in which remotely sensed soil moisture data I used in 

combination with the HBV model. In a study by Liu et al. (2007), the remotely sensed soil 

moisture content is related to the HBV simulated soil moisture. In this study, a difference 

was found between these two different soil moistures, and this could be partly explained by 

the fact that the remotely sensed soil moisture measurement is representative for only the 

top layer of the soil while the soil moisture in the HBV model represents water storage for 

larger depths. To cope with this issue, soil moisture values of deeper layers could be used 

both remotely sensed but also measured in situ. Another method used by Liu et al. (2007) is 

smoothing the remotely sensed soil moisture content with the neighbouring grid cell; this 

gave a better result for the comparison.  

Another application of remotely sensed soil moisture data is for calibration of a hydrological 

model. An example of this is the study done by López et al. (2017) in which they made use of 

satellite measured soil moisture to calibrate a poorly gauged catchment. This is done by 

comparing the soil moisture modelled by the HBV model and the soil moisture measured 

with the satellite. With this technique, it is possible to calibrate catchments from which the 

discharge is not adequately measured on the ground.  

1.3 Research gap 
It is unknown to what extent the use of satellite information about soil moisture results in a 

more accurate forecasted discharge for the river Vecht by the HBV model. Previous studies 

showed (Komma et al., 2008) the expectation that soil moisture data derived from satellites 

can improve the forecasting of discharges. But it is not clear if this is also the case for the 

situation in which WDOD operate. In their case it about an operational flood early warning 

system with a lead time of 5 days. Furthermore, the area is different, and the satellite data 

used is also different and therefore the result could be different.  

1.4 Research aim and questions 
This research aims to examine to what extent it is possible to improve the forecasted 

discharge of the HBV models of the 3 selected sub-catchments of the Overijsselse Vecht for 

peak discharges by assimilating remotely sensed soil moisture content as initial condition 

into the model.  

There are 5 steps needed to see if the data assimilation improves the output of the HBV 

model. The first step is to see if the model can be improved by doing the calibration over. 

The second step is to see if there is an effect on the forecasted discharge by changing the 

initial soil moisture condition of the HBV model. The third step is to see if there is a 

correlation between the HBV modelled soil moisture, and the remotely sensed soil moisture. 

If there is no correlation, then the assimilate of remotely sensed soil moisture data in HBV is 

not likely to give a big improvement. The fourth step is to make the remotely sensed soil 

moisture data applicable to the HBV model. The unit of the used satellite soil moisture data 

provided by VanderSat (in m3/m3) is not the same as the soil moisture in HBV (in mm), and 

therefore conversion of the data is necessary. The last step is to assimilate the data into the 

model and find out what the effect is on the forecasted discharge and compare it to the 

observed discharge.  
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To achieve the research objective and complete the necessary steps, the following research 

questions have been formulated: 

1. To what extent could the HBV model performance be improved by recalibrating the 

model? 

2. How sensitive is the HBV modelled discharge for change in the three different initial 

conditions, the initial level of the three different storage components (mainly focused 

on the soil moisture storage) of the HBV model? 

3. What is the correlation between the HBV simulated soil moisture and the remotely 

sensed soil moisture content? 

4. To what extent could the assimilation of remotely sensed soil moisture improve the 

forecasted discharge by the HBV model, in comparison to the observed discharge and 

the forecasted discharge without assimilation? 

1.5 Study area 
The area used for this research will be the Overijselse Vecht. The Overijsselse Vecht is a 

rainwater river in Germany and the Netherlands. It is 167 kilometres long, of which 60 km is 

in the Netherlands. Its origin lies in Münster land, and it flows out into the Zwarte Water 

near Zwolle. The catchment area of the Overijsselse Vecht covers 4780 km2. Important 

tributaries that join the Overijsselse Vecht are the Steinfurter Aa, the Dinkel, the 

Afwateringskanaal and the Regge. The runoff of the Vecht is highly fluctuating; at Dalfsen, 

the discharge varies between 2 and 550 m3/s (Verdonschot & Verdonschot, 2017).  

  

Figure 1: Overview of the Vecht catchment, the numbers in this figure are corresponding with the numbers of the sub-
catchments in Table 1 
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The location of 14 sub-catchments is shown in Figure 1. In Table 1, the name of the sub-

catchments and their areas are given. Al these sub-catchments have an inflow point into the 

hydrodynamic model (the SOBEK model) of the Vecht in FEWS. Furthermore, the whole 

Vecht is not a natural river; at many places, there are weirs in place to control the water 

levels and the discharge. Also, at some of the tributaries of the Vecht weirs are in place to 

control the discharge and water levels.  

Table 1: name of sub-catchments and their area.  

Nr. Sub-catchment Area (km2) 

1 Steinfurter Aa 204.52 

2 Vecht A 183.33 

3 Vecht B 315.51 

4 Vecht C 409.02 

5 Dinkel 643.13 

6 Afwateringskanaal 579.27 

7 Streukelerzijl 246.00 

8 Radewijkerbeek 154.27 

9 Ommerkanaal 170.67 

10 Itterbeek 337.39 

11 Mastenbroek 125.57 

12 Sallandse Wetering 449.10 

13 Vecht 34.10 

14 Regge 1014.90 

 

1.6 Outline report  
This thesis is further organized as follows. Chapter 2 describes the methodology used to 

arrive at the research aim described. The results are presented in Chapter 3. Chapter 4 is 

dedicated to the discussion of this work and treats this research’s potential and limitations in 

detail. Finally, the conclusions and recommendations for further research are to be found in 

Chapter 5. 

  



13 
 

2 Method   
In this chapter, the method for this study is described in line with the research questions 

formulated in section 1.4. First, the model used for the study is described in section 2.1. As 

the second part the method for the calibration will be described in section 2.2. 

Subsequently, the method used to investigate the sensitivity of the HBV model for its initial 

conditions will be presented in section 2.3. After this, the method used for finding the 

correlation between the HBV modelled soil moisture, and the remotely sensed soil moisture 

will be shown in section 2.4. Finally, the method used for the data assimilation will be 

elaborated in section 2.5.  

2.1  HBV model  
The Hydrologiska Byråns Vattenbalansavdelning (HBV) model has been developed by 

Bergström at the Swedish Meteorological and Hydrological Institute in 1972. The HBV model 

is a conceptual rainfall-runoff model and can be used as a distributed, semi-distributed or 

lumped model (Bergström & Forsman, 1973). There is chosen for this model due to its fast 

model time and also because it is used in other forecasting systemin, for example, FEWS of 

the Rijn catchment(Renner et al., 2009).  

Since the model was developed in Sweden, also snowfall and snow cover are considered. 

Furthermore, the storage of water in lakes is taken into account in HBV. The water balance 

that is used for this model is given in Equation 1.  

Equation 1:  

𝑃 − 𝐸 − 𝑄 =
𝑑

𝑑𝑡
[𝑆𝑃 + 𝑆𝑀 + S𝑈𝑍 + S𝐿𝑍 + 𝐿𝑎𝑘𝑒𝑠] 

In which:  
P = precipitation (mm) 
E = evapotranspiration (mm) 
Q = runoff (mm) 
SP = snowpack (mm) 
SM = soil moisture (mm) 
SUZ = upper groundwater zone (mm) 
SLZ = lower groundwater zone (mm) 
lakes = lake volume (mm) 

 

Since the 70s, many versions of the HBV model have been developed. A comprehensive re-

evaluation of the model was carried out during the 1990s and resulted in the present model 

version called HBV-96 (Lindström et al., 1997).  

The HBV model, as described by Lindström et al. (1997), is used to build an HBV model in 

Python. This is done with the changes made by Deltares to the HBV model in the FEWS 

model. The HBV model used has two routines, the soil, and the runoff routine. In the next 

section, the two different routines in the model will be described.  
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2.1.1 The soil routine  

The schematization of the soil routine can be seen in Figure 2. The soil routine consists of 

one storage box with maximum storage as an input parameter (FC in mm). The variable SM 

(in mm) describes the total soil moisture stored in a time step. Out of the soil moisture 

storage box, there are three outgoing fluxes: the evaporation, the recharge (or seepage) and 

direct runoff. The only ingoing flux is the infiltration of the precipitation. 

 

 

Figure 2: The schematization of the soil routine  

The actual evapotranspiration is limited by parameter LP (-), which is a fraction of FC. If the 

soil moisture is lower than LP*FC, then the actual evapotranspiration is smaller than the 

potential evapotranspiration (Equation 2), if the soil moisture exceeds LP*FC, then the actual 

evapotranspiration will be equal to the potential evapotranspiration (Equation 3) (Lindström 

et al., 1997). 
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Equation 2: 

𝐸𝑇𝑎(t) = 𝐸𝑇𝑃(t) ∗
𝑆𝑀(𝑡)

𝐿𝑃 ∗ 𝐹𝐶
                        𝑖𝑓 𝑆𝑀(𝑡) < 𝐿𝑃 ∗ 𝐹𝐶 

 

Equation 3: 

 𝐸𝑇𝑎(t) = 𝐸𝑇𝑃(t)                                            𝑖𝑓 𝑆𝑀(𝑡) ≥ 𝐿𝑃 ∗ 𝐹𝐶 
 
 
𝐸𝑇𝑎   Actual evapotranspiration (mm/day) 
𝐸𝑇𝑃   Potential evapotranspiration (mm/day) 
𝑆𝑀   Soil moisture storage (mm) 
FC Maximum soil moisture content (mm) 
𝐿𝑃                      Limit for potential evapotranspiration (-) 
 

If the storage has reached its maximum (SM > FC), the excess rainfall will be converted to 

direct runoff (Equation 4). The recharge (R in mm) is calculated according to Equation 5 

(Lindström et al., 1997).  

Equation 4: 

𝑄𝑑(𝑡) = 𝑃(𝑡) + 𝑆𝑀(𝑡) − 𝐹𝐶 

𝑄𝑑   Direct runoff (mm) 

P   Precipitation (mm)  

 

Equation 5: 

R(t) = INET(t) ∗ (
𝑆𝑀(𝑡)

𝐹𝐶
)

𝐵𝑒𝑡𝑎

 

𝑅   Recharge(mm) 

𝐼𝑁𝐸𝑇  Netto Infiltration (mm), which is the precipitation minus the direct runoff  

𝑆𝑀   Soil moisture (mm) 

𝐹𝐶   Maximum soil moisture content (mm)  

𝐵𝑒𝑡𝑎   Soil parameter (-), controls the increase of the lower zone for every mm of 

  precipitation, >1  

The recharge and direct runoff, which is the excess water out of the soil moisture storage 

box, are divided by the runoff routine into an upper and lower storage zone, controlled by 

the maximum percolation (PERC). In the HBV model used in the FEWS model, there is no 

capillary transport taken into account.  
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2.1.2 Runoff routine  

The runoff routine consists of 2 storage boxes, the upper zone (SUZ in mm) and lower zone 

(SLZ in mm), out of the two storage boxes three discharge fluxes are generated (Jungermann 

et al., 2012). In Figure 3, the schematization of the runoff routine can be seen.  

 

 
Figure 3: The schematization of the runoff routine 

The available water from the soil routine, the direct runoff and recharge, will in principle end 

up in the lower zone (SLZ), unless the percolation threshold, PERC (mm), is exceeded, in this 

case, the redundant water ends up in the upper zone (SUZ) (Deltares, 2013).   

Out of the upper zone, there are two discharge fluxes generated. The first one is the quick 

flow (𝑄0), as described in Equation 6 (Gendzh, 2018). The quick flow will only occur when the 

storage in the upper zone is above a given storage, ULZ (mm). The second discharge flux 

from the upper storages box is the interflow (𝑄1), as described in Equation 7.  
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Equation 6:  

𝑄0(𝑡) = 𝐾0 ∗ (𝑆𝑈𝑍 (𝑡) − 𝑈𝐿𝑍)                                       𝑖𝑓 𝑆𝑈𝑍(𝑡) > 𝑈𝐿𝑍  
 
𝑄0  Quick flow (mm/d) 
𝐾0  Recession coefficient of the quick flow (d-1) 
𝑆𝑈𝑍                  Storage upper zone (mm) 
𝑈𝐿𝑍  Threshold value for 𝑄0 (mm) 
 
Equation 7: 

𝑄1(𝑡) = 𝐾1 ∗ 𝑆𝑈𝑍(𝑡) 
 
𝑄1  Inter flow (mm/d) 
𝑆𝑈𝑍                  Storage upper zone (mm) 
𝐾1  Recession coefficient for the interflow (d-1) 

The lower zone is responsible for the third discharge component. This is the base flow and is 

calculated according to Equation 8.  

Equation 8: 

𝑄2(𝑡) = 𝐾2 ∗ 𝑆𝐿𝑍(𝑡) 
 
𝑆𝐿𝑍  Storage lower zone (mm) 
𝑄2  Base flow (mm/d) 
𝐾2  Recession coefficient for the base flow (d-1) 

The total runoff, in mm, of the model is the summation of the tree individual discharge 

fluxes. Using the area of the catchments, the total runoff in m3/s can be calculated 

(Lindström et al., 1997).  

The used HBV model has eight parameters which are summarized below. The values for 

these parameters are found by calibrating the model. The HBV model uses three initial 

conditions, i.e. the initial storage of the three storage boxes (SM, SUZ, SLZ), and two time 

series as input, the precipitation, and the potential evapotranspiration.  

 

𝐹𝐶   Maximum soil moisture storage (mm)  

𝐿𝑃                     Limit for the evapotranspiration (mm) 

𝐵𝑒𝑡𝑎   Soil parameter, which controls the increase of the lower zone for every 

  mm of  precipitation  (-) 

𝑃𝑒𝑟𝑐   Maximum percolation (mm/d) 

𝐾0  Recession coefficient of the quick flow (d-1) 

𝐾1  Recession coefficient for interflow (d-1) 

𝐾2  Recession coefficient for base flow (d-1) 

𝑈𝐿𝑍  Threshold value for the quick flow (mm) 

The model described above is built from FEWS to a version in Python. In Figure 4, the 

simulation of the HBV model in Python used for this study and the HBV model from FEWS 

can be seen. This comparison is made with data of the Ommerkanaal for the period of 2007 
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till 2008. The parameters and initial conditions used are exactly the same and could be found 

in Appendix B. As can be concluded, the models provide the same results. The difference 

between the HBV model used in FEWS and the HBV model build in Python will be expressed 

with the mean absolute percentage error (MAPE) (Brooks et al., 2017), which is given in 

Equation 9: 

Equation 9:  

𝑀𝐴𝑃𝐸 =
1

𝑁
∑ |

𝑄𝑖
𝐹𝐸𝑊𝑆 − 𝑄𝑖

𝐻𝐵𝑉

𝑄𝑖
𝐹𝐸𝑊𝑆 |

𝑁

𝑖=1

 

𝑄𝐹𝑒𝑤𝑠  Discharge modelled by FEWS (m3/s)  

𝑄𝐻𝐵𝑉                Discharge modelled by the HBV model (m3/s) 

The MAPE of this run is 4*10-5 %, this error is caused by the rounding of which is done in 

FEWS.   

 

Figure 4: The comparison of FEWS HBV vs the HBV model in Python for the Ommerkanaal for the year 2007, before 
calibration.  
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2.2 Sensitivity analyses and calibration.  
In this section, the steps taken for the calibration of the model will be described. The 

calibration of the model is done because the calibration done before by Deltares could be 

improved. This calibration was only performed with 1000 iterations, with a randomly chosen 

parameter set, out of which the best parameter set is chosen (Jungermann et al., 2012). 

Calibrating with more iterations could improve the modelled discharge, which could make 

the assimilation of satellite data into the model better.  

For the calibration of the HBV model, three aspects are important. First the calibration 

process, this will be described in section 0. To find the parameters which are most important 

for the calibration, the sensitivity of the HBV model was investigated as a second step. The 

method for this is described in section 2.2.2. Third, for both these steps, it is necessary to 

make use of an objective function. Therefore, the objective functions which were used are 

described in 2.2.1. 

The sensitivity analysis and calibration were done for different sub-catchments of the Vecht, 

namely: the Ommerkanaal, Sallandse Wetering and Dinkel, with data from 2005 up to and 

including 2010, where 2005 was used as warmup period. There is chosen for these 3 

catchments because there is measurement data available for the outflow.  

2.2.1 Objective function  

The root mean square error (RMSE, Equation 9) and an adapted form of the Kling-Gupta 

efficiency (KGE; (Mizukami et al., 2018), Equation 11) are chosen as objective functions for 

the sensitivity analysis and the calibration. 

Equation 10: 

𝑅𝑀𝑆𝐸 = √
1

𝑁
∑(𝑄𝑠𝑖𝑚 − 𝑄𝑜𝑏𝑠)2

𝑁

𝑖=1

 𝑊𝑖𝑡ℎ 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 0 

Equation 11: 

𝐾𝐺𝐸 = 1 − √(𝑆𝑟(𝑟 − 1))
2

+ (𝑆𝑎(𝛼 − 1))
2

+ (𝑆𝛽(𝛽 − 1))
2

 𝑊𝑖𝑡ℎ 𝑜𝑝𝑡𝑖𝑚𝑎𝑙 𝑣𝑎𝑙𝑢𝑒 1 

In which 

𝛼  is the ratio between the r variability in the simulated and observed values  

𝛼 =
𝜎𝑠𝑖𝑚

𝜎𝑜𝑏𝑠
 

In which 

 𝜎  standard deviation 

𝛽  is representing the bias, which is the ratio between the mean observed flow and 

 mean simulated flow. 
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𝛽 =
𝜇𝑠𝑖𝑚

𝜇𝑜𝑏𝑠
   

In which  

μ  mean of the discharge 

𝑟  is the linear correlation coefficient 

𝑟 =
∑ (𝑄𝑜𝑏𝑠 − 𝑄𝑜𝑏𝑠

̅̅ ̅̅ ̅̅ )(𝑄𝑠𝑖𝑚 − 𝑄𝑠𝑖𝑚
̅̅ ̅̅ ̅̅ )𝑛

𝑖=1

√∑ (𝑄𝑜𝑏𝑠 − 𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅ )𝑛

𝑖=1  √∑ (𝑄𝑠𝑖𝑚 − 𝑄𝑠𝑖𝑚
̅̅ ̅̅ ̅̅ )𝑛

𝑖=1

 

In which 

𝑄𝑜𝑏𝑠
̅̅ ̅̅ ̅̅   Average of observation discharge (m3/s) 

𝑄𝑆𝑖𝑚
̅̅ ̅̅ ̅̅   Average of simulated discharge (m3/s) 

𝑄𝑜𝑏𝑠  observed discharge (m3/s) 

𝑄𝑠𝑖𝑚  simulated discharge (m3/s) 

 

Sr, Sα, and Sβ   are user-specified scaling factors  

In a balanced formulation, Sr, Sα, and Sβ are all set to 1.0. By changing the relative sizes of the 

Sr, Sα, or Sβ weights, the calibration can be altered to emphasize more strongly the 

reproduction of flow timing, statistical variability, or long-term water balance. For this study, 

a value of 3 will be used for Sr, since the reproduction of the flow timing is most important 

for the FEWS model. This is because the discharge from different sub-catchments is used as 

input for the hydrodynamic model; therefore, an error in the peak flow of the different sub-

catchments could lead to bigger errors in the simulated discharge for the entire Vecht 

catchment. The range for the scaling factors given by Mizukami et al. (2018) is between 1 

and 5, where the difference between a value of 3 and 5 is small. Therefore, the value of 3 for 

the Sr is chosen due to the fact that there is not only an error with the peak flows in the 

model but also the base flow, with a higher value the baseflow would not be improved.  

2.2.2 Sensitivity analysis  

In order to select the parameters that need to be calibrated, it is necessary to know which 

parameter has the biggest influence on the objective functions given in Equation 9 and 

Equation 10. This was investigated by conducting a sensitivity analysis. During the analysis, 

the 8 parameters of the HBV model were changed one by one, with steps of 5% from -50% 

to +50%. If an increase or decrease of 50% of the parameter leads to a change in one of the 

objective functions with more than 25%, the parameter was selected for the calibration. The 

selection criteria were determined on forehand.  
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2.2.3 Calibration 

The calibration is done with the use of an algorithm called a Monte Carlo simulation (Lidén & 

Harlin, 2000) for the period of 2006 to 2010. This algorithm is probably the simplest one for 

a calibration purpose and does not learn or adapt its method during the sampling. In 

principle, this algorithm can solve any parameter search problem. But with an increasing 

number of parameters, the number of required iterations to reach a global optimum, rises 

exponentially.  It relies on repeated random parameter samplings which are tested in the 

simulation function. In Table 2, the range for the parameters during the calibration can be 

found. With the random parameter set, the model is run, and the objective function of this 

run was saved in a database.  

Table 2: Parameter range for the HBV model during calibration (Karamouz et al., 2013) 

Parameter  Lower boundary   Upper boundary   

FC 50 (mm) 700 (mm) 

LP 0 (-) 1(-) 

BETA 1 (-) 6 (-) 

PERC 0 (mm/day) 15 (mm/day) 

ULZ 0 (mm) 100 (mm) 

K0 0.1 (d-1) 0.9 (d-1) 

K1 0.01 (d-1) 0.3 (d-1) 

K2 0.001 (d-1) 0.1 (d-1) 

 

This process was repeated for 2.500.000 times, and the best parameter set was selected. In 

order to select the best parameter set, the KGE, as defined by Equation 11, was used as the 

main objective function. The RMSE was used as verification objective function.  

2.3 The sensitivity of the HBV model for its initial conditions 
In order to determine the effect of a possible error in the initial condition of soil moisture on 

the discharge, it is necessary to find out how sensitive the model is for its initial conditions. 

This step is done in order to see if it is useful to improve the initial conditions with the use of 

remotely sensed soil moisture. If the outcome of this step is that the model is not sensitive 

to the initial conditions for soil moisture, there is likely to be no improvement with better 

initial conditions for soil moisture.  

There are three initial conditions for the HBV model: the soil moisture (SM), the storage in 

the upper zone response box (SUZ) and the storage in the lower zone response box (SLZ). In 

the FEWS model, the initial conditions are based on the content of the storage boxes of 

outcome the run of the day before. However, in this study, there was no data available from 

the previous day. Therefore, the model will have a warmup period of 1 year. From that 

moment on the outcome of the previous run will be used as an initial value for the model. 

The sensitivity analysis is done by changing the initial conditions with steps of 1% from -50% 

to +50%. In this case 2005 is used as a warmup period and 2006 as the period to evaluate 

the sensitivity.  
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The model will be run for 1 year, resulting in a forecasted discharge for each day for the next 

5 days. Therefore, there will be 5 simulated time series per sub-catchment with a lead time 

of 1 to 5 days. Lead time is the length of time between the issuance of a forecast and the 

occurrence of the phenomena that were predicted. This is done because the effect of the 

initial condition could be seen as a function of lead time.  

The sensitivity of the model for the initial parameters is determined by changes in the value 

of the objective functions (RMSE and KGE) for the different lead times. Additionally, a 

hydrograph will be made to see the effect of the changes in the initial condition on the 

discharge.   

2.4 Correlation of the HBV modelled and remotely sensed soil moisture.  
The HBV model is a conceptual model; therefore, not all the model parameters are directly 

related to physical characteristics in the real world (Pechlivanidis et al., 2011). In the case of 

the soil moisture, is it necessary to investigate whether this variable is correlated with the 

remotely sensed soil moisture content delivered by VanderSat. If there is not a high degree 

of correlation, it is not meaningful to use the satellite data instead of the currently used 

initial condition with a good result.  

For the correlation both the 3-day moving average of the remotely sensed and the daily 

measured soil moisture content (remotely sensed soil moisture content), both delivered by 

VanderSat, will be compared with the soil moisture modelled with the HBV model. The 

model is run from 2014 up to and until 2017, where 2014 will be used as a warmup period 

for HBV. 

The correlation between the remotely sensed soil moisture by VanderSat, and the HBV 

modelled soil moisture will be checked with the linear correlation coefficient as can be found 

in equation 12, where a value of 1 means a perfect correlation and a value of 0 no 

correlation.  

Equation 12: 

𝑟 =
∑ (𝑆𝑀𝐻𝐵𝑉 − 𝑆𝑀𝐻𝐵𝑉

̅̅ ̅̅ ̅̅ ̅̅ ̅)(𝑆𝑀𝑅𝑆 − 𝑆𝑀𝑅𝑆
̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1

√∑ (𝑆𝑀𝐻𝐵𝑉 − 𝑆𝑀𝐻𝐵𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1  √∑ (𝑆𝑀𝑅𝑆 − 𝑆𝑀𝑅𝑆
̅̅ ̅̅ ̅̅ ̅)𝑛

𝑖=1

  

𝑆𝑀𝐻𝐵𝑉   HBV model soil moisture  

𝑆𝑀𝐻𝐵𝑉
̅̅ ̅̅ ̅̅ ̅̅ ̅  Average of the HBV model soil moisture  

𝑆𝑀𝑅𝑆   Remotely sensed soil moisture content  

𝑆𝑀𝑅𝑆
̅̅ ̅̅ ̅̅ ̅  Average of the remotely sensed soil moisture content 

 

2.5 Assimilating soil moisture into the HBV model  

2.5.1 Selection of the periods for assimilation.  

For the data assimilation, different periods are selected. Because the FEWS model is mainly 

used for the forecasting of floods, (short) periods of high flow are evaluated. Therefore, 
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there will be looked in this study at the 6 highest peaks in the period of June 2015 till 2020; 

this is the period for which the data of VanderSat is available. In Figure 5, the selection of the 

peak discharges for the Ommerkanaal is shown. For the Ommerkanaal, two peaks are very 

close to each other and therefore taken as one period. For the Sallandse Wetering also two 

peaks are close to each other and therefore taken as one period. For the Dinkel, only 3 peaks 

were present in the data.  

 

 

Figure 5: The selection of periods with peak discharges for the Ommerkanaal  

2.5.2 Transforming the remotely sensed soil moisture 

The unit of the soil moisture content delivered by VanderSat is in m3/m3, and the unit of the 

soil moisture used in the HBV model is mm. Therefore, to assimilate the soil moisture data in 

the HBV model, the remotely sensed soil moisture should be transformed. For this, two 

methods are used. The first method is given in Equation 13, the second method in Equation 

14. The second method is based on the assimilation done by López et al., (2016) the first 

method is not based on a study but on mathematical normalization of the data set and 

introduced in this study. In both equations, the values of VanderSat are the average values 

of the sub-catchment.  

Equation 13: 

𝑆𝑀𝑛𝑒𝑤(𝑡) =  
𝜃(𝑡)

𝜃𝑚𝑎𝑥
∗ 𝐹𝐶 

With:  

𝜃  the soil moisture provided by VanderSat (m3/m3)  

𝜃𝑚𝑎𝑥   The maximum soil moisture content measured by VanderSat in the given 

period  
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Equation 14:  

𝑆𝑀𝑛𝑒𝑤(𝑡) =  𝑆𝑀𝑚𝑖𝑛 +
𝑆𝑀𝑚𝑎𝑥 − 𝑆𝑀𝑚𝑖𝑛

𝜃𝑚𝑎𝑥 −   𝜃𝑚𝑖𝑛
(𝜃(𝑡) − 𝜃𝑚𝑖𝑛) 

With:  

𝑆𝑀𝑚𝑖𝑛/𝑚𝑎𝑥   Is maximum/minimum soil moisture simulated by the HBV model in the given 

period without data assimilation (mm) 

𝜃𝑚𝑖𝑛  The minimum soil moisture content measured by VanderSat in the given 

period 

The two methods give a soil moisture value which can be used during the assimilation in the 

HBV model. The other two initial conditions, SUZ and SZL, will be simulated by the model 

with a warmup period of a year.  

The model with the assimilated soil moisture will be run for the periods selected as can be 

seen in 2.5.1, resulting in a daily forecasted discharge for lead times up to 5 days. Therefore, 

there will be 5 simulated time series per sub-catchment per selected period with a lead time 

of 1 to 5 days.  This is done so the effect of the assimilation of soil moisture as the initial 

condition can be seen for different lead times.  

The effect of the assimilation on the forecasted discharge will be expressed in objective 

functions (in comparison to the simulation without assimilation): the RMSE and the linear 

correlation coefficient, both are suggested by CAWCR (2017) as an objective function for a 

deterministic forecast. The combination of the RMSE and the Pearson correlation is chosen 

because the RMSE is giving information about the absolute difference between the 

simulated and observed discharges while the correlation is giving information about the 

similarities in the pattern of the discharge curve. If both are getting closer to the perfect 

value for the simulation with data assimilation, the forecasted discharge with assimilation is 

better than without assimilation. For the forecasted discharge, it is important that the error 

is small, expressed by the RMSE, otherwise, the forecasted discharge peak is overestimated 

or underestimated. Furthermore, the timing of the peak is important because, in the SOBEK 

model, the discharges of the different sub-catchments contribute to the discharge of the 

entire Vecht. Therefore, the correlation is used in order to check the similarities in the 

patterns of the forecasted discharge and the observed discharge.   
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3 Results 
In this chapter, all the result of this thesis will be shown according to the steps described in 

the methodology. In section 3.1, the results of the calibration will be presented. In section 

3.2, the sensitivity of the HBV model to its initial conditions will be presented. The 

correlation between the remotely sensed soil moisture and the HBV modelled soil moisture 

will be pretended in section 3.3. and finally, the result of the assimilation of remotely sensed 

soil moisture will be presented in section 3.4.  

3.1 Calibration  
The first result is the calibration done for 3 sub-catchments, for the period of 2006 up to and 

including 2010 where 2005 is used as a warmup period. First, a sensitivity analysis is done for 

the 3 sub-catchments, in order to select the parameters for the calibration. With the 

selected parameters, the 3 models of the different sub-catchments are recalibrated with a 

more extensive Monte Carlo simulation.  

3.1.1 Sensitivity analysis  

A sensitivity analysis was performed to assess the sensitivity of the simulated discharge to 

changes in the model parameters. The results are shown in Figure 6 and 7 for the two 

objective functions. If the change in one of the objective functions was more than 25%, by 

an increase or decrease of 50% in the parameter value, the parameter was selected for the 

calibration. Based on this criterion, the parameters selected for calibration for the 

Ommerkanaal are K0, FC and ULZ. BETA will also be calibrated due to the interest of this 

study in the soil moisture. Also, PERC will be calibrated because, during the calibration, it 

became clear that without the calibration of PERC, the model performance was not as good 

as with the calibration with the PERC. This can be explained if looked at the simulated runoff 

before calibration in Figure 8. In the situation before calibration, there is a higher base flow 

than observed, by calibrating the PERC this could be altered. For the Dinkel and Sallandse 

Wetering also a sensitivity analysis has been conducted, which can be found in appendix E 

and D, respectively. The parameters selected for calibration for the Dinkel and Sallandse 

Wetering can be found in Table B.1 in Appendix B. 
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Figure 6: The parameter sensitivity of the HBV model of the Ommerkanaal reflected by the RMSE 

 

 

Figure 7: The parameter sensitivity of the HBV model of the Ommerkanaal reflected by the KGE 

3.1.2 Calibration 

The model is calibrated by using a Monte Carlo approach where 2.500.000 runs were 

performed with values for the five parameters randomly sampled from the ranges given in 

Table 2. In Table B.1 in Appendix B the calibrated values for the HBV model of the three sub-

catchments are given. Table 3 shows the values for the objective functions before (as used in 

the FEWS system) and after calibration. In Figure 8 the hydrograph for the Ommerkanaal is 

given. When considering both the value of the objective functions and the hydrograph, there 

is an improvement of the model visible. The calibration conducted in this study is more rigid 

than the one done for the FEWS model (as described in section 2.2.3), and therefore it is 

reasonable to assume that the model would improve. The biggest improvement is in the 
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base flow of the model, as can be seen in Figure 8, but also in the peak flows, there is an 

improvement visible.  

Table 3: Values of the objective functions before and after calibration  

Objective function  Before calibration  After calibration  

Ommerkanaal 

KGE  0.76 0.90 

RMSE 0.86 (m3/s) 0.57 (m3/s) 

Sallandse Wetering 

KGE  0.65 0.87 

RMSE 2.57 (m3/s) 1.62 (m3/s) 

Dinkel 

KGE  0.42 0.77 

RMSE 3.72 (m3/s) 2.74 (m3/s) 

 

For the Dinkel and the Sallandse Wetering, the calibration did also improve the model 

performance, similar as for the Ommerkanaal (Table 3). For this reason, it can be concluded 

that the calibration has improved the model performance for all the 3 sub-catchments.  

After calibration, the model is performing better for the Ommerkanaal than for the Sallandse 

Wetering and the Dinkel. This is reflected in the value for KGE closer to 1 and a lower RMSE 

for the Ommerkanaal than for the Dinkel and the Sallandse Wetering.  
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Figure 8: Hydrograph for the Ommerkanaal for 2009 only, to illustrate the effect of the calibration on the simulated 
discharge, with the observed and simulated discharge before and after calibration.  

3.2 The sensitivity of the HBV model to its initial conditions 
In this section, the results of the sensitivity analysis for the initial conditions will be 

presented for the Ommerkanaal, the Sallandse Wetering and the Dinkel. 

Figure 9 shows the outcome of the sensitivity analysis of the HBV model for the 

Ommerkanaal for the initial conditions: soil moisture (SM0), upper groundwater zone (SUZ0) 

and lower groundwater zone (SLZ0). It was found that the model is most sensitive for the 

initial condition of the soil moisture (SM0), because the change in the initial condition for the 

SM0 has the largest effect on the RMSE, which can be seen in Figure 9. With an increase of 

the lead time, the sensitivity of the model for the changes in the initial condition of SM0 

increases. The higher sensitivity with a higher lead time can be explained due to the fact that 

there is no runoff out of the soil moisture storage. Therefore, the water has to move to the 

lower 2 storage compartments in order to contribute to the run, which will take time. Due to 

the fact that there is a delay in changes in the discharge, there will also be a delay to see the 

effect of the changes in SM0 in the objective function used.  

In Figure 10 the effect of the sensitivity analysis is shown for the Ommerkanaal, for a period 

of only one peak discharge, in order to see the effect of the changes in initial condition on 

the simulated discharge. The conclusion that can be drawn from this figure is the same as 

the conclusion that can be drawn from Figure 9: the sensitivity of the discharge for the initial 

conditions of the HBV model is the highest for SM0. This applies to all lead times, with one 

exception: the 1-day lead time. With an increase of 25% for the SUZ0, there is a relatively 
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large change in the simulated discharge in Figure 10, which cannot be seen in the RMSE in 

Figure 9. Therefore, the conclusion is that the HBV model of the Ommerkanaal is most 

sensitive for the initial value of SM0, especially for higher lead times. The same conclusion 

can be drawn for the Sallandse Wetering, as can be seen in figure D.2 in Appendix D. The 

only difference between this sub-catchment and the Ommerkanaal is that the sensitivity for 

SLZ0 for the Sallandse Wetering is higher. However, the sensitivity of the Sallandse Wetering 

for SLZ0 is still lower than the sensitivity for SM0. 

Unlike the Sallandse Wetering and the Ommerkanaal, the highest sensitivity for the initial 

conditions of the Dinkel is not SM0, as can be seen in Figure 11, but SLZ0. A possible 

explanation for this result could be that the maximum SM for the Dinkel is only 60 mm 

(which is small in comparison to the maximum storage of both the Sallandse Wetering and 

Ommerkanaal), while the storage of SLZ reaches values of more than 400 mm. Therefore, in 

comparison to the SLZ storage, the effect of a change in the percentage of the SM storage 

leads to a smaller change in the storage (in mm).  

Nevertheless, the conclusion is that the HBV model is sensitive to the initial conditions of the 

SM0. For the Ommerkanaal and the Sallandse Wetering, the model is most sensitive for the 

initial condition of SM0,  for the Dinkel it is not, but the initial condition of SM0 still has a 

relatively large effect on the objective function of the simulated discharge of the Dinkel, 

especially for higher lead times. Therefore, for all the sub-catchments, it is expected that an 

improvement of the initial conditions for the SM0 leads to an improvement in the simulated 

discharge. 



30 
 

 

Figure 9: Outcome of the sensitivity analysis of the HBV model for the Ommerkanaal for its initial conditions reflected by the 
RMSE for different lead times of 1 to 5 days 
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Figure 10: Sensitivity of the initial conditions for one peak flow event at the Ommerkanaal   
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Figure 11: Outcome of the sensitivity analysis of the HBV model for the Dinkel for its initial conditions reflected by the RMSE 
for different lead times of 1 to 5 days 
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3.3 Correlation of the HBV simulated soil moisture and the remotely sensed soil 

moisture.  
In this section, the results of the correlation between the soil moisture simulated by HBV 

and the remotely sensed soil moisture will be presented for the Ommerkanaal, the Sallandse 

Wetering and the Dinkel. 

3.3.1 Ommerkanaal  

In Figure 12 the daily remotely sensed soil moisture content by VanderSat (with 

interpolation of the missing data, as can be seen in appendix A) and the soil moisture 

modelled by the HBV model is plotted for the Ommerkanaal. The correlation coefficient 

between the VanderSat daily measured soil moisture content and the soil moisture 

simulated by HBV has a value of 0.81. Figure 13 shows the moving average (3-day window) 

of the remotely sensed soil moisture content by VanderSat and the soil moisture simulated 

by the HBV model for the Ommerkanaal. Clearly, there is a high correlation between the 3-

day moving average and the soil moisture simulated by HBV. This is also reflected by the 

correlation coefficient, with a value of 0.91. With this result, it can be concluded that the 

HBV model and the remotely sensed soil moisture have a high degree of similarity.  

As can be seen in Figure 13, the moving average smooths the peaks, and therefore the short 

term response of the soil moisture content to precipitation events is removed from the data 

set. The peaks in the data set are caused by the fact that the satellite is only measuring the 

top 5 cm of the soil. Therefore, if the satellite overpass is directly after a precipitation event, 

the top 5 cm will be wet, whereas the rest of the soil could be dryer. But it could also be that 

the remotely sensed soil moisture has noise introduced by the measurement with satellites.  

 

Figure 12: The soil moisture simulated by the HBV model and the daily remotely sensed soil moisture for the catchment of 
the Ommerkanaal and the scatter plot of the same data  
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Figure 13: The soil moisture simulated by the HBV model compared with the moving average of the remotely sensed soil 
moisture for the Ommerkanaal and the scatter plot for the same data  

On the right-hand side of Figure 12, a scatter plot of the HBV-simulated soil moisture and the 

remotely sensed soil moisture content delivered by VanderSat, is shown as well. As can be 

seen in the figure, for low values of soil moisture content until 0.10 (m3/m3), measured by 

VanderSat, the HBV modelled soil moisture shows a relatively low value. Furthermore, the 

spread of values is large: for a single value of the soil moisture content, a whole range of 

values is present for the HBV-simulated soil moisture (and vice versa). 

Similarly, on the right-hand side of Figure 13, the scatter plot of the HBV-simulated soil 

moisture and the moving average of the soil moisture content, delivered by VanderSat, is 

shown. In this figure, the clustering of the low values of the measured soil moisture content 

is even better visible than in Figure 12. Meaning that the HBV model is modelling a soil 

moisture storage close to 0 mm, while the values measured by VanderSat are ranging 

between 0.05 and 0.15 m3/m3. In contrast to the scatter plot in Figure 12, the spread of the 

values is less; this is also reflected in the higher correlation coefficient.   

Onwards from a value of the soil moisture content of approximately 0.15 (m3/m3) in Figure 

13, there is an upward trend, which levels off at the higher values for the soil moisture of the 

HBV model. The flattening of the trend is more visible at lower values (of the simulated soil 

moisture) in summer than in winter, this is caused by the soil moisture content modelled by 

the HBV model, these are typically lower in the summer than in the winter. This trend has 

some linear behaviour in it (at some intervals the trend is, but especially at the lower and 

upper part of the data there is some nonlinear behaviour visible.   

3.3.2 Dinkel and Sallandse Wetering 

The relevant figures for the Sallandse Wetering and Dinkel can be found in appendix C and D, 

respectively. In Table 4, the values for the correlation coefficient for the Sallandse Wetering 

and Dinkel are given. For both catchments, a higher correlation is found for the 3-day 
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moving average than for the original data points, as can be seen in Table 4, similar as for the 

Ommerkanaal. For both, especially for the Dinkel, the correlation (between the simulated 

soil moisture and remotely sensed soil moisture), is lower than for the Ommerkanaal. 

Nevertheless, the correlation between the remotely sensed soil moisture and the HBV 

modelled soil moisture is still high. But there should be taken into account that even though 

the correlation is high if looked at the scatter plots, there is still a large difference in the 

pattern of the HBV model soil moisture and the remotely sensed soil moisture.  

Table 4: correlation coefficient for the measured on daily bases and 3-day moving average data set for the different sub-
catchments 

 Ommerkanaal Sallandse Wetering Dinkel  

Daily  0.82 0.75 0.81 

3-day moving 
average  

0.91 0.87 0.85 

 

Concluding, there is a good correlation between the HBV-simulated soil moisture and the 

soil moisture data delivered by VanderSat, especially for the 3-day moving average. The only 

correlation coefficient used is a linear one, but the scatter plots show that the correlation 

between the remotely sensed soil moisture content and the simulated soil moisture is not 

completely linear. Therefore, a higher correlation could have been found if a nonlinear 

correlation coefficient would have been used. Furthermore, the highest correlation is found, 

for both data sets used, with a lag of zero days.  

In line with the findings above, it can be concluded that data assimilation of the remotely 

sensed soil moisture has potential (due to the relatively high correlation) and could have a 

positive effect on the accuracy of the simulated discharge. Even though the correlation for 

the moving average data is always higher than the correlation for the daily measured soil 

moisture content, both data sets will be used in the assimilation discussed in the next 

section, because the difference in the value of the correlation coefficient is relatively small. 

Another reason to use both data sets is that there is a possibility that the daily measured soil 

moisture content gives a better result during the assimilation because, in the moving 

average, the peaks are smoothed. 

3.4 Data assimilation of soil moisture into the HBV model.  
In this section, the transformation of the data delivered by VanderSat and the assimilation of 

soil moisture as an initial condition for the HBV model will be presented. The assimilation is 

done for all 3 sub-catchments.  

3.4.1 Transformation of VanderSat data. 

In Figure 14, the transformation of the soil moisture content delivered by VanderSat in 

m3/m3 to mm can be seen, in comparison to the HBV modelled soil moisture without 

assimilation. For both data sets, the daily remotely sensed soil moisture content, and the 3-

day moving average of the soil moisture content, 2 methods are used. For both methods, the 

trend in the soil moisture data is the same; only the absolute value is different. Therefore, 

the linear correlation coefficient between the transformed soil moisture (both for the daily 
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measured data and the 3-day moving average) and the HBV modelled soil moisture does not 

deviate from the values found in section 3.3.  

 

Figure 14: Soil moisture simulated by the HBV model (in mm) and the soil moisture derived from VanderSat data with 
method 1 (equation 13) and 2 (equation 14), also in mm for the Ommerkanaal for the period 2016 to 2018. The latter two 
are used for the data assimilation.   

In Figure 15, the transformed soil moisture could be seen in comparison to the remotely 

sensed soil moisture for the Ommerkanaal. In this figure it could clearly be seen that the 

remotely sensed soil moisture is linear transformed to the units used in the HBV model. The 

figures for the Sallandse Wetering and Dinkel could be found respectively in the Appendix D 

and E.  

  
Figure 15: The remotely sensed soil moisture in comparison to the transformed soil moisture.  
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3.4.2 Data assimilation 

In this section, the results of the assimilation for the different sub-catchments will be 

presented. The results will be presented in two different graphs. The first graph shows the 

effect of the assimilation on the objective functions (RMSE and the correlation coefficient) 

for the selected periods. Also, the effects of the use of 2 different methods, as described in 

2.5.2, are shown. The values of the objective functions for the reference situation are shown 

too. The reference situation is the newly calibrated HBV model without the assimilation of 

the remotely sensed soil moisture. The effect of the assimilation is expressed by the 

improvement of the objective functions in percentages. So, if the RMSE goes from 1 to 0.9 

m3/s, the improvement is 10%. The second graph is showing the forecasted discharge of the 

different methods and data sets used as well as the forecasted discharge without 

assimilation and the observed discharge. Furthermore, in this graph, the initial SM for the 

model run for that day is shown, both for the HBV modelled soil moisture and the 

assimilated soil moisture. The lead time giving in this figure is the between the forecasted 

discharge and the initial condition used, so for the forecast with a lead time of 5 days the 

initial condition is the value of 5 days before from the lowest subplot in the figure.  

Ommerkanaal  

In Figure 16 and Figure 17, the results of the assimilation for the Ommerkanaal are shown. In 

Figure 16, the two methods and the two data sets used for the five selected periods are 

shown. In Figure 17, the effect of the assimilation is shown for a peak flow event; the 

hydrographs of the other periods can be found in Appendix C.  

The assimilation did not lead to an overall improvement in the forecasted discharge. 

Moreover, only for period 1 and 4, an improvement can be observed, for all other periods, 

both the objective functions scored worse. For period 1, both the correlation coefficient and 

the RMSE showed an improvement, for period 4 only the RMSE improved in some cases. For 

period 4, the effect of the assimilation is not useful. When looked at Figure C.3 in Appendix 

C, it can be seen that the effect of the assimilation is not an improvement for period 4, the 

simulation is still not adequate, even though there is an improvement in the RMSE. In Figure 

17, the effect of the assimilation on the forecasted discharge is shown for period 1. The 

forecasted discharge without assimilation is not very accurate, because the difference 

between the forecasted peak discharge and the observed peak discharge is nearly 10 m3/s, 

this inaccuracy is also represented by the RMSE with a value of 4.31 (m3/s) for this period. 

The improvement of the assimilation can be explained when looking at the lowest subplot of 

Figure 17, in which the original initial SM of the HBV model is compared with the initial SM 

used in the assimilation. The HBV model shows an increase in the soil moisture content. 

Therefore, a part of the precipitation of the HBV model is not transformed to discharge, but 

it is stored in the soil moisture. With the assimilation, this behaviour is partly removed, 

mainly because the assimilated soil moisture uses a higher soil moisture content and 

therefore there is less precipitation stored in the soil moisture, and hence the forecasted 

discharge is closer to the observed discharge. The overall effect of the assimilation for period 

1 is positive, but there are differences in the accuracy of the forecasted discharge. The effect 

of the assimilation during a dry period as seen for period 1 of the Ommerkanaal could also 

be seen in another, which is not one with a high peak flow and therefore not selected as 
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described in section 2.5, in Figure C.5 in Appendix C. This period has only a small discharge in 

comparison to the period 1 of the Ommerkanaal, but the behaviour of the HBV model and 

the assimilation is the same.  

For the forecasted discharge with a lead time of one day, the methods using the daily 

measured soil moisture content are performing better than the ones using the 3-day moving 

average. However, with an increase in lead time, this change in favour of the 3-day moving 

average. With a lead time of more than 3 days, the methods using the 3-day moving average 

are performing better than the methods using the daily measured soil moisture content, as 

can be seen in Figure 16. The general conclusion which can be drawn from Figure 16 is that 

method 1 with the 3-day moving average as inserted data, is performing the best. But 

overall, it can be concluded that the assimilation is not giving a better model performance   

In general, the deviation from the reference situation is quite large. This is indicated by the 

value of the RMSE, which is above 3 (m3/s) for period 1, 4 and 5. For period 2 and 3, the 

value of the RMSE is smaller, but still quite large. Therefore, the overall conclusion is that the 

model performance is suboptimal without assimilation for all the selected periods, and with 

assimilation soil moisture, the performance is even worse. This can be explained by Figure 15 

in which clearly could be seen that the transformation of the remotely sensed soil moisture 

is introducing a large error.  
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Figure 16: The result of the assimilation for 5 periods for the Ommerkanaal, expressed in the objective functions used.  
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Figure 17: The effect of the assimilation of soil moisture on the discharge of one peak flow event  
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Sallandse Wetering and Dinkel   

In this section a summary of the result for the Sallandse Wetering and the Dinkel could be 

found, a more elaborated result for the Sallandse Wetering and the Dinkel can be found in, 

respectively, Appendix D and E.  

The same conclusion, as for the Ommerkanaal, can also be drawn for the Sallandse 

Wetering, the assimilation of remotely sensed soil moisture data does not improve the 

forecasted discharge. For all periods, the value of the RMSE is above 4 (m3/s), which is 

relatively high for a flow of approximately a peak discharge of 30 (m3/s) which is in line with 

the findings for the Ommerkanaal.  

The conclusion for the Dinkel is the same as found by the Ommerkanaal, in which this 

assimilation is also not leading to an improvement of the model performances for the 

periods. Furthermore, one of de selected periods for the Dinkel is during a dry period, in 

which the assimilation did not have the same effect as found for the Ommerkanaal. The 

assimilation did not for this period lead to an improvement in model performance as found 

for two dry periods for the Ommerkanaal.  

A general conclusion of 3.4  

The effect of the assimilation of soil moisture in the HBV model does not result in an 

improvement of the model performance, expressed in the RMSE and the correlation 

coefficient. In general, in comparison to the methods using the daily measured soil moisture 

data set, the methods which are using the moving average have a better model 

performance, but the overall performance of the assimilation is not an improvement. That 

the methods using the 3-day moving average are performing better could be explained 

because there is a higher correlation between this data and the HBV simulated soil moisture, 

possibly because the peaks are smooth. The daily measured data is highly depending on the 

moment when the satellite passes over. If it just has rained, all the water is still in the top 

few centimetres of the soil, so the value is an overestimation of the soil moisture content in 

deeper layers. Using the moving average instead of the daily measured soil moisture content 

partly dampens this effect, which reflects the simulated soil moisture of the HBV better.  

In the periods where the assimilation is leading to a decrease in model performance, there 

could be concluded that the HBV simulated soil moisture is performing better than the 

assimilated soil moisture. This can be explained by looking at the transformation which is 

done to the remotely sensed soil moisture content delivered by VanderSat, as shown in 

Figure 14 and Figure 15. At some point, the assimilated soil moisture is close to the HBV 

simulated soil moisture, but there are also periods where the difference is huge. Especially in 

Figure 15 this effect could be clearly seen. But also, the physical difference between the 

remotely sensed soil moisture and the HBV modelled soil moisture are a source of the error.  

There are 2 periods found for which the assimilation leads to an improvement of model 

performance, both for the Ommerkanaal. For both periods, the peak flow occurred during a 

dry period. During a dry period, the HBV model stores water in the soil moisture storage, 

which will lead to a lower discharge. With the assimilation, this is partly solved because the 

assimilated soil moisture is higher than the soil moisture simulated by the HBV model. 
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Therefore, with assimilation, the HBV model simulates more discharge. This effect of the 

assimilation is not shown for the other sub-catchments, even though there is a relatively dry 

period used for the Dinkel.  

In addition to this, it can be concluded that the models of all three considered sub-

catchments that the error of the models is relatively large, and consequently there is a large 

difference between the forecasted discharge and the observed discharge. For some peak 

flows the model is performing not adequately, for example, period 4 for the Ommerkanaal 

and period 1 for the Dinkel.  
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4 Discussion  
The results and implications of this study are discussed in this chapter. At first, the potential 

of this research is described in Section 4.1. In Section 4.2, several limitations of the 

methodology and overall study are presented, and in section 4.3, the generalization of the 

results will be presented.  

4.1 Potential  
This study shows that there is a relatively high correlation between the HBV modelled soil 

moisture and the remotely sensed soil moisture. This is in line with the finding of Liu et al. 

(2007), who found a large correlation between the remotely sensed soil moisture content 

and the HBV modelled soil moisture content. Liu et al. (2007) found that smoothing (with 

neighbouring measurements) the measurement from the satellite leads to a better 

correlation, which is in line with the findings of this study. However, Liu et al. (2007) found 

that the response to precipitation of the remotely sensed soil moisture was quicker than the 

HBV model soil moisture, the best correlation they found was for a lag of several days. This 

was not found in this study, for all the sub-catchments of the Vecht, the highest correlation 

is found with no lag.  

Although the HBV simulated soil moisture and the remotely sensed soil moisture data are 

physically different, the remotely sensed soil moisture content is only telling something 

about the top layer, while the HBV model is some conceptual soil moisture storage, there is 

a good correlation between them. Therefore, there is a potential to use this data in the HBV 

model for different purposes, such as the calibration of poorly gauged areas. 

During the calibration, the remotely sensed soil moisture data has not been used. Therefore, 

an improvement of the effect of the assimilation could be made by using the data during 

calibration. This is something that has been done in other studies, for example, by López et 

al. (2017). By using the remotely sensed soil moisture during the calibration, the parameters 

could be changed such that model better responds to the assimilated data, in order to partly 

overcome the problem caused by the physical differences.   

In this study, remotely sensed soil moisture delivered by VanderSat was used, but there are 

other soil moisture products available as well. Theses soil moisture products could be used 

with the same approach. An example of other remotely sensed soil moisture is SMAP (van 

der Velde et al., 2019).  This product is validated with a network of in situ soil moisture 

sensors in Twente, the Netherlands.  

  



44 
 

During this research, it was discovered that the HBV model is having problems with the 

simulation of peak flows during a dry period. After a long dry period, when the soil moisture 

content (SM) is low, rainfall will consequently add very little to the runoff, while after a wet 

period the situation is the opposite (Bergström & Forsman, 1973). This behaviour of the HBV 

model is also found by Rakovec et al. (2012), after a dry period the model showed a smaller 

discharge than in a situation where the soil moisture content was higher. In this study, it was 

shown for the Ommerkanaal that the HBV model with assimilation could simulate the peaks 

better in dry periods. This could be a potential for using the assimilation of soil moisture 

content.  

4.2 Limitations  
This study knows some limitations, the first limitation is that the perfect forecast was used, 

which means that measured precipitation is used instead of forecasted precipitation. This 

will lead to less uncertainty in the forecasted discharge because the uncertainty of the 

precipitation is largely filtered out. Therefore, the results of this study for a real forecasting 

situation would lead to more uncertainty in the forecasted discharge, and probably to worse 

results.  

This study has not looked at the effect of the assimilation for the whole catchment of the 

Vecht, but only at the effect for 3 individual sub-catchments of this river. The ultimate goal 

of the WDOD is to improve the accuracy for the whole catchment. The assimilation is done in 

standalone simulations for each sub catchment, the effect of the assimilation of the 3 areas 

is not translated to the Vecht as a whole. Furthermore, the discharge of the Vecht, which is 

150 to 200 m3/s during peak flow events, is relatively large compared to the discharge of the 

3 sub-catchments used during this research.   

The calibration is done for a period of 4 years, in this period several peak flow events are 

present; most of them are in the periods when the soil is wet. Therefore, during the 

calibration, more emphasis is put on peak flow events with a high soil moisture content. This 

means that peak flow events with low soil moisture content are not calibrated as good as 

the peaks in the wet situation.  

The remotely sensed soil moisture content is linearly transformed and used in the HBV 

model, while, when looking at the data, there is not a completely linear correlation. The 

shape of the curve in the scatterplot is more like an S-shape. This could lead to a lower 

performance of the assimilation, especially at the lower and upper limits of the interval of 

the curve. Another interpolation of the data to transform the VanderSat data to SM in HBV 

could possibly lead to better results.  

The HBV models used in this study are lumped models. As the HBV models cover a large 

area, the input of satellite data has to be averaged over the area, which leads to a loss of 

information and regional variability.  
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The discharge of the sub-catchments is not free, the water level in the Vecht has an impact 

on the outflow of the sub-catchments. Therefore, the measurements of the sub catchment 

are not completely in line with the simulations of the HBV model. Furthermore, at the end of 

the Ommerkanaal, there is a weir which is controlling the water level and flow. Therefore, 

even if the model has a perfect simulation, there could be a difference in the observed a 

forecasted discharge. But the effect of the weir will be the biggest in low flow situations.  

The satellite gives information about the top 5 centimetres of the soil, while the HBV model 

gives information about a conceptual soil moisture storage. The effect of precipitation is 

more pronounced when only looking at the top 5 centimetres of the soil, then with 

measurements deeper in the soil. Therefore, the correlation and the assimilation will be 

different with measurements done at another dept (in situ).  

4.3 Generalization  
The findings of this study could be used in other models in the same catchment but also in 

other catchments. A high correlation was found between the modelled soil moisture and the 

remotely sensed soil moisture content. Although they are not physically the same, it could 

be that this correlation (of two variables giving information about the wetness of the soil) is 

the same in other models, like for example WALRUS (Brauer et al., 2014), another model 

used by WDOD for the catchment of the Vecht. Also, there could be looked at the option of 

the use of remotely senses soil moisture for different models used by the water board. In 

order to implement the assimilation of remotely sensed soil moisture content in other 

models, there should be investigated what the shortcomings of the use of this assimilation 

are what kind of error the assimilation is introducing.  
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5 Conclusion and recommendations  
In this finial chapter the conclusions and recommendation of this study will be presented.   

5.1 Conclusion  
The research aim of this study was to examine to what extent it is possible to improve the 

forecasted discharge of the HBV models of the 3 selected sub-catchments of the Overijsselse 

Vecht for peak discharges by assimilating remotely sensed soil moisture content as initial 

condition into the model. The research was guided by the 4 following research questions 

which will be answered in this section, and also the conclusion of the research aim will be 

presented: 

1. To what extent could the HBV model performance be improved by recalibrating the 

model? 

2. How sensitive is the HBV modelled discharge for change in the three different initial 

conditions, the initial level of the three different storage components (mainly focused 

on the soil moisture storage) of the HBV model? 

3. What is the correlation between the HBV simulated soil moisture and the remotely 

sensed soil moisture content? 

4. To what extent could the assimilation of remotely sensed soil moisture improve the 

forecasted discharge by the HBV model, in comparison to the observed discharge and 

the forecasted discharge without assimilation? 

The recalibration leads to an improvement in model performance. For the 3 sub-catchments, 

the values of both the KGE and the RMSE improves with the recalibration. For the 

Ommerkanaal, this improvement was, in comparison with the improvement for the 

Sallandse Wetering and especially the Dinkel, relatively small. The overall model 

performance of the Ommerkanaal is the best of the 3 sub-catchments, both before and after 

recalibration.  

The HBV model is most sensitive to the initial condition of soil moisture content for the sub-

catchment of the Ommerkanaal and Sallandse Wetering. For the Dinkel, the storage of the 

lower zone is the most sensitive initial condition. Nevertheless, the sensitivity for the soil 

moisture initial condition is also relatively high for the Dinkel.  

In the study there was found that a relatively high correlation exists between the remotely 

sensed soil moisture content and the HBV simulated soil moisture, especially when using the 

3-day moving average. The correlation between the 3-day moving average and the HBV 

modelled soil moisture is higher because the peaks of the remotely sensed data are 

smoothed. The daily measured data is highly depending on the moment when the satellite 

passes over. If it just rained, all the water is still in the top few centimetres of the soil, so the 

value can be an overestimation or underestimation of the soil moisture content. Using the 3-

day moving average moisture content instead partly dampens this flashy behaviour, which 

reflects the behaviour of the HBV simulated soil moisture better. Therefore, the correlation 

between the 3-day moving soil moisture content average and the HBV model soil moisture is 

higher.  
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The assimilation of remotely sensed soil moisture data by direct insertion does not lead to 

an improvement in the forecasted discharge with high peak flows. It can be concluded that 

for this study the simulated soil moisture is performing better than the assimilated soil 

moisture. This can be explained due to the large difference created with the transformation 

between the modelled soil moisture and remote sensed soil moisture. Furthermore, the 

remotely sensed soil moisture content is physically different then the HBV modelled soil 

moisture. This difference is also creating an error in the assimilation. The HBV soil moisture 

is telling information about a conceptual storage with a depth of in the order of magnitude 

of 100 mm water storage, while the remotely sensed soil moisture content is only giving 

information about the volume of water present in the top 5 centimetres of the soil. 

Therefore, the remotely sensed soil moisture is telling information about shallower depts 

then the conceptual HBV model.  

However, there is a possibility that the assimilation of soil moisture could lead to a better 

forecasted discharge in very dry periods. In these periods the HBV model stores more 

precipitation in the soil moisture storage, which leads to lower peak discharges. In this study 

2 periods for the Ommerkanaal have been found in which the assimilation leads to a better 

forecasted discharge in a dry period. Because the result only improved for these two periods 

while for the other periods the model performance decreased, it could also be a 

coincidence. More research is needed to find if other assimilation methods will improve the 

model in general as well. 

5.2 Recommendation  
In this section both the recommendations for this research and for WDOD will be presented 

in line with the points described in the discussion.  

5.2.1 Recommendation for research  

During this research, a very simple transformation of VanderSat data from m3/m3 to mm was 

used. This is probably an oversimplification. There are better ways to transform this with a 

nonlinear function. With a better transformation the performance of the assimilation could 

be better.  

Also, the data assimilation used is relatively simple, therefore there could be looked into 

data assimilation methods which are more advanced. A relatively simple one could be to use 

a warmup period after the assimilation of the remotely sensed soil moisture because the 

effect of the assimilation is not directly visible in the discharge. This lag could also be seen in 

the sensitivity of the HBV model for its initial conditions. Furthermore, there are more 

sophisticated methods of assimilation than direct insertion, for example a Kalman filter, 

which is used by Komma et al. (2008) in a flood forecasting system.  

Furthermore, VanderSat is only one of the providers of remotely sensed soil moisture 

content. With the use of data from other providers (e.g. SMAP) of remotely sensed soil 

moisture content, the effect of the assimilation of soil moisture could be different.  
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In addition, the calibration of the HBV model could be done with the use of the remotely 

sensed soil moisture. By already using the soil moisture data in the calibration the 

parameters could be adapted to the remote sensed soil moisture content. This could 

improve the performance of the assimilation.  

5.2.2 Recommendations for water board WDOD 

The investigated assimilation technique does not appear useful in the FEWS model, if the 

water board wants to use assimilation of remotely sensed soil moisture content there is 

more research necessary. With the assimilation used in this study the model performance 

does not improve, and even gets worse. This study is done with a perfect forecast, while in 

the situation WDOD is using this model, the precipitation forecasts are used. With the use of 

forecasted precipitation, the uncertainty increases, and the uncertainty in the precipitation 

forecast is probably bigger than the uncertainty in the initial conditions.  

In order to ensure that the model stays up to date, it is important to calibrate the model 

now and then with newly available data. With recalibration, for both the HBV models and 

the SOBEK model, an improvement in model performance is achievable.   

Another possibility is to look further into the use of the assimilation of soil moisture data in 

other models. The correlation found in this study could also be found for other models, even 

though the model and satellite measurements are not physically representing the same. For 

the HBV model it is easy to gather initial conditions with a warmup period of a year, but for 

other models it can be more cumbersome to get the right initial conditions for the model. 

For these models, the satellite information could be useful to determine the initial 

conditions.   
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Appendix A: Data used 

A.1 Satellite data  
VanderSat delivered data of the measured soil moisture content for every pixel in the area. A 

the size of the pixel in de dataset is 1km*1km and is available for 230 days a year 

(VanderSat, 2020), an overview of how this data looks can be seen in Figure A.1. This is the 

soil moisture content measured by a satellite for a depth of 5 to 10 cm. Also, by VanderSat a 

regional average based on a user defined area is delivered, of this regional average also a 

moving average is delivered by VanderSat. In Figure A.2 the data delivered by VanderSat, as 

regional averaged, for the period of 2015 till 2020 for the Ommerkanaal could be seen. 

 

Figure A.1: Satellite image for 24-01-2017 as delivered by VanderSat  
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Figure A.2: Remoted sensed soil moisture measured by VanderSat for the area of the Ommerkanaal for the period of 06-
2015 up to and including 12-2019.  

In Figure A.2 there are some outliers, one of them is 31 March 2016 with a value higher than 

0.9. In the Figure A.3 below the image of soil moisture of that day can be seen (for the first 

days delivered by VanderSat). Due to a large rain event on this day the quality of the satellite 

image is not good, or even not present. Therefore, the missing data will be linear 

interpolated. Also, the outliers will be removed from the data and the value for that day will 

be interpolated.  
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Figure A.3: Satellite image of 31-06-2016 with a large rain event, with the Ommerkanaal outlined.  
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Figure A.4: Soil moisture measured by VanderSat, averaged for the area Ommerkanaal and the measured precipitation from 
the radar measurements for the Ommerkanaal  

 

A.2 Metrological data  
The meteorological data from 2005 till 2010 is provided by the water board. For the period 

of 2015 to 2020 the data of the Koninklijk Nederlands Meteorologisch Instituut (KNMI) is 

used, retrieved via Metobase. The precipitation used in this study is based on radar 

measurements averaged over the sub catchment. In Figure A.5 the precipitation measured 

with radar could be seen for the Ommerkanaal. Also, in Figure A.5 the precipitation of the 

measurement stations in Hoogeveen and Heino could be seen. In Figure A.6 the location of 

the 2-precipitation measurement station in respect to the location of the Ommerkanaal 

could be seen. The precipitation measured for the Ommerkanaal with the radar is in line 

with the precipitation measured by the ground stations.  
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Figure A.5: Precipitation derived for the Ommerkanaal compared to 2 KNMI measuring stations close by the Ommerkanaal.  

 

Figure A.6: Location of the Ommerkanaal to the 2 KNMI measuring stations 
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A.3 Discharge data  
At some of the outflow points of these tributaries into the Vecht, the discharge is measured 

with gauges. For this thesis, the following gauges of the sub-catchments will be used: the 

Ommerkanaal and the Sallandse Wetering (measured by water board WDOD) and the Dinkel 

(measured by water board Vechtstromen).  
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Appendix B: Parameters HBV model  
Table B.1: Parameters for the HBV model for the different sub-catchments 

Sub catchment  Ommerkanaal 

Parameter  Before calibration  After calibration  

FC 140 (mm) 138.43 (mm) 

LP 0.1 (-) - 

BETA 3 (-) 3.40 (-) 

PERC 2.2 (mm/day) 0.57 (mm/day) 

K0 0.4 (d^-1) 0.228 (d^-1) 

ULZ 10 (mm) 12.4 (mm) 

K1 0.2 (d^-1) - 

K2 0.01 (d^-1) - 

Sub catchment Sallandse Wetering 

Parameter  Before calibration  After calibration  

FC 200 (mm) 307.81 (mm) 

LP 0.4 (-) 0.66 (-) 

BETA 3 (-) 5.8 (-) 

PERC 11 (mm) - 

K0 0.6 (d^-1) 0.2 (d^-1) 

ULZ 10 (mm) - 

K1 0.3999 (d^-1) - 

K2 0.05 (d^-1) 0.099(d^-1) 

Sub catchment Dinkel 

Parameter  Before calibration  After calibration  

FC 100(mm) 61.17 (mm) 

LP 0.1(-) - 

BETA 3 (-) - 

PERC 8 (mm) 6.69 (mm) 

K0 0.45 (d^-1) - 

ULZ 20 (mm) 12.90 (mm) 

K1 0.011 (d^-1) - 

K2 0.15 (d^-1) 0.04006 (-) 
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Table B.2: Initial conditions for the HBV model for the different sub-catchments  

Sub catchment  Ommerkanaal  

SM0 0.95 (-) 

SUZ0 14.4 (mm) 

SLZ0 10 (mm) 

Sub catchment Sallandse Wetering  

SM0 0.95 (-) 

SUZ0 0.5 (mm) 

SLZ0 25 (mm) 

Sub catchment Dinkel 

SM0 0.95 (-) 

SUZ0 6.6 (mm) 

SLZ0 450 (mm) 
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Appendix C: Results Ommerkanaal  

 
Figure C.1: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Ommerkanaal for 
the period of 8-11-2015 to 7-12-2015 
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Figure C.2: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Ommerkanaal for 
the period of 27-1-2016 to 15-2-2016 



62 
 

 
Figure C.3: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Ommerkanaal for 
the period of 7-12-2017 to 21-12-2017 
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Figure C.4: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Ommerkanaal for 
the period of 27-12-2017 to 15-1-2018 
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Figure C.5: Extra period used during the assimilation, in which the HBV model does an under estimation of the discharge 
during a dry period.  
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Appendix D: Results Sallandse Wetering  

D.1 Parameter sensitivity  

 

 
Figure D.1: The parameter sensitivity of the HBV model of the Sallandse Wetering reflected by the RMSE and the KGE  
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D.2 Sensitivity to Initial conditions 

 

Figure D.2: Outcome of the sensitivity analysis of the HBV model for the Sallandse Wetering for its initial conditions reflected 
by the RMSE for different lead times of 1 to 5 days 
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D.3 Correlation  

 

Figure D.3: The soil moisture simulated by the HBV model and the remotely sensed soil moisture for the catchment of the 
Sallandse Wetering and the scatter plot of the same data  

 

 

Figure D.4: The soil moisture simulated by the HBV model compared with the moving average of the remotely sensed soil 
moisture for the Sallandse Wetering and the scatter plot for the same data 
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Figure D.5: The remotely sensed soil moisture in comparison to the transformed soil moisture.  

D.4 Assimilation  
In Figure D.11, the two methods and the two data sets used for the five selected periods are 

shown. Overall, the figure shows that the methods using the moving average are performing 

the least worse, but still, the forecasted discharge does not show an overall improvement. 

Furthermore, it shows that the method used (as described in section 2.5) does not make a 

big difference in the model performance. Most of the differences in the model performance 

can be explained by the different data sets (the daily measured vs the 3-day moving average) 

used. This can be related to the higher correlation coefficient for the moving average data 

set than for the measured data set, as found in section 3.3. But still, there is no improvement 

in the model performance with the assimilation.  

The same conclusion, as for the Ommerkanaal, can be drawn for the Sallandse Wetering:  

the assimilation of remotely sensed soil moisture data does not improve the forecasted 

discharge. For all periods, the value of the RMSE is above 4 (m3/s), which is relatively high for 

a flow of approximately a peak discharge of 30 (m3/s).  
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Figure D.6: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Sallandse Wetering 
for the period of 26-11-2015 to 9-12-2015 
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Figure D.7: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Ommerkanaal for 
the period of 5-2-2016 to 29-2-2016  
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Figure D.8: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Sallandse Wetering 
for the period of 19-12-2017 to 1-3-2017 
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Figure D.9: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Sallandse Wetering 
for the period of 5-12-2017 to 22-12-2017 
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Figure D.10: The effect of the assimilation of soil moisture on the discharge of one peak flow event  
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Figure D.11: The result of the assimilation on 5 periods, expressed in the objective functions used.  
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Appendix E: Results Dinkel   

E.1 Parameter sensitivity  

 

 
Figure E.1: The parameter sensitivity of the HBV model of the Dinkel reflected by the RMSE and the KGE 
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E.2 Correlation  

 

Figure E.2: The soil moisture simulated by the HBV model and the remotely sensed soil moisture for the catchment of the 
Dinkel and the scatter plot of the same data 

 

Figure E.3:  The soil moisture simulated by the HBV model compared with the moving average of the remotely sensed soil 
moisture for the Dinkel and the scatter plot for the same data 
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Figure E.4: The remotely sensed soil moisture in comparison to the transformed soil moisture.  

E.3 Assimilation  
In Figure E.4, the results of the assimilation for the Dinkel are shown. As can be concluded 

from this figure for period 2 and 3, the assimilation does not lead to an improvement in the 

forecasted discharge. For period 1 Figure E.4 shows an improvement, however when looking 

at Figure E.5, the forecasted discharge (with or without assimilation) is very inadequate, this 

is also reflected in Figure E.4, with the values for the objective functions. For the other two 

periods, the result of the assimilation is no improvement, but method 1 using the 3-day 

moving average is also not giving a decline in the performance, the improvement of the 

objective function stay around the 0% for all lead times. This is the same as found by the 

Ommerkanaal, in which this method is also not leading to a deterioration of the 

performances for some of the periods but also no improvement in the model performances.  
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Figure E.5: The result of the assimilation on the 3 periods for the Dinkel, expressed by the objective functions used. 
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Figure E.6: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Dinkel for the 
period of 25-6-2016 to 3-7-2016 
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Figure E.7: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Dinkel for the 
period of 22-2-2017 to 2-3-2017 
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Figure E.8: The effect of the assimilation of soil moisture on the discharge of one peak flow event for the Dinkel for the 
period of 30-12-2017 to 1-9-2017 


